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Some exact solutions of steady plane MHD non-Newtonian
power-law fluid flows*

I. ADLURI

Department of Mathematics, Wheeling Jesuit University,
Wheeling, West Virginia, WV 26003 USA

Equations of steady plane MHD flow of a non-Newtonian power-law fluid are trans-
formed to the hodograph plane by means of the Legendre transform function of the
stream-function. Results are summarized in the form of a theorem. As applications
of the developed theory, four flow problems of physical interest are studied. Exact
solutions and the corresponding geometry are obtained in each case.

1. Introduction

HODOGRAPH TRANSFORMATION is one of the methods of solving systems of non-
linear partial differential equations. This technique has been widely used in con-
tinuum mechanics. AMES [1] present a survey of the hodograph transformation
and its applications in fluid mechanics and various other fields. In a series of
papers CHANDNA et al. [2 — 7] have applied hodograph and Legendre transfor-
mations to investigate steady plane viscous flows, non-Newtonian flows and MHD
non-Newtonian flows in the presence of constantly inclined, aligned, transverse
or orthogonal magnetic field. ADLURI [8, 9] has employed this method to ob-
tain a class of exact solutions plane MHD non-Newtonian power-law fluids and
micropolar fluids. In recent years, the interest in problems of non-Newtonian
fluid flows has grown considerably due to an extensive use of these fluids in
many areas such as chemical processes in industries, food and construction engi-
neering, petroleum production, power engineering and commercial applications.
Since most liquid metals, non-Newtonian fluids, and many other second grade
fluids to which single fluid model can be applied, accounting for electrical con-
ductivity, makes the flow problem realistic both from the mathematical and the
physical point of view.

The present paper deals with application of hodograph transformation tech-
nique to obtain a class of exact solutions of the nonlinear partial differential
equations governing the steady plane flow of a power-law fluid in the presen-
ce of a transverse magnetic field. Equations of the flow are transformed to the
hodograph plane interchanging the role of independent variables z,y and the
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16 I. ADLURI

components u,v of the velocity field. Introducing a Legendre function of the
stream-function, all equations in the hodograph plane are expressed in terms of
this transform function. Results are summarized in the form of a theorem and
finally, four interesting flow problems are studied to illustrate the developed the-
ory. Exact solutions and geometry of the flow are obtained in each case and it
is proved that a spiral flow cannot exist in a non-Newtonian power-law fluid
whether or not the fluid is conducting.

2. Equations of flow

The steady plane flow of an electrically conducting non-Newtonian fluid which
obeys Ostwaald-de Waele power-law model

n—1

(n=1)
Tij = 2K [2enen] 7 €5

o du; 3153'
e;_; = 5 (é‘;}' +_a":';;)!

where

is governed by

(2.1) %+§§=0,
(2.2) gf=ww-+K{wg—;-"g—:”(g—:%+%%)}‘
(2.3) %=—M-K{w%—f%‘ (%%*%%)}‘
(2.4) u%—fw%g:é(% ?;TI:)’
(2.5) w=%—%’
R R

Jz Ay dy Oz

where 7;; denotes the strain rate tensor, e;; — the strain tensor, (u(z,y)-v(z,y),0)
is the velocity vector field, (0,0, H(z,y)) is the magnetic field, p is the pressure,
p is the fluid density, p. is the magnetic permeability, o is the electrical conduc-
tivity, K is the consitutive coefficient, I is the Ostwaald-de Waele parameter and
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SOME EXACT SOLUTIONS 17

1 1
(2.7) F(z,y) = 5p(u® + %) +p+ spcH.

3. Equations in the hodograph plane

Assuming u(z,y),v(z,y) to be such that the Jacobian

6‘(1;.,11)

(3.1) J(z,y) = 3z,

740, 0<|J| <0

in the region of the flow and considering = and ¥ as functions of u and v, we can
derive the following relations

J(z,y) =

O(u,v) _ [8‘(1, y)
Nz, y)

ou 0Oy ou Oz v oz

(8:2) - ler. ®mS ar & Sk

of _ a(f,y) _73(7-9) of  9(f,z) _73(1‘1T)
or  Az,y) ~ O(u,v)’ oy  A(u,v) " O(u,v)’

where [ = f(z,y) = f(u(z,y),v(z,y)) = f(u,v) is any continuously differentia-
ble function.

Employing these relations to Eqs. (2.1) - (2.7) we obtain the following equ-
ations in the (u,v) - plane:

(3.3) % 4 g—ﬂ =0,
ST o ] ay
(B4) Ty =P+ KT {u,Ql 1P, +27 (Qz =04 31})}

(3.5) 78(1"‘0) = —puw — j{sz—sz-!-?J (Q2 Q;%)},

1 [0(INy,y) = 8(z,TNo)
(3.6) ulN;y + vNs = 110 { 3(15‘11,) O(u, ‘U)2 }
dr Oy
(3.7) =7 (3v %)’
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18 I. ADLURI

n—1

o 1-0 (23 @) G D}

where
Oz, @ @
Pi(u,v) = 6((:; v;‘ Py(u,v) = H,
_ Hz1) _ ()
Ql(u,U) = 3(11’1))} QE(“!”) = 6(1&, ‘U]’
(3.9) Ny(u,v) = %, Nty 2 %((2 x:’))_

Equations (3.3) — (3.8) is a system of six equations in six unknown functions
z(u,v),y(u,v),, I, H and F. Once a solution of this is obtained, we can deter-
mine u(z,y), v(z,y) and all other flow variables in the physical plane. Eq. (3.6)
is the diffusion equation for a finitely conducting fluid for infinitely conducting
fluid flows it should be replaced by

(3.10) ulNy +vNy = 0.

4. Legendre transformation function and H(u,v)

The continuity Eq. (2.1) implies the existence of a stream-function ¥(z,y)

such that 2 ol
{41) d‘l,b = —vdz + udy, a =1, _8__y_ =u

and Eq. (3.3) implies the existence of a function L(u,v) called the Legendre
transform function of the stream-function % (z, y) such that

oL oL _

4.2 dL = —yd d el :
(4.2) ydu + zdv, 7 Y, By 1%

Functions L(u,v) and ¥(z,y) are related by
(4.3) L(u,v) = vz —uy + ¥(z,y).

Using Eq. (4.2), we can transform Eqs. (3.4) — (3.9), respectively, to
o (50T

ol IR
Wmmw+KJ(uQ1~IP1~2JR1),

(4.4) i
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SOME EXACT SOLUTIONS 19

(aL :
L f’) o 2 et
(4.5) JW = —puw — K7 (2Q2 — TP, — 2TR;),
9 (d‘r‘ JN,) a (BL, JNQ)
(4.6) RNI -+ 'UN‘Z = L du Hy
HeO I(u, v) A(u,v) :

=
S_ (L 2L (&L
T | ouZ 8 \ Budv 3

(4.7)
I 0%L L] 92
Bl ou? | w2 )’
n—1
= 82 &L\’ oL \?| °
-5 (n—1) it O W o
(4.8) I ={J) {(&ﬁ 8:;2) *4 (81:.31:) } g
where
5 (SL ) 5 (aL .
_N\aw® N au"“)
Py(u,v) = B, u) Py(u,v) = T
9 (3—L T) 9 (3—L T)
Ql(u‘v) =" i,__.‘ QQ(U,’U) e _L’
d(u,v) Au,v)
(1) o)
_ T \ou’ __\Be" )
Nl (u! U) il 8(“1 U) 1 NQ('U., IU) o 8(“,1}) b
(4.9)
2L &L L %L

R‘l(”’! ) Q] 8 2 Q2auav! Ql 6113 + Q23‘U.2

To eliminate F(u,v) from Eqgs. (4.4) and (4.5), we use the integrability con-
dition
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20 I. ADLURI

Ol =
9L 8 _50°L 8 ja (%‘F)
Buav v Ov? Ju O(u,v)

oL —
(a%a . &L a) _a(a_U’F)

Jﬁ% ~ " Qudv u d(u,v)
and obtain
(4.10) p(vPy +uP) + K(@W) — TW, — 2W3) = 0,
where
oL 9L
0(7e:7@) 0(57q:)
Wy = + ,
(u,v) u, v)
a(gL,JPl) 3(%,71"2)
il W2= S T aww
0 (3L,J Rl) ) (‘% 7”}?2)
W — d ou’
2 d(u,v) A(u, v)

We can summarize the above results in the form of a theorem:

THEOREM: If L(u,v) is the Legendre transform function of a stream-function of
a steady plane transverse finitely conducting non-Newtonian power-law fluid flow
and H(u,v) is the transformed magnetic field, then functions L(u,v) and H(u,v)
have to satisfy Egs. (4.6) and (4.10) where @, I, J, P;, Qi, R; and W; are given
by (4.7) - (4.9) and (4.11).

To solve L(u,v) and H(u,v) from Egs. (4.6) and (4.10), it is convenient to
express Eqs. (4.6) — (4.11) in polar coordinates (g, #) in the hodograph plane by
defining

(4.12) u=gqcosd, v=gsinh, ¢°>=u*+v% 6=tan"! (E)
Using (4.12), Egs. (4.6) - (4.11) can be transformed to
http://rcin.org.pl
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1 a (cos 98;:? - S"; 9%% ,J*Nf)
4.13 N7 cos 0 + N sin 0) =
il q(Ni ) 1eq 8(q,9)

LG eop@OLY
+3 (smﬂ B e . 90 wd N2>
9(q, 0)

1

p(Py sin 0 + Pj cos 0) + K(w*W{ — I'W3 — 2W3) =
’ . (@** 18L* 19
(4.15) w'(q,0) = J (3q2 Sibmi T a 392)
82r* 10r* 1L\’
*® n— l) N —
(4.16) I*(g,8) = (J*) {( 3%F 407 & 392)
9 n—1
N 4 (6L &L*
7\ 30 " 98400 '
—1
LY B 8L oL* ' B
* — 2
(4.17) J*(q,0)=¢q {q 9q2 (q g it 392) (30 qaqag) } J

( . ,O0L* cosfOL* _)
d|sinf + ,
Pi(q,0) = - %9 4 08

ot TG d(g,0)

(4.14)

1

oL* sinfoL* |
13(0059 3 q 50 )

P} (q0) = = :
2 (49) . 3(a,0)
(4.18)
5 (sin 96}5‘ 4 cos BBL“I,)
QRi(g,0) = = 2 L
S o] a(q,0) ’
3 (COS 0L _sin0dL’ ! P)
Q3(0,0) = - e L
gty d(q,0) ’
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22 I. ADLURI
" sl 9?L* sinfcosfOL* cos200L*
1(q,6) = Q3 (schosB g — p 3q — 2 08
cos20 O?L*  sinfcosf *L* L0 sinBcosGazL* _ sinfcosf IL*
q 0qol g2 062 < 0q? q Aq
_cos200L* 4 Co8 20 92 L* _ sinfcosf V) b g
q¢ 00 q 9q00 q? 0602 )’
= L 8%L* sinfcosf OL* cos20OL*
(4.19) R3(q,0) = Q] (smﬂcost? a7 — = 3 - T
cos 20 6%L* _ sinfcosf '3 g
q 9990 > 062
+02 [ cos? oL o sin?0 OL*  sin200L* sin26 6°L* 3 sin? 0 92L*
NS T Ty Bg T @£ 060 ¢ 0q00 " £ 062 )’
P (SineaL g cos L sJ.QI)
Wi(q,0) = - =% &
: q (q,0)
oL* sin@oL* , .,
+3(c059 50" 4 09 s Q2)
d(q, 0) ’
[2 (siné’a;q'r 4 °°;9%I; ,J*Pl‘)
4.20 W3 (q,6) = ~
(4.20) j0.0) - T
arL* ‘sm@aL* .. .
+a(C°SG 5. ¢ 00’ P2)
9(q,0) ¢
9 (SingaL " cos OL aJﬂR;)
W3(a,0) = - % %
q 9(q,0)
dL* sin6dL*
o Iy *2 %
¥ (cosB 9q 1 SG'J RQ)
d(q,9) ’
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5 (cos(}aL __sind dL H*)

* 1 6q q 00’
N, H 0) = - H
il0.6) =7 3a,0)
(4.21)
P (S,mgaL L cosfl AL ,H*)
N3(0) = c——2 4 9
’ q d(q,0)

where L*(q,0) = L(H,U}, Ld'(q,g) = w(u,v), I*(Q! 0) = I(uiv)l and J‘(Qs 9) =
T, v).

Once L*(q,0) and H*(q,0) are determined, we use relations

(4.22) z = gin BaL + St Y= cosgaé;{t; L 512933{:3’

dq g 00’
to find the velocity components and the remaining flow variables in the physical
plene.

5. Applications

In this section, we investigate some flow problems of physical interest as
apolications of the theorem.

5.1 Hyperbolic flow

Let
(51) L(u,v) = Aju?® 4+ Bv? 4+ Cyu+ Dyv + E;

be the Legendre transform function where Ay # By # 0, Cy, Dy and E; are
arditrary constants.

Substituting (5.1) in (4.6) - (4.9) we have

1 A+ By

l_f L —— o= —
4AJBI’ it 2AIBI ,

~l|
|

- (n—1)
(52] = (u) ] Ql e 01 Q2 o 0: Rl = 0: R-2 = 01

2A,B,
Ny = 2A18—H, Ny = —2318—H.
ov du
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24 I. ADLURI

Finitely conducting fluid flow: Substituting (5.2) in Egs. (4.6) and (4.10), we
find that (4.10) is satisfied identically and (4.6) simplifies to

O . OH  peo [ ,0°H 000
(53) A]U% == B]ﬂ% = 2A131 (Bl ou? = Al Ou2 ’
Solving this equation we get
(5.4) H(u,v) = Aju? + Biv?, A =-B,
and
(5.5) L(u,v) = A1 (v® — v®) + Cyu + Dyv + E;.
Substitution of (5.5) in (4.1) and (4.3) yields
5 __{utci) —E=Dh)
(5.6) u(e,y) ==L, u(my) =~

Using (5.6) in (5.4), (2.2), (2.3), (2.6) and (4.1), we get the flow variables
H(z,y), I(z,y) and p(z,y) in the physical plane in the following form:

(57) H(z,y) = SE AV — (== D1’

122 ’
_1)(n-1)
8] Ie,y) =) Alg,)u-‘l) ’
z—D1)*+(y+C1)?
(5.9) p(x,y)=-g{( it Ale) }

2
e {(ywl)? - (xwm} Ly
2 4A%

where m is an arbitrary constant.

Infinitely conducting fluid flow: In this case, Eq. (4.10) is again satisfied iden-
tically and Eq. (3.10) simplifies to

oH oH
(510) A;u-*‘a? — B]‘UE = 0.

A general solution of Eq. (5.10) is H(u,v) = f(u? + v?), but without loss of
generality, we can take

(5.11) H(u,v) = Aju® + B2,
http://rcin.org.pl
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Proceeding as in the case of finitely conducting fluid flow, we obtain

 (y+Gy) R A )
(5.12) u(z,y) = S v(z,y) = B
(z=D1)?*  (y+C1)?
(513] H(Ivy)—' 4Bl _+_ 4A1 L]
ORI 5 SO o8 Do
(5.14) 6= (T +5)

__plE-D)® @+C)
(5.15) p(z,y) = D) { 4312 + 4A% }

pe {(hm? " (y+cl)2}2+ﬂ2

i 4B, 44,

where 7o is arbitrary constant.

If L(u,v) = Aju?+ B1v?+ Ciu+ Dyv+ E) is the Legendre transform function
of a stream-function of a steady plane transverse flow of a finitely conducting non-
Newtonian power-law fluid, then the flow variables are given by (5.6) — (5.9) and
the stream-lines are hyperbolas

(z-D1)*> (¥+C1)?
(36 4A, 44,

= const.

If the fluid is infinitely conducting, the flow in the physical plane is given by
(5.12) — (5.15) with stream-lines

(x — Dy)? = (y+ C1)?

sl = t.
(5.17) 1B, A cons
5.2. Parabolic flow
Letting
(5.18) L(u,v) = (Agv + Bou)u + Cou + Da,

where Ay # 0, By, Cy and Dy are arbitrary constants, and using it in (4.7) -
(4.9) we can obtain
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26 I. ADLURI

e 1 i 282 = (‘R—l) Ag 'l' B2 +
J = Ag! ""_—A%: I“‘( 2) Ag s
(519J A =0 P=0, @Q1=0, @2=0, R =0, Ry=0,
OH oH OH
N]. == QBQE‘U— o Az‘afu‘, N2 =5 A2EJ~

Finitely conducting fluid flows: Results (5.19) satisfy Eq. (4.10) identically
and simplify (4.6) to

(520] (282‘& = sz)

@—Au@— 1 3%?__482 O*H
Ov 4 e Ou? Ay Oudv

du _,uea
i nes 4B%\ 0°H
AZ ) 02 |7

Solving the above equation we get

(5.21) H(u,v) = clje = du + cg

where ¢; and e; are arbitrary constants.
Proceeding as in the previous application, we find

T 2B, Y Cz)
22 = — e === bl
A
(5.23) Hiz.y) = EL/e”ﬂ"h dz + ca,
Az

(5:24)  plz,y)=-

Pl +9%) + Y+ Co)?
2 A3

e [O1 [ i g
—%-{A—;/e“w‘=d:c+cz} + g,

where 73 is an arbitrary constant.
Infinitely conducting fluid: In this case, Eq. (4.10) is again satisfied identically
and Eq. (5.19) takes the form

http://rcin.org.pl
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oH
(5.25) (2Bsu + AQU)?}; — Asu = 0.

A general solution of this equation is
(5.26) H(u,v) = &(Bou® + Ayuv)
which, on substituting the velocity components given in (5.22), becomes
(5.27) H(z,y) =& (——~:t: —— —:r) ,

where @ is an arbitrary function of argument.
The pressure function is given by

(5.28)  plz,y) = -2 {(12 +97) + (y + cg)"}

2 A3
_be [5(_B2 2_2_@)]2
2 [qs( A%I Ay A T

where 4 is an arbitrary constant.

If L(u,v) = (Av + Bou)u + Cou + D3 is the Legendre transform function
of a steady plane transverse flow of a non-Newtonian power-law fluid of finite
conductivity, the flow variables are given by (5.22) — (5.24) and the streamlines
are parabolic curves

(5.29) BgI2 + Agxy + Aoz = const.

In case of infinitely conducting fluid flow, Eqgs. (5.22), (5.27) and (5.28)
express the flow variables in the physical plane with streamlines given by (5.29).

5.3. Radial flow

Let

(5.30) L*(q,6) = A3b + Bs

where Az and Bj are arbitrary constants in the Legendre transform function of
stream-function.

Using (5.30) in (4.15) — (4.21), we obtain
http://rcin.org.pl
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4 (n—1) 2(n—1)
(31 »=-%, w0 r= Sl
3 Az
AsI* sin@ AsI* cosf
Q’ e 3= T
1 qg Q2 qg
" AZI* cos . A3I*sing
Rl == BTy e e
q q*

* [‘ 1 2l * *
le___(ql)s W2:[}1 WSZO)

N — Az cosf OH* 7 Azsinf 0H* NS — Azsin@ OH*  AzcosO OH*
iy = 2~ q2 6q q3 39 ’

¢ Oq ¢ . 00"

Finately conducting fluid flows: Using results (5.31) in (4.13) and (4.14), we
find that (4.14) is satisfied identically and (4.13) becomes
9*H* 180 1 8%H*
5.32 —+(14+ A - —
{ ) aqg +( -+ 3#60)(; 69‘ +q2 502
Assuming the solution of Eq. (5.32) in the form H*(q, 0) = hi(q) + ha(8) we
can obtain

=0,

1
Aspieo
where c3, ¢4, ¢5, and cg are arbitrary constants.

Proceeding as in the previous applications, we obtain the flow variables in
the physical plane in the form

1
(5.33) H*(q,0) = c3 (582 + Inq) + c4qg~A3He7 50 + cg,

A3I A3y

v(z,y) = (

(5.34) u(z,y) = ( W’

2+

2
(5.35) H(z,u)= 82—3 { (tan‘lg) + ﬁ In(z? + 92)}

Azpieo

+eq(z? + 9?) 2 4+ C5ta,n_1§ + cg,

(n—1)

2
(5.36) I y) = 2 (g2 gAY D).
A:(;z—l)
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2%(n— 1)K
(n— 2].4:(;3_2}
where 74 is an arbitrary constant.

Infinitely conducting fluid flows: In this case, the diffusion equation reduces

(5.37)  p(z,y) = - 222 +12) 2

(12 3 y2](n—2} |

to OH"

(5.38) 7 =0
which yields

(5.39) H*(q,0) = ¥(0),

where W is an arbitrary function of 6.
The expressions of velocity components and I(z, y) remain the same whereas
H(z,y) and p(z,y) are given by

- -1¥
(5.40) H(z,y)=¥ (tan :c) ,
(5.41) p(z,y) = —m (-T +y ) = i+ )

where 75 is an arbitrary constant.

If L*(g,0) = As0+ Bs, Az # 0is the Legendre transform function of a stream-
function of a steady plane transverse flow of a finitely conducting non-Newtonian
fluid of power-law model, then the Eqgs. (5.34) - (5.37) express the flow variables
in the physical plane. If the fluid conductivity is infinite, the flow variables are
given by (5.34), (5.36), (5.40) and (5.41).

5.4, Spiral flow

(5.42) L*(q,0) = Aslng+ B16, Ay #0, By #0
and proceeding as in the previous applications, we can obtain
4 _0\(n—-1}_.(2n—-2)
q . »(=2)"""q . .
(543) J*=-——m—=0p, w'=0,1T —, P} =0, F3 =0,
(A% + BY) A3+ BY2 " ! ;

t‘ ‘.i'

Q= —2—2 (Agcos@ — Bysinb), Q3= 2—2 (Assinf — Bycosb),
http://rcin.org.pl
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£ /!
[t *
(543) R = 3 (Aﬁ > Bf) cosf, R} = ‘;—4 (Az + B} sino,

[cont.]

OH* i

Nt = :_2(/14 sinf + By cos ) —— ¥ 3 (Aqcos 0 — By sind) 639 .
» *
N3 = —% (Ascos — Bysinf) aaiq - qla{A4sin9 + By cosf) 3;; :

These equations together with (5.42) yield

. ’ Ay Cial s SR
. =0 Woi=0D = - I* .
(5 44) W1 1 2 1 W3 (Ag 3 ‘BE) { q2 q

Employing (5.43) and (5.44), Eq. (4.414) simplifies to

4A4K( —2)("Np(n — 1) g(2n-2) —

A2 + B2)F

From this equation it follows that a steady plane flow of a non-Newtonian
power-law fluid cannot be spiral whether the fluid conductivity is finite or infinite.
However, a spiral can exist in a steady plane viscous fluid (n = 1) whether it is
conducting or non-conducting. In the case of finitely conducting fluid, Eq. (5.45)
is identically satisfied and Eq. (4.13) becomes

(5.45) =,

217 * * 2 1r*
aa; (14 Bapoo) L0 _ Aapeo OH* | 1 PH

(40) T ¢ 0 P on

=:();

Assuming the solution of this equation in the form H*(q, 8) = g1(q) + g2(6),
where g; and go are arbitrary functions, we obtain

A 0
(5.47)  H*(q,0) = 5 L, (1‘;—"? + A_) + dyg Baote 4 dyetaored | gy

where Aj, dj, do and d3 are arbitrary constants.
Proceeding as in the previous applications, we can determine u(z,y), v(z,y)
and p(z,y) in the following form:

(Bsx — Agy)
(22 +4?)

(Asz + Byy)

(5.48) u(z,y) = PP

’ 'U(I, y) =
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) _ p(43+B) &{Al_(hl_q i)
(5.49) p(z,y) = 2 (22 + 2) 2 | peo B4+A4

2
+d1 q- Bapeo < d2eA4Pc03 J dS} + g,

where mg is an arbitrary constant.

If the viscous fluid is infinitely conducting, the the diffusion Eq. (4.13) redu-
ces to

BiOH* A4OH*
(5.50) e ke

A solution of this equation is

"0.0) =) (29,9
(5.51) H'@.0) = (B + ) +da

where dy is an arbitrary constant.
The pressure function is given by

5 __BM_&{ (“1_? i) }2

where 77 is an arbitrary constant.

6. Discussion

In each of the applications studied, the velocity components w(z,y) and
I(z,y) are independent of the effect of electrical conductivity. Therefore, the so-
lutions of the flow equations of steady plane flow of a non-Newtonian power-law
non-conducting fluid can be derived as special cases of the problems investigated
by discarding the term — p.H?/2 from the pressure functions. A steady plane
flow of a non-Newtonian power-law fluid cannot be a spiral flow whether or not
it is conducting. The solution of the problem of steady plane flow of an ordinary
viscous fluid can be obtained by setting n = 1.
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