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BASED ON PREVIOUS WORKS of the author, the fundamentals of some basic con-
cepts and methods currently used in the formulation of constitutive equations for
linear or non-linear dissipative materials are revisited. The principles of the local
state — or local equilibrium state — frequently used as the basis of Thermodynamics
of Irreversible Processes in connection with the problem of the definition of a non-
equilibrium entropy — are discussed, with emphasis laid on materials with memory
exhibiting - as in linear or non-linear viscoelasticity - a delayed response to a con-
stant loading. An adiabatic relaxation experiment is defined, from which it is shown
that the usual formulation of the local state principle is too strong, since the set of
relations which holds in equilibrium, and which makes use of macroscopic variables
only, can never be applied without modification out of equilibrium. The same holds
for the non-equilibrium Gibbs equation generally associated with the corresponding
formalism when written with the real stress and temperature involved in the process.
For dissipative behaviour of the differential type of order one, called also Markovian
behaviour, a non-equilibrium entropy can be defined and some of the equilibrium
relations can be applied to non-equilibrium situations. From this, a basic thermody-
namic classification of rheological behaviour is obtained. In the non-Markovian case,
the results are applied to the method of internal variables. A criterion for identi-
fving suitable internal variables is obtained. They should correspond to Markovian
behaviour when directly stimulated.

1. Introduction

EXPERIMENTAL EVIDENCE concerning the delayed response of most real materi-
als and its coupling with physical and chemical effects, has been obtained since
the pioneering experiments of BUFFON [10] in the eighteenth century with the
delayed fracture of wood, those of VICAT [88] (the discoverer of the fundamentals
of the hardening of cement) with the creep of iron, and a few years later the study
of the creep of silk, glass, and silver threads by other authors. Since that time, it
has been found that such effects can appear, with magnitudes depending on each
specific case and environment, in all materials. Formulation in a realistic and con-
sistent fashion of the corresponding three-dimensional constitutive equations and
criteria, and evaluation of the risk of deterioration under long term evolution, still

(')The paper partly develops an invited lecture given to the 31th Solid Mechanics Conference
in Mierki, Poland, in September 1996 [57].
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remains a widely open problem, while the need is continuously increasing with the
development of new techniques and new materials [4, 43, 47, 48, 50]. This is also
needed in the development and application of numerical simulations techniques
taking into account the real microstructure of the material and the interactions
with the climatic and chemical changes in the framework of statistical continuum
micro-mechanics [58, 45, 46, 48 - 51, 81]. From this viewpoint, the usefulness of
Thermodynamics in providing a consistent framework for constitutive laws has
been emphasized many times.

The thermomechanical aspects of material behaviour is often considered in
the framework of Continuum Thermodynamics - also called Rational Thermo-
dvnamics. The latter was mainly developed in the fifties and sixties by NoLL,
TRUESDELL et al. |71, 83-85], COLEMAN [16, 17], BRUN [8, 9], DAY [18] and
others, through an approach directly derived from the works of CLAusIUS [14, 15],
MASSIEU [65] and DUHEM [23, 24] in a rather axiomatic form. In this approach,
use is made of macroscopic variables for which the memory effects can be dealt
with in the form of functionals of the history, first introduced by BOLTZMANN [6],
and then developed by VOLTERRA (89 - 91], FRECHET [25] and others. In partic-
ular, the use of such history functionals is well adapted to materials endowed by
experimental evidence with continuous spectra of response times, as experimen-
tally found on many real materials devoid of aging [34 - 36, 2, 3, 32, 26, 78| (also
adressed using fractional calculus [1, 82]) or with aging due to chemical reactions
occuring under load as in the case of cement concrete (3, 4]. In this approach by
functionals, the existence of various thermodynamic functions is postulated, the
justification being left to the consequences of the theory.

By contrast, the chemical and physical phenomena are most often considered
in the framework of the Thermodynamics of Irreversible Processes (TIP) [59],
itself being based on the efforts performed in the forties and fifties [66, 73
75] to extend the powerful formalism elaborated by GisBs [30] for Equilibrium
Thermodynamics. In TIP, it is accepted only as an approximation to take as non-
equilibrium thermodynamic functions the very ones already defined for the case
of equilibrium and/or reversible processes, this expressing the so-called “principle
of local equilibrium”, or “principle of the local state”, in which the use of the
so-called Gibbs equation plays a central role. From this, the range of validity
of the approach is considered limited to the case qualified as “sufficiently near
equilibrium”, for which linear complementary equations are derived through a
Taylor expansion limited to the first order [73 - 75, 59|, the theory being extended
to history-dependent behaviour through the use of internal or hidden variables
[5, 2, 79, 57].

Thus, in order to include the chemical and physical aspects in the continuum-
thermomechanics theory, one may have to combine theoretical formalisms of var-
ious origins based on seemingly incompatible statements. Some of the associated
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problems and discussions were presented in specialised symposia [22, 56]. This
paper considers some of these problems on the basis of our previous attempts to
ensure compatibility [37-42, 44]. For the sake of clarity and self-containment,
Section 2 to 4 below recall the fundamental features of these two approaches.
Section 5 comes back to discussing the principle of the local state by providing,
for the case of finite deformations, a refined version of the derivations first pre-
sented in [37, 39]. From this, Section 6 provides a status of the non-equilibrium
entropy for a specific class of behaviour called Markovian and provides a full ther-
modynamic theory for this class. Section 7 applies the obtained results to the
method of internal variables frequently used for approximating non-Markovian
behaviour, providing a criterion for the choice of internal variables. Section 8
compares the approach used in the paper with those used for the same problem
by two other authors. The results are recapitulated in Section 9, which provides
an exhaustive thermodynamic classification of material behaviour and proposes
a physical interpretation.

2. Universal relationships of Continuum Thermodynamics
2.1. Conservation equations in global form

Continuum Thermodynamics starts by stating a set of universal relationships,
valid for every materials and bodies, and which express conservation equations
for mass, momentum, moment of momentum and energy. Their original form
is a global one which relates mechanical and physical variables defined on any
finite part of the body to its environment. We consider an open domain D with
mass M, momentum B, moment of momentum L and the total (internal plus
kinetic) energy E, and which may experience a movement relatively to matter,
or for which some matter may flow across its boundary dD. Denoting by = the
coordinates of a material point, v its velocity 4, and vs the velocity of the corre-
sponding geometric point on the moving boundary @D, the global conservation
equations at time t are:

{21 M = % = /p(u —vy) - nd¥,
ap

(2.2) B' = %_?— = /F'jdV + /{P + pv(vy —v) -n}dE,
D oD

(2.3) L"E%=/x/\FddV+/x/\{P+p:z(ug—v)-n}dE,
D an
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(2.4) U'+C'=/(Fd-u+r)dV
D
+f{P-v+h+(pu+PV'V}(Vz—V)'ﬂ}dE-
ap

In these equations,

(2.5) G'=%:§+U5g-gradﬁ?.

denotes the total time derivative of any quantity G in any material or imma-
terial movement of the domain, (.) the once contracted tensor product, A the
vector product, U and C' the total internal and kinetic energies, respectively.
The volume and surface densities F'¢, P,r, h denote the — assumed to be regular
- external volume forces, surface tractions, non-mechanical volume and surface
energy supplies (heat), respectively. The above equations are valid either for the
whole body, or for every subdomain inside it, or still for every superdomain in-
cluding the body and a part of its environment. For a closed body or domain with
boundary impervious to matter or following its movement, the time derivatives
involved in this equations become the material derivative:

_dG  aG
Tdt ot

The above conservation equations are then supplemented by additional re-
lationships expressing the second Principle of Thermodynamics and involving
additional physical variables, temperature and entropy.

(2.6) + v grad G.

2.2. Global Clausius inequality and entropy

Historically, the Second Principle of Thermodynamics — or Carnot-Clausius
Principle - was, from the work of CARNOT [13] and after acceptance of the energy
conservation principle now known as the First Principle, originally expressed by
CrLAusIUS [14, 15] in his own notation, as the following weak inequality, globally
valid for any system in every evolution forming a closed cycle of the control
variables:

dQ
2.7 £ 0.
.1 $ 7 <
Here d@ is the increment of heat provided to the body during the time interval
dt while T' denotes the empirical temperature at time ¢. The equality to zero is
obtained for reversible processes or behaviour, while the inequality is strict for
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all other cases, characterised by irreversible processes or behaviour. After some
delay, this led CLAUSIUS [15] to introduce a new physical quantity, which he called
the entropy S, having the property that, for reversible processes or behaviour in a
closed cycle of the controlled variables, the above inequality becomes the equality:

(2.8) f%:%ds:o,

making thus entropy a function of state (understood as the set of controlled
variables), this giving, for every reversible evolution between the initial state 0
and the present state 1:

1

dQ
2.9 — =85-35.
29) Ik :
0
For irreversible evolutions between the two states, CLAUSIUS writes, Eq. (71)

of his original 1865 memoir [15], denoted (C71) in the following:

1

d
(CT1) NZS—S(;-—/—Q,

T

0

where N is a quantity which should be positive for every irreversible process
or behaviour, and which vanish for all reversible processes. It is thus the total
amount of entropy produced within the body during its irreversible evolution. Of
course, the above equation can also be written:

1
(2.10) S=50+/$+N,
0

This relationship (C71) was derived from a modified form of the Carnot principle
by considering that there exists at least one reversible process through which the
body can be brought back from its present state to its initial state. Considering
the closed cycle thus obtained, Clausius wrote:

1
dQ
(2.11) 2% _N<0,
/7

which is consistent with the first inequality written above.

Clausius obtained from this his Eq. (C71) by taking account of the vanishing
of the entropy production during the reversible return process. The necessity
of having such a reversible path led most physicists to state that entropy is not
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defined - strictly speaking — in non-equilibrium situations. On the other hand,
some physicists and most continuum mechanicists consider that the thermody-
namic quantities, and in particular entropy, can be taken as primitive quantities
of the theory, a priori defined also in non-equilibrium situations [11, 85, 83]. This
has been questioned especially for entropy, seemingly without achieving mutual
agreement up to now, see for instance [59].

In fact, taking the time derivative of Eq. (2.10) gives:

1

(2.12) s‘:%(of%,@y%,

showing that the original equation (C71) of Clausius can be considered as the
first historical expression — in an integrated form - of an entropy balance equation
if the existence of a non equilibrium entropy is to be accepted.

2.3. Local forms of the universal balance equations at regular points

For subdomains devoid of non-integrable singularities in the mechanical or
physical variables, it is possible to express M, B, L,U, and S through the inte-
grals of the corresponding local densities, denoted, per unit mass, p,v,u and s,
respectively. For the entropy produced in an irreversible change between times 0
and, one may write:

1
(2.13) N = [ Z(u)du,
/

Z being the global entropy production rate, expressed in terms of the local density
one ¢ by:

(2.14) Z={cav,
/

this expressing the additivity property of the entropy production. The balance
equation (2.12) then becomes:
"h
—dX.
/7

(2.15) S=[(¢c+=)dv +
) l[( T) aD

This, together with the global forms of Subsec. 2.1 and the use of the classical
divergence and transport theorems makes it possible to obtain the classical local
forms of the universal balance equations at every regular point inside the body
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through a localisation procedure based on the consideration of a dense family
of homogeneous domains around a given material point. Denoting the specific
volume by 7 = 1p, the universal balance equations in local form reduce eventually,
in Euler variables, to:

(2.16) pr =divy,

(2.17) pv=F% +divo,
(2.18) ol =0,

(2.19) pu=0:d+71—divg,
(2.20) ps=C+ % - divg—, .

In the above expressions, all densities are functions of 2 and £. A similar
localisation procedure applied to subdomains involving interfaces leads to a cor-
responding set of jump relationships at every point of an interface, see for instance
|27, 51]. Considering that Clausius inequality must remain valid for every domain
with vanishing volume around a given point, it is postulated in addition that the
density of the entropy production rate ¢ is non-negative at all times, giving:

(2.21) ¢20,

the inequality being strict for all irreversible processes or behaviour and the
equality to zero for reversible transitions or behaviour only.

Most often (the formalism proposed in [39 - 42 being one of the exceptions),
the entropy balance (2.20) is not directly used as a general field equation of the
problem, temperature and entropy being involved at the level of constitutive
equations only. After appropriate transformation, Clausius inequality is used as
providing restrictions on the possible forms that can be taken by these constitu-
tive equations.

2.4. Universal expressions for the entropy production and dissipation densities

Entropy balance equation (2.20) may be considered as providing a universal
expression for the entropy production rate (:

(2.22) C:pé—%+div%.
Developing the divergence of the quotient in the R.H.S. of Eq. (2.22) makes
it possible to split this expression for into two parts:
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' T ) ol
(2.23) Czps—f+d1vq+q-grad¥=§M+C7,
with
1
(2.24) (r = q-grad T
and
T | :
(2.25) ¢ = ps — (r —divg).

It is generally postulated that (7 and (s are non-negative separately.

Eliminating the heat supply between Eqs. (2.18) and (2.25) provides us with
universal expressions for the mechanical part (), of the entropy production and
for Clausius inequality,

1
(2.26) (v = ps — ?(p't}. —0:£)2>20

In Lagrange variables, valid for finite deformations as well as for small strains, it
reads, in terms of the entropy density per unit initial volume, as:

o % il T
. =95 - = —: 4> ()
(2.27) (u=8-zU+7:420

Defining as usual the local dissipated power D per unit volume, also called
dissipation, as:

(2.28) D=T¢m,

and taking account of Eq. (2.27), provides us with an universal expressions for
the dissipation together with a corresponding form of the local Clausius-Duhem
inequality in terms of the internal energy. In Lagrange variables, it becomes:

(2.29) D=—(U-TS-T:A)>0.

The relationships (2.27) and (2.29) are not constitutive properties: derived
from the universal balance equations, they are valid for every material and every
behaviour, dissipative or not, once entropy has been defined for non-equilibrium

situations.
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3. Constitutive equations in the Equilibrium Thermodynamics Formalism
3.1. Extended Gibbs space and Gibbs equilibrium surface

In all classical formalisms of continuum thermomechanics, the constitutive
equations are a set of equations by which the set of universal equations must
be supplemented in order to determine the whole thermomechanical behaviour,
namely displacements and stress distribution with their time evolution, of a body
of finite size under external loadings and appropriate boundary conditions. In
contradistinction to the conservation equations, that hold for every materials,
these constitutive equations are not universal, but are specific to the material
from which the body is made.

Considering perfect fluids with mechanical variables limited to volume V and
pressure p, GIBBS [29, 30| showed that all the constitutive equations of a ho-
mogeneous medium in its various states of thermodynamic equilibrium can be
represented by the geometric properties of a hypersurface in an affine hyperspace.

For a material which can be solid, the mechanical variables are the strain
tensor A, which corresponds to the scalar variable V', and the stress tensor II,
which corresponds to the scalar variable (—p). When the materials contains
n chemical constituents involving thermal, mechanical and chemical phenomena
only, we get an extended Gibbs hyperspace with 8 +n dimensions. The properties
at thermodynamic equilibrium are fully determined by a hypersurface, which is
a 7 + n- dimensional manifold when the symmetry of the tensor A is taken into
account. This hypersurface may be called the equilibrium surface or the extended
Gibbs surface and is denoted ¥ in the sequel. It is defined by a fundamental
equation expressing the entropy as a function of the strain tensor A, the internal
energy U per unit volume and the number of moles Nj of each constituent k:

(3.1) S =8 (A,U,Ny,... ,Ny).

The fact that the thermal gradient has not to be involved in the thermody-
namic functions when the temperature is not uniform has been shown by various
authors [16, 18, 83, 85].

3.2. Properties of entropy at equilibrium and in reversible changes

As is known, in case of elastic materials without chemical changes expressed
in the entropy representation, the properties of entropy at equilibrium or in re-
versible changes can be recapitulated as follows:

i) Entropy is a state function of A and U, that is, possible states in the
extended Gibbs space (A, U, S) lie on a surface of this space (equilibrium surface
property);
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ii) the whole (thermo-elastic) behaviour is completely determined by the ex-
plicit knowledge of the fundamental equation expressing the specific entropy S
in terms of the set (A, U) of independent variables;

(3.2) §=5(AU);

iii) entropy is a potential for 1/T" and —I1/T":

a8

r-[ ~

B8 T A’
Oy

(34) T= 90

iv) a Gibbs equation holds in macroscopic variables, that is:

FONE (JEUERN, | (L
3.5 S==U-=:A;
(35 FU- 504
v) various reciprocity relations, analogous to the well known Maxwell relations
of the classical thermodynamics of homogeneous fluid phases and expressing in
fact the Schwarz theorem on the crossed second partial derivatives hold;

vi) reversible accessibility from one state (one point on the equilibrium surface
in the extended Gibbs space) to another state holds;

vii) the second differential of S in terms of (A, U) is negative definite;

viii) sets of independent variables can be interchanged and give equivalent
formalisms by means of duality, involving various Legendre transforms.

In the reversible case, the constitutive equations are equations of state, re-
lating for instance II to (A,U), and which should be distinguished from the
fundamental equation. When the set of derived equations of state is incomplete,
there are usually many compatible ways of completing it, giving some freedom
of expression for the missing equations of state and thus for the choice of the
fundamental equation. The converse is not true: when the fundamental equation
is given explicitly, the equations of state are fully defined and may be written
in one way only. When a system evolves from one equilibrium state to another,
the entire set of total variations of the different thermodynamic quantities expe-
rienced by the system at the end of the evolution is completely well defined if
the equilibrium surface is assumed to be known. This is the case whether the
evolution is reversible or not, provided that the initial and final states are both
equilibrium states.
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However, the equilibrium surface in the space (A, U, S) is generally considered
to be not able to provide information about phenomena which occur during an
irreversible evolution, nor does it indicate which (perhaps new) quantities could
be defined to describe these phenomena. In particular, if entropy is not to be
defined in out-of-equilibrium situations in terms of the variables (A, U), there is
no way to describe the process in the extended Gibbs space (A, U, S). This may
make rather paradoxical the classical statement, already proposed by CLAUSIUS
[15], that the entropy of an isolated system — i.e. with constant (A,U) - tends
towards a maximum which is obtained when the equilibrium is reached:

“Energie der Welt ist constant. Entropie der Welt strebt einem Mazimum zu!”

Which entropy of the Universe Clausius had in view if it is not defined in an
isolated system out of equilibrium? This was already questioned by Meixner, who
stated that the use made by Clausius of the entropy concept for non-equilibrium
situations was without justification [67].

We shall see below that this question can in fact be directly answered for
a wide class of behaviour containing most classical models without or with in-
ternal variables. Before doing this, we consider the significance and limits of
two frequently invoked corner stones of TIP: the local state principle and the
fundamental Gibbs equation.

4. The basic concepts of the TIP formalism
4.1. The Local State Principle

In order to be a able to make use of thermodynamics in non-equilibrium sit-
uations, the viewpoint adopted in the Thermodynamics of Irreversible Processes
is that a medium in non-uniform conditions must be considered as the union of
a number of subdomains in homogeneous condition, and the various possible ex-
changes or interactions between these must be examined, each subdomain being
itself supposed to be in a homogeneous state which is governed by the laws of
thermodynamics for equilibrium states, see [66, 7375, 31, 21, 33, 53, 59| and
others.

In case of non-uniform conditions, each of these subdomains is considered as
the infinitesimal volume element. Each infinitesimal volume element is taken to
be in a homogeneous state, so that, since the necessary condition for thermody-
namic equilibrium is thus satisfied, it can be considered, at least heuristically, as a
homogeneous element in thermodynamic equilibrium governed by the laws of clas-
sical thermodynamics and their associated concepts, magnitudes and equations.
It is then examined how these elements react between themselves by consider-
ing the irreversible processes which appear within the system as resulting from
(thermodynamic) mutual imbalance.

http://rcin.org.pl



134 C. HUET

These irreversible phenomena generally take the form of flux — i.e. transfer
of measurable quantities - passing through the surfaces surrounding the element
of volume considered and tending to re-establish mutual equilibrium. They ap-
pear in connection with gradients expressing the difference of state between two
adjacent elements: temperature gradient for thermal conduction, potential dif-
ference for electric conduction, concentration gradient for the diffusion of a gas,
to cite the simplest cases. Then, the tools of Equilibrium Thermodynamics are
used for these situations thanks to introducing a set of additional assumptions
[74, 75, 21, 31, 53, 59| generally expressed as follows:

For a system which is not in equilibrium, it is assumed (or postulated or
supposed) that:

1. locally the same quantities and thermodynamic functions (internal energy,
entropy, temperature, free energy, ...) exist as those defined in the system in
thermodynamic equilibrium;

2. these quantities are expressed in the same way as if the system were locally
in equilibriurm;

3. in particular, thermodynamic functions such as internal energy, entropy,
free energy, ..., so defined, are independent of the rate of the transformation.

While its original authors named this set of statements the “local equilibrium
hypothesis”, some authors have named it more recently the “Principle of the local
state”, see [53], p. 211 of the 1979th issue, [27, 28]. The origin of this terminolo-
gy is perhaps to be found in the memoir by PRIGOGINE [T4], p.18 of the French
translation [75] where it is mentioned that the “local” expression for the Second
Principle has to be opposed to its “global” expression, used in classical Thermo-
dynamics, due to the fact that the coupling between the irreversible processes is
possible only when they intervene in the same region of the system. This state-
ment of locality is then said to be the central postulate on which the whole book
is based. But, what is visible from the localisation procedure used in Continuum
Thermodynamics, this does not imply the assumptions 1, 2, 3 presented above.

4.2. The fundamental Gibbs equation

Another basic ingredient of TIP is the use of the Gibbs equation, validity of
which is postulated even for non-equilibriumn conditions, In p. 103 of the memoir
by PRIGOGINE |75, this is expressed in the following fashion (re-translated from
the French):

“The main concern of Irreversible Thermodynamics is to assess the entropy pro-
duction from the Gibbs equation. ...(This) constitues a new postulate, on which

the whole TIP is based”.
“The physical significance of this basic formula is that, even in non-equilibrium
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situations, entropy depends on the same variables as those which characterise an
equilibrium process.”
“This s certainly not true anymore far from equilibrium”.

For fluid systems with constant chemical composition under uniform pressure

p and temperature 7', the Gibbs equation is written as for the equilibrium case,
Eq. (3.8) p. 19 of [75]:

_lay.P
(4.1) dS = ZdU + ZdV,

which, taking as usual positive sign for tension stress, would have the following
form for solids in three dimensions:

L 1 T T
42 S==-U~-=:A.
(4.2) 7V T
Then, the consideration of two subystems at different temperatures in diather-
mal contact leads to the conclusion that the rate of entropy production is a bi-
linear form in the heat flow rate and the temperature difference, a conclusion
similar to the one obtained for (y in the Rational Thermodynamics approach
when passing from the finite difference to a gradient. The same approach is used
for systems with chemical reactions for which the Gibbs equation is postulated
in the form:
1 P H
4.3 dS = =dU + =dV - “XdN, .,
where N, is the mole number of constituent y(y = 1,... ,m) and p. its chemical
potential defined, according to GiBBS [30] and DE DONDER [19] by:
ds ou
(44) fog == =,
ON, 0N,
On the other hand, the entropy production increment is introduced in terms

of the chemical reaction increment dée and the chemical affinity A in the form
[19]:

(4.5) &5 = %Ad{c >0,

déc being itself defined as the degree of growth of the reaction, linked to the
stoichiometric coefficients v, by

(4.6) AN, = v, dE.
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Then it is stated that the affinity A is a function of the state expressed in
terms of the chemical potentials g, by

(4.7) A=- Z Pl

y

with the property that it should be zero at equilibrium.

Of course, postulating a Gibbs equation in the form (4.3) for non-equilibrium
situations implies that existence of non-equilibrium entropy has also been postu-
lated since it is involved in the Gibbs equation, assumed to be still valid in such
situations. Since no other definition has been given to entropy in non-equilibrium
situations, this means that, in TIP, entropy is considered as a primitive quantity,
just as in Rational Thermodynamics. Thus, the non-equilibrium entropy has the
same postulated status in both approaches.

5. A criterion of validity for the local state principle: the adiabatic
relaxation experiment

5.1. The adiabatic relaxation experimnent in macroscopic variables

If the local state principle is considered to be valid, it should be checked first
in the case for which macroscopic variables are used only. We consider here
the simplest situation. in which no change in the chemical composition of the
body is involved. Using the entropy representation, the equilibriumn fundamental
equation is Eq. (3.2). In the right-hand side of this equation, the set of arguments
(A, U) can be controlled experimentally, not only in the case of equilibrium but
in every situation, including the irreversible ones, since:

e the deformation A can be imposed by a mechanical system;

e the heat flow inwards or outwards can also be controlled (by more or less
insulating wall and heating devices), which determines U when A is fixed.

In addition, if the set (A,U) is fixed at a certain time (which implies adi-
abaticity from this time onwards), the system will tend spontaneously towards
internal equilibrium if it has not already reached this state. This is an adiabatic
relaxation experiment.

Since, for fixed chemical composition, U and A can be controlled at will, it
can be said that the internal energy and the deformation are meaningful thermo-
dynamical quantities even out of equilibrium.

Moreover, during the relaxation experiment, they have the same meaning and
numerical values out of equilibrinm as they have once the relaxed thermodynamic
equilibrium is reached at the end of the adiabatic relaxation process. Entropy,
however, is different.
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5.2. The growth of entropy in delayed adiabatic relaxation

Let us consider again, in the extended Gibbs space (A, U, S), the extended hy-
persurface X of equilibrium states, or fundamental surface, discussed in Sec. 3. If,
during a change from one equilibrium state to another, the value of the set of gov-
erning independent variables (A, U) changes from (A1, Uy) to (A, Us), S varies
between two equilibrium values Sy and S, which depend only on (A;,U;) and
(A9, Us), and not on the path taken in the (A, U)-space to travel from (Uy, A;)
to (Us, As). When the path is reversible, S is defined all along the path and
its representative point in the (A, U, S) space has its trajectory necessarily con-
tained in the equilibrium surface ¥ during the whole process. In the traditional
approach, this requires in addition the path to be covered at an infinitely slow
speed.

However, the path in the (A, U)-space may also correspond to an irreversible
process, during which the representative point in the (A,U, S)-space may - at
least as a provisional working assumption - leave from the equilibrium surface ¥ if
we assume the entropy being still defined during this process, for instance through
a functional of the history of (A, U) [16, 18]. Then, it is clear that the properties
defined by the equations in Subsec. 3.2 above, being geometrical properties of the
¥ surface, will no longer hold for such functionals, which jeopardizes the validity
of the principle of local state as stated in Subsec. 4.1 above.

Let us consider now that some process takes the point M representing en-
tropy in the (A, U, S)-space, from an initial equilibrium state (Ag, Uy, Sp) on
the equilibrium surface to a point (A,,U;,S1) outside this surface. Then, let
us perform an adiabatic relaxation from the point (A, U, S)). From this point
onwards, the system is thermodynamically insulated. Its entropy can only in-
crease as the system tends towards thermodynamic equilibrium defined by the
point with coordinates (A, U;,S;") on the equilibrium surface X. Final ther-
modynamic equilibrium means that all the variables that can be defined on the
system, including stress and temperature, do not change anymore, which is not
the case, by definition, in retarded relaxation. Since entropy production is the
only possible change of entropy during adiabatic relaxation, and since it should
be strictly positive in the retarded relaxation, the point M is really outside X if
the relaxation is retarded. Moreover, all points outside the surface ¥ which are
accessible from any initial point (Ag, Up, Sp) are necessarily on one and the same
side relatively to it.

A point like (A;,U;,S1), being situated outside the equilibrium surface, is
inaccessible by a reversible path (which might be used as a return path if it
would exist), contrarily to the requirement stated by Clausius for defining entropy
in non-equilibrium situations. This is a version of the BRIDGMAN paradox [7]
underlined several times by KESTIN [55] for the case of plasticity.
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5.3. A necessary condition of validity for the local state principle in macroscopic
variables

Conversely, a necessary condition for the principle of local state, as enunciated
in Subsec. 4.1, to be valid in macroscopic variables is that § = qu = S(A,,0h)
at all times during the adiabatic relaxation, i.e. that the adiabatic relaxation
is isentropic. Since an adiabatic relaxation can be introduced at any time and
at any point of a non-equilibrium process, a necessary and sufficient condition
for this relaxation to be isentropic is that the dissipative evolution occurs within
the equilibrium surface ¥ in the extended Gibbs space A, U, S. However, since
it has just been admitted that this cannot happen if the adiabatic relaxation
is retarded, an instantaneous relaxation is a necessary condition for having an
isentropic adiabatic relaxation. It must be noted that this last condition is not.
a priori, sufficient to ensure that the instantaneous adiabatic relaxation is isen-
tropic: it is quite possible at first sight to envisage an instantaneous adiabatic
relaxation showing an instantaneous jump in entropy from (A, U;, S;) out of
¥ to (A, Uy, S7%) on . This important point will be especially examined in
Subsec. 6.1. To summarize, adiabatic relaxation provides three conditions, each
of which is sufficient to invalidate the local state principle:

A material does not obey the principle of local state in macroscopic variables
if at least one of the following conditions is true:

e the adiabatic relazation is not isentropic;
e some trajectories vepresenting the process in the extended Gibbs space may toke
place outside the equilibrium surface;

e the adiabatic relazation is not instantaneous.

5.4. Non-equilibrium Gibbs equation in macroscopic variables and the two
Principles of Thermodynamics

For irreversible processes, the Clausius-Duhem inequality is strict and has,
from Eq. (2.27) of Sec. 2, the form:

5.1 L
(5.1) TU rlvsil

for all irreversible processes, i.e for all U and A, independently of the fact that it
would take place on the equilibrium surface or not. For reversible processes, the
inequality becomes an equality which reads:

(5.2) —U—— A=§.
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From Subsec. 3.2, this coincides with the Gibbs equation when written in the
entropic representation in macroscopic variables.

The two relationships (5.1) and (5.2) are incompatible. Thus, when using the
strain and internal energy only as macroscopic independent variables, a Gibbs
equation written in the same form as in equilibrinm cannot hold for dissipative
solids, using the real non-equilibrium values of stress and temperature involved
in the irreversible process. Hence, TIP cannot be based on the whole set of
statements recalled in Subsecs. 4.1 and 4.2 above when these variables are used.
At least one of these statements have to be relaxed or modified in order to have
a consistent theory.

6. A status for the non-equilibrium entropy

6.1. Instantaneous entropy recovery and 2nd Principle for materials of the
Markovian type

From a purely mechanical point of view, a material which can relax instanta-
neously at constant temperature is one for which the stress at the time ¢ can only
be a function of the present values at the same time ¢ of the governing variables
and their rates, and perhaps - as in the RIVLIN-ERICKSEN behaviour models [77]
- of its right-time derivatives of higher order up to some finite one:

(6.1) IT =I1 (AA‘A, ;A(”};T).

In this subsection, we consider that the time derivatives of the first order only
are involved in the dependence of IT and T" upon the governing variables. Taking
the latter as (A, U), we consider the class of materials for which the stress tensor
and the temperature are of the form, at every instant ¢:

(6.2) II= 11 (AU;A D),

(6.3) T=T(AU;AD).

To avoid any possible confusion, attention is drawn to the fact that such
constitutive equations are not proposed here as substitutes for other modes of
representation of the behaviour of real materials, as the ones that we shall consider
later on in Subsec. 6.2 and Sec. 7.

Materials with stress expressed by Eq. (6.1) are called materials of the differ-
ential type [85, 18]. Materials with behaviour defined by Eqgs. (6.2) and (6.3)
are materials of the differential type in some extended sense on the one hand,
since the dependence upon the time derivatives of U is also involved, and more
restricted on the other hand since the rate dependence is limited to the order
one. All along this paper, we refer more briefly to the class of behaviour de-
fined by Eqgs. (6.2) and (6.3) as Markovian behaviour, an expression borrowed
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from CALLEN [11] (we used this terminology without the order one restriction in
(37, 38, 39, 40].

For example, classical models of Markovian behaviour are the viscous and
Kelvin models of linear viscoelasticity, the rigid-plastic, Bingham and Norton-
Hoff models of viscoplasticity and the Eyring model of chemical kinetics (see for
instance [47, 48]). In particular, the rigid-plastic behaviour is indeed Markovian
since the stress is a homogeneous function of order zero in terms of the strain
rate.

Markovian behaviour exhibits instantaneous relaxation: at some instant of ¢
an irreversible evolution corresponding to non-zero values of the time derivatives
of A and U, I and T differ from their equilibrium value at this time. If A and
U are then kept fixed at their value already reached at time ¢ — so that their first
and higher right derivatives are set to zero (adiabatic relaxation experiment) -
there is a sudden change from the values I1(¢7),T(¢7) of II and 7" to their values
I(t+), T(t+), with:

(6.4) () = 11 (4,0,0,0) =II" (A,U),

~

eq

(6.5) TiEre (A U,0,0) =T " (A,U).

Since the equilibrium values of Il and T are reached instantaneously, the same
must hold for the entropy, assumed to exist in non-equilibrium, and which, at
the worse, must be thus of the form:

(6.6) S=8(AU;AU;AU;....AP) Uyly,

with the orders p and ¢ of the highest-order derivatives being finite and with the
equilibrium value given by:

(6.7) S(t*) =8 (A,U;0,0;0,0;... :0,0) = S99(A,U).

We make use now of a classical argument due to COLEMAN [16] and previously
to DEFAY [20, 76]. From Eq. (6.6), the time derivative of the entropy has the
form:

P T 98
(6.8) S=5§:A+a—£:a+ mafﬂ+l1
a8 08 98
aUUJrEU+ tarw U
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Substitution of Eq. (6.8) in the Clausius-Duhem Inequality (2.27) rewritten
in its strict form gives:

98 _ ap = 88
— FILER e 2 p
(6.9) At | At At g A
08 a8 0F o
B P> q+
+ U T U+c)UU+ BU(Q)U >0,

Since, by hypothesis, the entropy S is independent of AP+ and Utetl),
which are independent right-derivatives, the first member of Inequality (6.9) is
a linear form in A®+1) and U@+ which cannot remain non-negative for any
values of these quantities unless their coefficients are zero. Thus the entropy S
is independent of A®) and U, Since, from Eqs. (6.2) and (6.3), Il and T
are assumed to be independent of A®) and U for all p and ¢ bigger than 1,
the argument can be repeated for these latter variables. Working backwards to
the terms in A and U, it is seen that S does not depend on any of the present
derivatives of A and U. The expression (6.6) for the entropy out of equilibrium
is thus reduced to:

(6.10) § =5 (A,U).

This means that, for Markovian behaviour, the entropy is dependent only on
the present values of A and U, whatever their previous history may be, and
whatever values their time derivatives may take. However, when the adiabatic
relaxation is over, the entropy reaches its equilibrium value S :§eq (A,U), so
that, for consistency, the entropy out of equilibrium should be identified with its
equilibrium value, for all values the rates A, U/ and of the governing independent
variables may take in the process and how far from the equilibrium one may be:

eq

(6.11) §=5(a,0)=8" (A,U).

Hence, there can be no instantaneous jump in entropy for this behaviour,
contrary to the provisional assumption made in Subsec. 5.3. All the processes
related to a material with stress and temperature in the form of Eqgs. (6.2),
(6.3) must of necessarily take place, in the extended Gibbs space A,U, S, on
the equilibrium surface ¥. This happens even if the path is runned at a finite
rate of the governing independent variables A and U. Conversely, the problem
of defining entropy out of equilibrium can now be solved in a precise way for
Markovian behaviour:
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For materials with Markovian behaviour, a non-equilibrium entropy S
may always be defined. It must be taken as the same function of the
strain tensor and internal energy as the equilibrium entropy S¢9.

6.2. General case of the instantaneous adiabatic relaxation followed by delayed
relaxation

When the stress and temperature depend not only on the present values of
A and U and their right time first derivatives, but also on their past history
H~(A,U), being of the form:

(6.12) n=1 [A,U;A,U; H‘(A,U)] ,
(6.13) Tt [A,U;A,&H‘(A,U}] ,

the assumed defined non-equilibrium entropy S should be - a prior: — not only
a function of the present values of A and U and their time derivatives, but also
a history functional of A and U. Therefore, in this case S should a prior: be
written as:

(6.14) B=818,0:8,0:A,0;... iAP: . s UH (A1) .

Taking the time derivative gives:

. 88 . 88 . d8
(6.18). &= Td-§:3+b—z:a+...+ BA'"(‘;) : AlPt1)
08 98 a8 :
+a; U+E§U+...+ﬁv(‘””+gw,

where Sap is the continuation functional expressing the rate of variation of S

from the moment when A and U are kept constant (i.e. during an adiabatic
relaxation). Thus, by the same line of reasoning as in Subsec. 6.1, cannot depend
on the time derivatives of A and U and must take the form:

(6.16) Szg [A,U; H(A,U)]

meaning that, if it exists, it should reduce to a function of the present values of
A and U and a functional of their previous history. Remark that, as explained
for instance in [51], the partial derivatives involved in Eq. (6.15) are not the
gradient involved in the Gateaux differential of the functional S, but only the

instantaneous partial derivatives, given by the value of this gradient at time t.
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6.3. Consequences for the potential properties

From Eq. (6.16), the fundamental inequality reduces to

o8 g\ . (95

s — 4+ —=]:A —_— — — AU :
(6.17) 3A+T + U T U+§~\{, >0

where I1 and T are history functionals of A and U, and may or may not also
depend on the present values of the rates A and U.
If IT and T do not depend upon these rates, being simply of the form:

(6.18) I=1[A,U;H (AU)],

(6.19) T=T [AU; H (A U)] ,

(as is the case when instantaneous elasticity exists), then by re-applying the same
argument, one obtains:
I 08 1 08 :
6.20 —=el . —==8 . GLON . G,
where the first two equations correspond to the main result of COLEMAN in
[16], see also [83]. For this reason, the class of behaviour defined by constitutive
equations of the form (6.18), (6.19) has been named Colemanian [37 - 39).
However, if I1 depends upon A and 7" upon U, then, taking into account the

a8 dS

fact that H—A and 3{7 cannot depend on these derivatives since S itself does not,

one has:

a8 dSs ;
I1 ~ | 1 ~ 1

2 Sk oo o S BRI e eq . 4
W2 FTTEA @m’ TR mai ST 0 0 ReE>0

That the potential properties expressed by Egs. (6.20) are not of general va-
lidity, but correspond to a specific class of behaviour, was shown by MANDEL
[61 - 64|, and independently by HUET [37 - 39].

By contrast, for a Markovian behaviour, the relations (6.21) become:

a8 e 08 :

: I1 = R Sl i T NS -
(6.22) T7 "3A = T #W—Tme S= , gau—ﬂ
showing that entropy is not a potential for the non-equilibrium stress and tem-
perature in this case despite the fact that S and S are equal. However, the first
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two equations of (6.22) follow trivially from the third since, from Eq. (6.11), one
has:

. 95 . 48 mes . B
I 5 7= &eq
(6.23) §=2iA+ U= Ad U =84,

so that they neither require nor express any new principle. Remark that the last
Eq. (6.23) is the equilibrium Gibbs equation, always valid at equilibrium.

Consequently, from the results obtained in Subsecs. 6.1 and 6.2, there is no
non-equilibrium behaviour each of which satisfies the complete set of rules given
in Subsec. 4.1 to define the local state principle. It is possible to find various
special classes of behaviour which each, in out of equilibrium conditions, satisfy
some relation which was originally established within equilibrium, but these cases
are mutually exclusive: for example, a class which satisfies (6.20) does not satisfy
(6.22) and wice versa.

There are also certain types of dissipative behaviour, such as those defined
by (6.17), which satisfy none of the characteristic relations of thermodynamic
equilibrium in macroscopic variables: entropy is not a function of the present
value of A and U (but depends also on their whole history), and the entropy
is not a potential for the stress and temperature. To express the stress and the
temperature, some additional terms have to be added to the entropy gradient in
the (A, U) space, similar to what is done for instance in [51] using the free energy
in the (A, T) space. Of course, the use of the latter presupposes the existence of
the non-equilibrium entropy which is in discussion here.

7. Reducing hereditary behaviour to Markovian ones
7.1. The internal variables approach

Of course, the class of Markovian behaviour is not large enough to encom-
pass all the classes of behaviour that can be observed in real materials. When
macroscopic variables only are considered in the constitutive equations for ma-
terials with delayed response, history functionals are needed in order to express
the stress in finite terms. However, except in the case of linear viscoelasticity
without aging, the practical identification of these functionals rises many prac-
tical problems, and leads most often to unstable results. On the other hand,
in order to extend the equilibrium thermodynamics formalism to the irreversible
behaviour of solids, a powerful method has been progressively elaborated since
about fifty years through the use of the so-called internal variables or hidden
variables |66 - 68, 5, 79, 80, 53 - 55, 28, 63, 86, 87, 69, 70]. Initially, this method
was based on the Thermodynamics of Irreversible Processes. In the entropy rep-
resentation we are using here, it involves, in addition to the internal energy U and
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the strain tensor A, a set a = {ay,as,...ak,...ay} of internal variables, that do
not appear in the universal balance equations. Sometimes they are introduced
through an appropriate analogy, the most well known being rheological models
based on mechanical and electrical systems [79, 72]. The introduction of these
internal variables is generally associated with a set of constitutive assumptions.
For instance it is assumed that the stress tensor I at time ¢ is an ordinary func-
tion of the present values of (A, U, a) at the same instant £, but not of the rates.
Furtherly it is supposed that the entropy S exists in non-equilibrium situations
and that the function relating S to (A, U, a) is again the same as for equilibrium.
In some cases, it is assumed that a Gibbs equation is still valid with this extended
set of variables. From these assumptions, it is generally obtained that the entropy
is again a potential for the stress divided by the temperature (this result coming
from the most often assumed independence of IT on A, and thus being limited
to the case with instantaneous elasticity as seen in Sec. 6.2 above). Finally, it is
stated that the set of equations thus obtained must be complemented by a set of
- linear or non-linear — rate equations on which, again, no other information is
provided.

7.2. A criterion for the internal variables

From the discussion of the preceding sections, it follows that in the internal
variables method, the entropy may be - without a prieri assumption — given a
meaning out of equilibrium by appropriately choosing the set of internal vari-
ables. To yield realistic results, the latter have to be be obtained by identifying
the involved dissipative mechanisms and relating them in a way satisfying the
characteristics of the experimental response and/or of the observed dissipative
mechanisms identified in the microstructure of the material. Together with non-
dissipative ones, these dissipative mechanisms can be considered as forming the
elements of a sytem representing its macroscopic behaviour. Let us assume that
they can be chosen in such a way that each of them is Markovian when discon-
nected from the others and directly stimulated. Then, from the results obtained
in the above sections, entropy is well defined for each dissipative mechanism even
when they are under irreversible evolution at finite rate. Moreover, it depends
neither on the rates nor on the history of the involved variables, but only on their
present values. Thus, using the additivity property of entropy, it can be stated
[37, 40, 44| that the overall entropy density of the material is well defined and is
a simple function of the present values of the governing set of variables (A, U, a)
involving the macroscopic variables (A, U) and the set a of the internal variables:

(7.3) S=5(A,U;a).
This means that all the transformations - including those performed at a

http://rcin.org.pl



146 C. Huer

finite rate — take place in the equilibrium surface of the space (A, U, a, S) while
the continuation functional of § corresponding here to the one considered in
Sec. 6.2 vanishes:

(?2) g.;lUu =0.

Therefore, the preceding results supply a rule to ensure that the decomposition
of the behaviour into internal mechanisms has been taken far enough to make
possible the definition of an out of equilibrium entropy. For this, it is necessary
and sufficient that the identified mechanisms have either reversible or Markovian
behaviour when directly stimulated.

It can be verified from the literature that, even in the non-linear case (includ-
ing plasticity, viscoplasticity and chemical kinetics), the dissipative mechanisms
that are used in practice when applying this method are Markovian when directly
stimulated. Although not explicitly formulated in general, this may explain why
the internal variables approach has been found so successful.

In the adiabatic relaxation performed on the macroscopic variables as de-
fined in Sec. 5.1, the internal variables only are allowed to change. Thus, in the
macroscopic Gibbs space (A, U, §), each combination of fixed values taken by the
internal variables define a hypersurface ¥'(a). All these surfaces are situated on
one and the same side of the equilibrium surface 3.

8. Comparison with other approaches
8.1. The Kestin method of the Acecompanying Equilibrium State

In view of providing a consistent thermodynamic theory - exempted of a
postulated non-equilibrium entropy - for the study of irreversible systems out
of equilibrium, a variant of TIP has been constructed by KesTIN [53-55] in
the framework of the internal variables approach. In this theory, the Gibbs
equation is still considered fundamental and taken as a starting point, but the
idea that entropy and temperature are really defined out of equilibrium is rejected.
The Principle of local equilibrium, or of local state is made more precise than in
classical TIP by specifying that the considered equilibrium is some appropriately
defined accompanying equilibrium state (AES) corresponding to frozen wvalues
of the internal variables. Then, the accompanying equilibrium state is used in
order to define the accompanying entropy and the accompanying temperature of
the system when the latter is not in thermodynamic equilibrium, i.e. when the
internal variables at least are evolving at a finite rate. This is performed by
assuming that entropy and temperature are taken as the ones defined on the
AES. Corresponding reversible processes are defined. They are considered as
occuring in a virtual Gibbsian state space, and not on the so-called “physical
space” [53]. For Kestin, the Gibbsian state space is the space with dimensions
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(e,U,a), which in Lagrange coordinates needed for finite strains becomes here
(A,U,a). Tt is then stated that the non-equilibrium states are defined in a wider
space admitting the Gibbsian space as a subspace forming a base manifold of the
former. It is emphasised that the dependent physical variables differ from the
ones associated to the AES. It is also emphasised that the entropy is calculated
by integration on the Gibbsian state space and not on the physical space (for the
sake of clarity, it should be noted that the name “Gibhsian state space” of Kestin
differs from the “extended Gibbs space” that we used in Sec. 3.2 above, since the
latter includes the entropy while Kestin’s Gibbsian state space does not).

In addition to the above assumptions, the Gibbs equation is again written,
but only for the values of the dependent variables involved in the accompenying
equilibrium state. Hence, this avoids the problem of defining the entropy of the
body in non-equilibrium situation. This equilibrinm Gibbs equation is then used
in order to obtain an explicit expression for the entropy production by elimination
of the internal energy rate between the Gibbs equation of the AES and the energy
balance equation. Here again, it is stated that the set of equations thus obtained
must be complemented by a set of — linear or non-linear - rate equations,; on
which no other information is provided.

It is clear from the above description that Kestin's AES is the one obtained
at the end of an adiabatic relaxation experiment performed, not only on the
macroscopic variables, but also on the dissipative mechanisms corresponding to
the internal variables supposed to be directly stimulated (which in fact modifies
the system itself since then the subsystems become disconnected and the internal
distribution of stresses is changed: for example, it is impossible to maintain the
same stress in the two components of a Maxwell model if the partial strains
in each component, taken as the internal variables, are frozen from some later
instant), Thus, the Gibbs equation used is again an equilibrium one, and not
an out of equilibrium one. Moreover, if Kestin's relaxation of internal variables
would involve production of entropy, the calculated entropy production would
not be the one really involved in the non-equilibrium process, but a greater one.

But, as seen in the above Subsection, when all the internal dissipative mech-
anisms are supposed to be Markovian, a non-equilibrium entropy can really be
defined for the whole system when the independent variables, including the in-
ternal ones, are experiencing evolutions at finite rates. This can be done without
having to state that the internal variables are frozen. Moreover, the dissipation
can then be directly evaluated without having to invoke the Gibbs equation,
neither the detour of an Accompanying Equilibrium State: it is simply the sum
of the dissipations of all the dissipative mechanisms.
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8.2. The Valanis-Caratheodory method based on integrability of the first law

Another approach adressing the existence of entropy in the internal variables
formalism has been used by VALANIS [86, 87| who extends to this case the non-
accessibility theorem obtained by CARATHEODORY [12] for reversible processes.
Caratheodory’s theorem can be expressed by the fact that, when the supply of
heat to a reversible system is prevented (adiabatic process), the previously chosen
independent variables (A, U) of the reversible case cannot remain independent.
This defines an hypersurface in the (A, U)-space and yields the integrability of
the first law for reversible behaviour in adiabatic conditions (as shown in [86],
Appendix II to Sec. 3). Therefore, adiabatic access to points outside this hyper-
surface of the (A, U)-space are forbidden. Moreover, the converse is also true.

In the extension to the non-reversible case made by Valanis. adiabatic pro-
cesses with frozen internal variables are again considered, as in the work of Kestin
mentioned above. Valanis considers the space (U, A, a) of the governing indepen-
dent variables, which he calls the thermodynamic state space, which thus coincides
in fact with the Gibbsian state space of Kestin, but not with our extended Gibbs
space (U,A,a,S). As a basic axiom of the theory and a - somewhat restrictive
- definition of irreversible behaviour, it is postulated that the stress tensor is a
state function of (U, A,a) (and thus is independent of the rates). The integra-
bility of the first law in this space is then proven when the internal variables are
kept frozen, which gives both a definition of entropy and temperature as in the
Caratheodory treatment of the reversible case. Potential properties, due again
to the basic axiom of the theory postulating independence of II from the rates
of (A,U), are also obtained. The Carnot-Clausius Principle on the positive pro-
duction of entropy is replaced by - and in fact deduced from - a postulate on the
behaviour of the free energy in an isothermal relaxation experiment.

The problem of defining an entropy remaining meaningful during a real process
is adressed, in the approach by Valanis, through the concept of partial integra-
bility of the first law which, in fact, reduces again to keeping frozen the internal
variables, the system becoming reversible in this situation (Sec. 4 of [87]).

By choosing explicitly the internal variables as relating to dissipative mech-
anisms that are Markovian, it seems possible to relax the restriction of frozen
internal variables, making the entropy defined by Valanis also having a meaning
when the internal variables are changing at finite rates, i.e. in every real process.
Moreover, it suggests it might be possible to extend the basic axiom and math-
ematical derivations of the Caratheodory-Valanis theory to the case where the
stress depends explicitly on the strain and internal energy rates in addition to
the dependence upon the present values of (U, A,a), i.e. to materials devoid of
instantaneous elasticity, providing thus, in the same framework, a direct defini-
tion of entropy for more general cases. But this is still an open question needing
further research.
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9. Conclusion

From the derivations performed in this paper, it can be stated that, depending
on the form taken by the response to the adiabatic relaxation experiment, mate-
rials behaviour with delayed response falls into four mutually exclusive categories
when using macroscopic variables only:

1. Reversible behaviour which exhibits no adiabatic relazation.

2. Markovian dissipative behaviour, for which the adiabatic relazation is in-
stantaneous.

3. Colemanian dissipative behaviour in which there is a delayed relazation,
either of the stress, or of temperature, or of both, but no instantaneous one.

4. General hereditary dissipative behaviour, where there is an instantaneous
relazation, either of the stress, or of temperature, or of both, followed by a delayed
one.

Reversible behaviour is governed by the classical thermodynamics of equilib-
rium and all its classical relationships. For some types of dissipative behaviour,
it is possible to apply some of the equilibrium relations to some cases out of
equilibrium, but then there are always other relations which cannot be directly
applied.

For Markovian behaviour, a fundamental result is that not only the reversible
evolutions of a Markovian system take place on the equilibrium surface in the ez-
tended Gibbs space (A,U, S), but also their wreversible ones, whatever the mag-
nitude of the rates — and thus whatever the distance reached from equilibrium -
might be.

In the non-Markovian case, the power of the method of internal variables
with their mechanical or electrical analogs - appears to be connected with the
fact that it is often possible to obtain a reduction to Markovian behaviour by
introducing a sufficient number of suitable supplementary - “internal” or “hid-
den” — variables. But the behaviour of a suitable internal variable must itself be
reversible or Markovian when directly stimulated.

From this, it appears possible to relax some restrictive assumptions and to
enlarge the domain of validity of some of the theories using the internal vari-
ables approach while adressing also the problem of the existence of entropy in
dissipative processes.

It has to be remarked that the above fundamental result concerning the de-
pendence of entropy upon the macroscopic variables A and U only, as found
for Markovian behaviour, means that instantaneous adiabatic relaxation — which
corresponds to a change of mechanical state and is thus a real process - must be
considered a reversible one. Effectively, since there is no change in the entropy
and no supply of entropy from the exterior, there is no production of entropy
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in the instantaneous adiabatic relaxation for Markovian behaviour. Thus the
question arises if this can be given a direct physical meaning.

In fact, the above remark is consistent with the observation that every adi-
abatic unloading of a perfectly rigid body can itself be considered a reversible
process, devoid of any dissipation since it involves neither expense nor release
of work, and thus nothing to be converted into heat. Indeed, no deformation
15 associated with the instantancous finite unloading of a body with Markovian
behaviour, for instance of the viscous, Kelvin, Bingham or rigid-plastic types.
Thus, every Markovian body appears as perfectly rigid under any finite instan-
taneous unloading, making non-dissipative the instantaneous relaxation process.
Since all points of the equilibrium surface are connected by reversible paths, this
provides the reversible return process required by Clausius in its original defini-
tion of entropy. This physically justifies the choice made in Secs. 6 and 7 of this
paper for the definition of the non-equilibrium entropy for Markovian behaviour
and answers the question raised at the end of Sec. 3.

Other consequences of the above discussion and other aspects of the ther-
modynamic theory of real materials dealt with by the author may be found in
|40 - 52].
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