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Transverse Stokes flow through regular arrays of cylinders

A. ZACHARA

Institute of Fundamental Technological Research
Polish Academy of Sciences, Warsaw, Poland

THE PAPER PRESENTS RESULTS of calculations of the Stokes flow trough square and
triangular arrays of parallel cylinders. The results were derived using the method of
singular force distributions [1]. The results are obtained to O(f”) for a square and
to O(f®) for a triangular array, where f is the reduced volume fraction. They are
compared with the results of previous authors. The new expressions for the drag force
and the permeability coefficient valid in the whole range of f are also derived, using
Padé approximation technique.

1. Introduction

THE STOKES FLOW through a square array of parallel cylinders was recently
the subject of the paper [1] where the problem was studied by means the method
of singular force distribution proposed by HASIMOTO [2]. In the present paper
we extend the study to the array of triangular geometry and derive new results
of higher order approximation than in the previous papers, for both the square
and triangular arrays.

We treat here the array of cylinders as a porous medium where mean velocity
U and mean pressure gradient Vp are related by the linear Darcy’s law (3]

2
(L.1) U:—K-Tg-%-Vp.

Here 1 denotes dynamic viscosity, 7p is a non-dimensional cross-sectional area
of a unit cell and [ is the distance between axes of cylinders within the unit cell.
The symbol K denotes a non-dimensional permeability coefficient which may be
presented by the following general expression:

(1.2) K@) = o [In1/a® - Cy + 26(a)] ,
where

N
(1.3) Bla)=> Gy 6%,

a being the cylinder radius non-dimensionalized with the distance [ and C; are
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coefficients of expansion. The radius a and the volume fraction of cylinders ¢ are
related as follows

(14) o= TI'G'.E/TQ‘

where 7y is a non-dimensional cross-sectional area of a unit cell.

HASIMOTO [2] obtained the result (1.3) to N = 1 for square arrays. The
method of Hasimoto was then developed by SANGANI and ACR1vOs [4] who got
expansions to N = 3 for the both square and triangular arrays. DRUMMOND
and TAHIR [5] made calculations applying the method of singularities using a
different analytical technique than that of Hasimoto. They obtained expansions
(1.3) to N = 4 for square arrays and to N = 6 for triangular arrays. All these
results have been collected in a monograph by ADLER [3]. Recently the present
author the extended calculations to N = 5 for square arrays [1].

The theoretical research of the Stokes flow through spatially periodic systems
of particles found several technological applications. The approach of HASIMOTO
[2] inspired Davis and JAMES [6] to calculate the Stokes flow through a periodic
array of thin rings. These results appeared to be important in mathematical
modelling of paper formation processes. Another application of the Stokes flow
calculations for periodic systems in industrial practice is mathematical modelling
of hydrodynamic processes in man-made fiber formation. This problem was first
studied by SzANIAWSKI and ZACHARA [7] who treated a bundle of fibers as a
porous medium using the transverse and parallel permeability coefficients ac-
cording to HAPPEL and BRENNER [8]. This approach was then used to study
fiber formation in various conditions of manufacturing (see ZACHARA [9]). Re-
cently this method was modified and applied by OCKENDON and TERRILL [10]
to mathematical modelling of various aspects of wet-spinning processes. They
used permeability coefficients according to DRUMMOND and TAHIR [5].

The present paper follows the approach of HASIMOTO [2] and SANGANI and
Acrivos [4]. This approach was modified by the present author [1] where a
new functional basis has been derived. It allowed to obtain explicit expressions
for matrix elements of the system of linear algebraic equations. The solution of
the truncated system could be then derived using the symbolic computations of
Mathematica [11] and the analytical expression for the permeability coefficient
(1.2) was obtained. This expression has been expanded to N = 7 for square and
to N = 8 for a triangular arrays. It covered a wide range of the volume fraction ¢
with the exception of ¢ close to ymax, corresponding to densely packed cylinders.
However, making use of the asymptotic solution of KELLER [12], valid in the
range ¢ — ¢, ., and the solutions obtained in this paper, we have derived the
new expressions for the permeability coefficient K valid in the full range of the
volume fraction. These expressions have been obtained using the multipoint Padé
approximants technique [13]. The results of calculations derived in various orders
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of approximation have been compared with the numerical results of SANGANI and
ACRIvos [14].

2. Calculation of the permeability coefficient

The calculation method, based on the approach of HAsiMOTO (2] and SAN-
GANI and ACRIVOS [4], has been derived in the previous paper [1]. We do not
repeat here details of the analytical procedure which can be found in [1] but
instead, we present new results of calculations which enable higher order approx-
imation of the permeability coefficient K (a) (1.2) for square and triangular arrays
of cylinders. The quantity 8 which appears in (1.2) is defined as

1 -
(2.1) B v
with Y} being the component of the vector Y which fulfils the algebraic system
of equations

(2.2) WY, = 6i1 .

The matrix elements W;; are presented by the expressions (2.4)—(2.6). These
expressions are different for odd and even subscripts j corresponding to the matrix
columns. The elements of the first column W;; are here excluded to simplify the
odd columns expression. Thus the matrix elements may be presented as follows:

-for 4 = 1:

wa’ i) wa?

b T ) e ;
27, ﬂ+2( 275

(23) Wa= )(8is — di2) + Ay @'

1 . .
—(i+1)- [544;'4.1 a? 4. Bi+1:| ca¥}

1 ;
+(1 I 2) 4 [§Ai+2 , (12 + (3 -+ 1) ’ Bf+2:| . a‘,

— for other odd subscripts j =3,5,7,...:

T (7 -1
(24) W= e ;1053 + T (0i5+2 — Oij+1 + i, 5-1)
G —1)(5 = 2)! G=3)¢+7 -2 i
TTRal W mogogy e
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LoLole L2 ORGSR L N [%_AM T H-_Bm.] !
_(71‘(':1-:)!1)! . B— “Aipjpr-a® + (i + 1) 'Bt+j+l] -at,
— for even subscripts 7 = 2,4,6,...:
285)  Wy=-= s+ L (550 - by)

The system (2.2) has been truncated to the size 9 x 9 and solved using the
symbolic computations Mathematica. As a result, the expansions of £(a) (1.3)
were obtained with N = 7 for a square array and N = 8 for a triangular array.
The calculated coefficients C; from (1.3) are as follows:

- for a square array:
Ci=m/rg, Cy=—[(n/n0)?/4+576-B}], C3=-T68-A4B,,
Cy=288-m/19- AyBy wZGU-AE, Cs = 192-7:'/1'9-14313,
Ce = —12-(3-(w/10)* - A +6912- A3B? — 26880 Ay B4 Bs + 3136 - B?),
C7 =768 - (—288 - A3By + 224 - AyB4Ag + 560 - A3Bs — 105 - AgBg),
— for a triangular array:
C\=n/m, Cy = —(m/70)%/4, Cs =0,
Cy = —T7200- BZ, Cs = —17280 - AgBs,
Cs = 6Ag - (600 - /79 - Bg — 433 + Ag),
Cr =2160 -7/ A2,  Cs=—450-(m/7,)%- A2.
The coefficients Cy, Ca, C3 for a square and a triangular array are fully equiv-
alent to those obtained by SANGANI and ACRIVOS [4]. The coefficient C} for a

square array and the coefficients Cy, Cs,Cs for a triangular array were derived
by DRUMMOND and TAHIR [5] with the calculation technique different from ours
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hence the corresponding expressions cannot be directly compared. Instead we
can compare their numerical values. To this aim we take the numerical values
of Ay, By, Ag, By, Cj evaluated for a square array [1| and calculate the numerical
values of Ag, Bg, Cp for a triangular array using procedures given by SANGANI
and ACRIVOS [4] or ZACHARA [1].

Hence for a square array we have:

Ay = 7.878030005 - 1071, By = —1.044856181 - 10},
Ag = 5.319716294 - 10~ , Bg = —4.031710210 - 10~2,
Co = 2.621065852 ,

and for a triangular array:

Ag = 9.771719489 - 1071, Bg = —9.428004796 - 102,
Cp = 2.786075894 .

In the case of a square array 79 = 1, and of a triangular array 79 = V3/2.

Table 1. Expansion coefficients in the expression (1.2)
for a square and a triangular array.

i C; (square) C; (triangle)

0 1.310532926 1.393037947

1 w 3.627598728

2 —8.755733869 —3.289868134

3 6.321721609 - 10! 0

4 —2.358407557 - 102 —6.399883760 - 10
5 3.743573485 - 10? 7.959843494 - 102
6 2.267883043 - 107 —3.683869238 - 10°
7 —2.632730210 - 10* 7.481952988 - 10°
8 —5.654483988 - 103

Inserting all these data to the expressions for C; we obtain their numerical
values which are collected in Table 1. The data of DRUMMOND and TAHIR [5]
correspond to our data for ¢ = 0 + 4 (square array) and for ¢ = 0 + 6 (triangular
array). The literature data for higher ¢ are not known to the author. If we
compare the results collected in Table 1 with the results of DRUMMOND and
TAHIR we can see that they are equal at least to eight decimal places. The
agreement is then excellent although these results were derived with the use of
two different techniques.

It is convenient to present the permeability coefficient or the drag force as a
function of a reduced volume fraction f which varies from 0 to 1
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f = ¢/Pmax

where ¢ is the volume fraction of cylinders and @pax is the limiting volume
fraction corresponding to the case of touching cylinders. In the case of a square
array @max = 7/4, and in the case of triangular array @max = 7v/3/6. It can be
easily shown that the variable f is related to the radius of a cylinder a for both
the square and triagular array as

(2.6) f=dg®,

Substituting (2.6) to (1.2) we may present the coefficient K in the form

N
1 ,
(2.7) K(f)= o {Iu 1/f+ ZUT =i
where the coefficients T} are related to the coefficients C; as follows:
(28) Tu — ll’l4 — Cu y
C.
(2.9) i = 4: : fori>0.

We obtain the new expressions for the permeability coefficient K (2.7). They
are:
~ for a square array

(210) K(f) = SLW[lul/f — 1.234771491 + g f

—1.094466733 - 2 + 1.975538003 - f3 — 1.842505904 - f*
+0.7311666962 - £ + 0.1107364767 - f% — 0.3213781994 - f7|,

— for a triangular array

1

(211) K(f) =g

[ln 1/f — 1399781533 + 1.813799364 - f
—0.4112335167 - f2 — 0.4999909187 - f* + 1.554656932 - f°

—1.798764276 - f© + 0.9133243394 - f7 — 0.1725611569 - f5| .

The results obtained are presented in Fig. 1 for a square array and in Fig. 2
for a triangular array, in a form F(f) = K~!, where F is a drag force per unit
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FiG. 1. Drag force F(f) = K~'(f) for a square array calculated from (2.10) at various
truncations: — - — - — O(f*) [5]; — —— O(f") present results; reference data [14].

length of the cylinder (see [1]). They are compared with the numerical results of
SANGANI and ACRIVOS [14] derived in a wide range of the volume fraction from
f = 0 to f close to 1. It is seen that the present results evidently allowed to
increase the accuracy of calculations. Thus the results are in agreement with the
reference data [14] in a wide range of the volume fraction f up to about f = 0.8.

In the range of f close to 1 the coefficient K(f) is well approximated by the
asymptotic relation of KELLER [12] obtained by means the theory of lubrication.
For a square array this relation reads

f o 2\/§ 1}(2 5!’2
(2.12) k() == (1-17)7,
and for a triangular array

_ 42 1721 %/
(2.13) K(f)=5=-(1- 7).

Thus we have two pairs of relations (2.10), (2.12) and (2.11), (2.13) for a
square and triangular arrays, respectively. It would be however convenient to
have only one expression K (f) for each geometry, which could cover the complete
range of f with a good accuracy. To this aim we use the technique of multipoint
Padé approximants [13]. This type of approximation often appears to be more
convenient than polynomials since Padé approximants need in general much less
terms to achieve a good accuracy. We seek the expression for the permeability
coefficient in the following form:

(214 K(f) = 5= [1/f - T + (/M)
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FI1G. 2. Drag force F(f) = K~'(f) for a triangular array calculated from (2.11) at various

truncations.: —-—-— O(f°) [5); = —— O(f®) present results; reference data [14].
where

L )

>, a;-f*

_ =l
(2.15) [L/M] e S )
1+ > b;- f¢
i=1

is a Padé approximant. The coefficients a;,b; can be evaluated so that the ex-
pression (2.14) could take the values determined by (2.10) and (2.12) or by (2.11)
and (2.13) for several selected values of f. We chose L = 3 and M = 2 and
evaluated coeflicients a;, b; which are presented in Table 2.

Table 2. Coefficients of the Padé approximant (2.15)
for a square and a triangular array.

Square array Triangular array
a 1.556322044 1.823817915
asz 4.462879026 —1.723614004
as =3.117657159 0.174433692
by 3.689159025 —0.681877655
b2 —2.339295968 —0.121922012

The coefficient K(f) (2.14) has been calculated and the results are presented
in Fig. 3 for a square, and in Fig. 4 - for a triangular array. The results obtained
from the power expansions (2.10), (2.11) and the Keller solutions (2.12), (2.13) are
also included. The Padé approximants technique was also applied by DRUMMOND
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FiG. 3. Drag force F(f) = K~'(f) for a square array; O(f7), present results;
— — — Keller approximation calculated from (2.12); e e e Padé approximant calculated
from (2.14) and Table 2.
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FI1G. 4. Drag force F(f) = K~'(f) for a triangular array; O(f"), present results;
— — — Keller approximation calculated from (2.13); e e e Padé approximant calculated
from (2.14) and Table 2.

and TAHIR [5], however their expressions in the Padé version were merely some
correction of the expressions with power series expansions and did not cover the
complete range of the volume fraction.

3. Conclusions

The Stokes flow through a square and triangular arrays of parallel cylinders
was studied using the method based on the approach of HASIMOTO [2]. This
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approach was modified and a new analytical technique was developed (see [1]).
The solution of the governing equations has been derived with the aid of the
functional basis which allowed to transform these equations into the system of
linear algebraic equations with the matrix elements given in an explicit analytical
form. It made possible to obtain the analytical expression for the permeability
coefficient K or the drag force F using symbolic computations of Mathematica
[11]. It is a meaningful advantage of the method since derivation of drag force
expressions without computer assistance is very tedious even for quite a moderate
order of approximation. The expressions for F' derived in this paper are of a higher
order of approximation than those previously obtained, i.e. to O(f7) for a square
and to O(f®) for a triangular array.

It was of course possible to continue calculations and derive new expressions
(2.7) of higher order. However these expressions, being more and more extended,
would never cover the complete range of the volume fraction. For this reason
the new expressions have been derived using the multipoint Padé approximants
technique. These expressions, based on the results of the present paper and the
asymptotic results of KELLER [12], allowed us to evaluate with a good accuracy
the drag force F or, all the same, the permeability coefficient K in the full range
of the reduced volume fraction f from 0 to 1.
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