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Quasi-homoclinic solutions to a system of ODEs
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Tis parer considers the problem of existence of “quasi-homoclinic” solution to a
system of three first order ODEs containing a small parameter. These equations
describe travelling wave solutions to a one-temperature model of laser-sustained
plasma with absorption. This solution is homoclinic with respect to the first two
variables, We use the methods of geometric singular perturbation theory to prove
the existence of strictly homoclinic trajectory and then prove that it implies the
existence of the desired solution.
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1. Introduction

PLASMA SUSTAINED by a laser beam occurs naturally in different processes in
which laser radiation is used, e.g. in laser welding. The full systems of equations
modelling such phenomena are very complicated and it is impossible to know the
quantitative details of their solutions. In this work we are looking for solutions
in a form of homoclinic travelling waves of temperature. Such waves, though
one-dimensional, may serve as a local approximation of the real solution and
may supply us with some qualitative relations between the basic magnitudes
characterizing the considered system (e.g. the speed of the moving boundary of
plasma region and the intensity of the laser radiation). In this paper we consider
the same problem as in [1], however the proof is simpler. The one-temperature
model of laser-maintained plasma with absorption is sketched in Sec. 3.

2. Formulation of the problem

In this paper we consider the following system of ODEs:
(2.1) i = ¥
v = qe@)v~ f(@) - k@],
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(2.3) ' = —ex@I,

d I e
where ":=E, £ €(—00,00), %, v, I: R* — R and g€ R}, e € R!
with 0<e<x 1.
AssUMPTION 1. The functions ¢, f, k: R' — R! are sufficiently smooth.

ASSUMPTION 2. ¢(u) > 0 forall u € (—00,00). There exists wug > 0, such
that x(u) =0 for u <wup, and K(u) >0 for u>ug .

We assume that for I from some appropriate interval, the source function
(f(u) + k(u)I) behaves qualitatively like a cubic polynomial, i.e. that:

AssuMPTION 3. There exist numbers I. > 0, and I¢ > I. such that
for I € (I;,I°) the equation F(u,I) = f(u) + s(u)l = 0 has exactly
three solutions: 0, uj(I) > ug, and wup(l) > wy(I) such that F,(0,1) <
0, Fu(ui(I),I) > 0, Fy(us(I),I) <0, F(u,I) >0 for u <0, F(u,I) <0
for u € (0,uy(1)), F(u,I) >0 for ue€ (ug(I),ux(I)) and F(u,I)) <0 for
u > ug(l).

REMARK 1. Due to ASSUMPTION 3 and the implicit function theorem we note
that wy ;(I) <0 and up(I) >0 for I € (I, I°) (see Fig.1).0O

o /

IJl[I] u_{I)

F1G. 1. The three branches of solutions to the equations F'(u, I).
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F1G. 2. A possible trajectory satisfying the conditions (2.4) and (2.5).

Our problem consists in showing that for all Iy from some subinterval of
(I, I¢) and for all sufficiently small € > 0, there exists at least one ¢ such
that the system (2.1) - (2.3) has a solution defined for ¢ € R! and satisfying
the conditions:

(2.4) I(—o0) = I, D(+o00) = 0,

(2.5) (+o0) =0, max u(€) > ug(lp) + O(e) as e\, 0.

Such a problem occurs e.g. in a simplified one-dimensional analysis of plasma
sustained by a laser beam. This example is shortly described in the next section.

On the one hand this problem is simpler than seeking a solution homoclinic
to the point  (u,v,I) = (0,0, Iy), because we do not demand the condition
I(—o0) = I(00). On the other hand it is, in a way, not standard as we have to do
with the whole line of nonseparate singular points of the form (%, 7, I = (0,0, f)
We are looking for a solution starting from one point of this line and arriving
at another one (with smaller TI; see Fig. 2). Our idea to solve the problem is
to modify the considered system, so that the line of singular points shrinks to
one singular point (0,0, Iy), and to apply the efficient methods of asymptotic
analysis of existence of homoclinic orbits (see [2], [3], [4]). Then we prove that
the obtained homoclinic solution can be modified in turn to become a solution
to the system (2.1) — (2.3).

To construct the homoclinic orbit, we must make two crucial assumptions
about the existence of forward and backward heteroclinic solutions for £ = 0
limit of the system (2.1) - (2.3).
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AssUMPTION 4. There exists exactly one go > 0 such that for ¢ =¢qo &nd
I = Iy there exists a unique (modulo shifts in §) heteroclinic solution hyz(§ =
(ug(€),v(€)) to thesystem (2.1) - (2.2) connecting the points (0,0) = hys(—)
and (uz(lp),0) = hy(oo) such that vg(€) >0 for | £ |< oo

AssuMpPTION 5. There exists I* € (I o) such that for ¢ = g and
I = I* there exists a unique (modulo shifts in £) heteroclinic solution hy(€) =
(up(€),vp(€)) to the system (2.1) — (2.2) connecting the points (ua(I*),0 =
hy(—o0) and (0,0) = hy(co) such that vy(€) <0 for | £ |< oo.

|

REMARK 2. It is necessary to comment on the validity of the existen-
ce assumptions (AssuMPTIONS 4 and 5). First, the necessary conditions for
AssuMPTIONS 4 and 5 to hold are:

wa(l) ua (%)
f (o) + la)) da <0, f (&) + 5(&) ) ds> 0 .
0 0
Now, let I; > I. be such that
ua(Iy)
[ @)+ nis)) ds =0
1]
and
ug (1)
j (f(s) + K(s)I) ds < 0
0

forall I € (I, ;). A possible range of Ip may be estimated in the following vay.
Let us consider the system (2.1), (2.2) for I = Iy € (I, ;) . Let gy denote the
corresponding value of ¢ for which the (unique) heteroclinic solution h(€) (such
that hp(—00) = (u2(ly),0), hs(oo) = (0,0) ) exists. Since (—f(u) — k(z)l)
increases for every u > wug as I decreases, then it is easy to note that gy
increases. Thus, if Iy tends to I. from above, then gg(ly) " q.> 0.

Now, we may estimate I“ — the upper bound for the value of I . It is
just the value of I, for which there exists a (unique) heteroclinic hg(€) (such
that hg(—oo) = (0,0), hs(oo) = (u2(ly),0) ) for ¢ = g. . (Again, one notes
that if hg(€) exists for two pairs (@, 1) and (g2, 12) and ¢z > q1, then
we also have Ip > I .) If I* < I then AssuMPTIONS 4, 5 will be valid for
Reth,I*) ([l I9 .9

3. Physical example

The system (2.1) — (2.3) arises naturally, when we look for travelling wave
solutions to partial differential equations describing plasma sustained by a laser
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beam. Under the assumption of constant pressure, the temperature field in plasma
maintained by a laser radiation may be modelled by means of a nonlinear heat
conduction equation (see e.g. [6] or [7]):

(3.1} pC(OT + vy - grad,T') = divz(o grad,T) + W(T,x),

where x € R3, p is the mass density, C is the heat capacity per unit mass at
constant pressure, o(7") is the total heat conductivity coefficient and W(T',x)
is the nonlinear source function responsible for the energy balance: the gain of
energy from the laser beam and its losses through radiation, and vy is the local
velocity of the gas stream. Eq. (3.1) was analyzed in many papers (see e.g. [7],
[8]). The source term has the form:

(3.2) W(T,x) = —L(T) + k(T)I(x).

L(T) denotes the energetic losses of plasma. They are negligible below a certain
temperature T = 71 of the order of 10°K. I(x) is the intensity of the laser
beam at the point x and k(T) is the coefficient of energy absorption from the
laser radiation. The magnitude of x(7') is negligible below a certain temperature
T = n, ~ 10%K. In optically thin plasma the dependence of I on x is described
by the equation:

(3.3) div(ny(t,x)I) = —&(T)I,

where np(t,x) is a unit vector parallel to the Poynting vector of the electro-
magnetic wave at point x . The equations (3.1), (3.3) may be written in an
dimensionless form. Let us choose a typical I =.J and let 7 be the first root
of the equation

-L(T)+x(T)J =0
such that 7>, . Let
U=UT)=(T-n)(r-n)".

Then
TU)=(r—-mU+n.

Let us set

p(U) = pg'p(T(V)), C=C'C(TV)), o(U)=0o(TU))og",

L) = LTWO)( L), &U) =sTU))kg" ,
Po = p(T) , Co= C(T)s oo = J(T) , Lo= L(T)(T = 7?)_1 )
ko= &(1) , X=K5% 't':FC;’—;?ot'
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Then Eq. (3.1) takes the form:

(3.4) pC(AU + ev - grad,U) = e¥div,(a grad,U) + W(U,x) ,
where
2 Y.
82 = 0 L_ 3 Y =Vi ng(}(L[)JQ) 2 ¥
0
W(U,x) = —L(U) + &(U)I(x),

I(x) = w(gﬁ,

pU) = p5'p(T(V)), C=C5'C(TW)), o(U)=a(TU))og" .

In a similar way, Eq. (3.3) may be written in the form:

(3.5) divg (ny(x)I(x) = —&(U))L(x).

In most experiments with laser-sustained plasma, the value of & is relatively
small. For example, for argon plasma (for pressure equal to 1 atm) it is of the
order of 0.1 (see [9, 10]).

Under suitable conditions (sufficiently large laser radiation intensity and pro-
perly chosen speed of the gas stream), in a certain region of space we can cause
the gas ionization. Here the gas may be in the state of plasma — its temperature
is equal to Ty (=~ 2 - 10*K for argon plasma and pressure equal to 1 atm). Out
of this region the inflowing gas is cold, unionized and its temperature is equal
to n (= 10°K). (See [6, 7, 8] and references therein). We can examine the quali-
tative character of the temperature profile as well as the motion of the plasma
boundaries by assuming that & is (sufficiently) small. Moreover, we will confine
ourselves to the axis of symmetry of the problem, which has the simplifying pro-
perty: ny(x) is parallel to it at every X, i.e. the laser beam propagates along this
axis. Also v(x) can be assumed to be parallel to it. This 1-dimensional analysis
may serve as an initial point to a more advanced consideration of the problem.
So, let us look for solutions in the form of a travelling wave moving with the
speed x in the direction n parallel to the axis of symmetry. Let:

U(t,x) = U(§),
where
£ =e'n-(x—%) +xt,

Xg lies at the axis of symmetry and n € R? is a fixed unit vector parallel to it.
Thus one arrives at the system:
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(3.6) C(U)qU’ = (a(U)U') + W(U, 1) ,

(3.7) I = —ex(U)I,

where ¢ = p(U)(x+v'n), "= i , € € (—00,00) , where we have ommited bars

under the coefficients symbols. One can easily check that, due to the continuity
equation and the assumed symmetry of the problem, ¢ = const, ¢ can be
interpreted as the mass speed of the wave (in the direction of decreasing £) in
the system of coordinates moving with the gas.

Finally, after introducing the relative heat potential:

U
U(U) = / o(y)dy
0

we arrive at the following system of equations:

(3.8) a = U,
(3.9) V' = qC(@)(o (@)~ + L(#) — x(w)],
(3.10) r'€) = —es(@)I(¢),

where C(u) = C(U(u)), L(u) = L(U(u)) and k(u) = k(U(w)). Due to the se-
cond law of thermodynamics o(y) > 0 forall y > 0, so the above transformation
is invertible, i.e. there exists a smooth function U = U(u).

When we denote:

c(@) := C(@)(e(@)™",

/(@) = —L(u),

then we obtain the system (2.1) — (2.3). We can modify slightly the function
f(u) for u € (—o00,d), & small, and choose I. and I¢ in such a way that
ASSUMPTIONS 2, 3, 4 and 5 are satisfied. The roots ug and uy of ASSUMPTION 3
correspond to the temperatures of cold incoming gas and T3, respectively.

4. Modified system

First, we will analyze the system:

(4.1) u = v,
(4.2) v' = ge(u)v — f(u) — K(w)I,
(4.3) I' = —e(r() + k) - )
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where k(u) is a function with its support disjoint with the support of k(u) end
Iy = I(—00) . To this system we add the auxilliary equation:

(4.4) q =0,

As we have mentioned, our plan is to prove the existence of an orbit homoc-
linic to the point (0,0, Iy) for the system (4.1) — (4.3), and then to prove taat
it implies the existence of a solution to our initial system (2.1), (2.2), (2.3). We
assume that the function k(u) is sufficiently smooth and satisfies the condition:

ASSUMPTION 6. k:R! - R', k(u)=0 for u> %uﬂ, and k(u) > 0 for

o
U = -
540

5. Singular orbit

The system (4.1) - (4.4) has two different time scales. By changing the “time”
scale from & to 7 = ¢ we obtain the so-called slow system:

(5.1) EH =9,
(5.2) ev = ge(u)v — f(u) — k(u)l
(53) I = —(s(u) + k(u)(I - Io)) ,

where () denotes differentiation of () with respect to the variable 7. On
the other hand, the system (4.1) — (4.4) is called the fast system.

In the limit as & — 0 the set of critical points of the fast system (4.1) -
(4.4) is determined by the set of equations:

(5.5) v=0,
(5.6) f(u) + k(u)I = 0.

The manifold determined by the above system will be denoted below by S.
Let us note that § is invariant with respect to ¢,so S = cp1 S(g). Note that
the limiting flow (as & — 0) for the slow system takes place on S. According
to ASSUMPTION 3, in the strip I € (I, I°) every S(q) consists of three
branches corresponding to the three solutions to the Eq. (5.6). These branches
will be denoted respectively by M?%q), M(g) and M?(q). Thus MO(q) =
{(ulv$11Q) = Ulv = O!I = (Im‘rc)}! MI(Q} = {(U,U,I,Q) U= ul(I)vv =
0,1¢€ (I, I¢} and M2%(q) = {(u,v,I,q):u=up(I),v=0,I € (I, I°)}. Let us
denote

M= |J M), i=0,1,2.
gqER!
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Every Mi(q), i = 0,1,2, is parametrized by I € (I, I¢). Consequently, the
limiting (as € — 0 ) lowon S (for I € (I, Ig-+9) ) is in fact determined by a
single autonomous equation for I (with v =0 and ¢ fixed) of the form:

(5.7) 1= —k(0)(I — Ip)
on MY and
(5.8) I= —s(u(D)I

on Mt i=1,2.

Under the assumption € < 1 our aim is to show the existence of an orbit
homoclinic to the point (u,v,1,q) = (0,0, Iy, q(g, Iy)), where Iy is from some
open interval and g(g, Iy) is to be chosen appropriately. This will be done by the
use of the geometric singular perturbations theory developed e.g. in [3], [4], [2],
[5]. The starting point of the proof is the construction of a singular homoclinic
orbit, i.e. an orbit consisting of solutions to the £ = 0 limit of the fast system,
with their "ends" joined by trajectories of the £ = 0 limit of the slow system.
More precisely:

DEFINITION 1. Let Hjy denote the orbit in the (u,v,I,q)-space correspon-
ding to the solution (hyg,Ig,qo) of € = 0 limit of the system (4.1) - (4.4).
Let My denote the orbit in the (u,v,I,q)-space corresponding to the solution
(hp, I*,q0) of € =0 limit of the system (4.1) - (4.4).

DEFINITION 2. The singular homoclinic orbit consists of:

(1) Heteroclinic orbits Hy and Hp joining the points (0,0, I, qo) with
(ua(lo), 0, Iy, q0) and  (ua(I*),0,I* qo) with (0,0,1* qo).

(2) Singular trajectories of the & = 0 limit of the slow system lying on
the manifolds MO%qo), and M?(qo) joining the "ends" of the heteroclinics:
the right orbit 7y (lying on M?(qo)) joins the point (ua(lp),0, lo,qo) with
(up(I*),0,1* qo), and the left orbit Jp (lying on M%qo)) joins the point
(0,0, 1% qo) with (0,0, Io, qo)-

6. Existence of a homoclinic solution

Let us recall that two manifolds A7 and A3, bothin R™,m > 1, are said
to intersect transversely at point p € Ny NNz if

TN + TN, = T,R™ = R™.

The basic question undertaken by the geometric singular perturbation theory
for ODEs consists in finding conditions sufficient for the existence of an orbit
which stays near the singular one for sufficiently small £ # 0 . One of the
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possible answers is given by the following theorem (Theorem of Section 4 in [2],
Theorem 8 in [4]):

THEOREM 1. Consider the system:

(61] gl = X(Isyr%s)u
(62) y; = EY(Isy: q, E)a
(6.3) ¢-=0,

where = € R y € R™ Assume that for each g € R' and ¢ > 0,
there s a locally unique hyperbolic equilibrium pownt P(q). Suppose that the
linearization matriz at P(q) possesses k positive and | + n negative
eigenvalues and that ezactly m negative eigenvalues tend to 0  together
with € . Let {S'},i = 0,...,N denote a family of slow manifolds for & = 0
equations (with the equlibrium point for € #0 in S°) and assume that for
each i, S* is normally hyperbolic with splitting: k stable and | wunstable.
Assume further that there is a singular homoclinic orbit, with finitely many
heteroclinic orbits H;iy1 , each from St to S for some i, and tra-
jectories Jiy1 of the & = 0 limit flow of the slow system corresponding
to (6.1) - (6.3) connecting the ends of heteroclinic orbits (lying on S**1).
Let J; denote the trajectories J. extended beyond these jump points. Final-
ly, assume that the following transversality conditions hold for the € = 0 system:

Let [P(q),q] C S° denote the graph as q is varied of the € =0 limit of
the £ # 0 equlibrium point. Let SNt = 8O, We require that:

o W*(|P(q),q|) transversely intersects W?*(S') in (z,y,q) — space along
Ho,1.

o W*(J) transversely intersects W*(S*1) in (z,y,q) - space along Hi iy

Then for € > 0 sufficiently small, there is a locally unique homoclinic solution
to the considered system near the singular orbit.

REMARK 3.

1. This theorem was slightly changed in that we assumed that & > 0. But,
one may easily note that it does not affect its validity. (Formally, we can satisfy
the conditions of the Theorem of Section 4 in [2] by substituting & = £2 and
considering e, as a small parameter)

2. Let A denote a subset of a slow manifold of the system (6.1) - (6.3). By
the stable (unstable) manifold of A C S (at & = 0) we mean the sum:

We(A) = U Wep),  (W5(S) = | Wi(p)),
peEA pEA
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where Wi(p) (Wg'(p)) denotes the stable manifold of the point p with respect
to the € =0 limit of the system (6.1) — (6.3).

3. In the context of the above system, a slow manifold S* is said to be
normally hyperbolic if the matrix DyxX (zg, yo, g0, 0) has only eigenvalues with
nonzero real parts for all (zg, 30, ) € S* (see [2] p. 67, [4] p. 49).

4. “Near the singular orbit” means that the trajectory of the homoclinic solu-

tion lies within the O(g) neighbourhood of the singular orbit (see [4] Theorem
8 p. 102). O

According to Assumptions 2 and 3 we have:

LEMMA 1. For all € >0, Iy € (I, I°) , the point (u,v,I)= (0,0, Iy) is an
equilibrium point of the system (4.1) — (4.3) for all ¢ € R with k=1, =1,
and n = 1.

To apply the theorem we will take:

N=1, S=F'=M" B =M% HMuw=Hp MHio=H:

Thus to prove the existence of a locally unique homoclinic orbit, we have to verify
the transversality condition. The proof of this transversality may be found in [4],
[2] or [3], but for the reader’s convenience we will sketch it below.

6.1. Transversality of W*(5°) |(p(q),q and W*(S")

In our case W4(S9) |(P(q),q 18 just the set of points {(u,v,1,q) : u =
v = 0,1 = Ip,q € R'}. Of course, according to Assumption 4, the manifolds
W*(8%) |(p(g),q and W*(S') intersect in the plane {(u,v,1,9):q = qo, I = Ip}
along the heteroclinic orbit Hy. Let v*(g,u) denote the unstable manifold of
the singular point (0, 0, Iy, g) with respect to the £ =0 limit of the system (4.1)
—(4.4) (for I =1y and ¢ fixed). We have the following relations:

64) ) = [{ee)v(a,9) - F&) — sw)o}dy ,
0
1 ug (o)
(6.5) Evf(q,u) = — f {ge(y)vi(a,y) — f(y) — x(y) lo}dy .

u

In fact, in Eq. (6.4), for ¢ near gg, we must confine ourselves to u € [0,u*(q)],
where  u*(q) — ug(lp) as g — gg. In the same way, in Eq. (6.5) u €
[14(g), u2(lo)], us(q) =0 as g—qo .

By differentiating with respect to ¢ at g = gp one obtains the relations:

u

(66) U:’;(Q(h u)v’(%: u‘) = fc(b'){qov:;(% y) + 'U‘(Q(}, y}}dy '

0
http://rcin.org.pl
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uz(Io)
(6.7)  vaqlgo, w)va(go,u) = — f e(y){q0vs,¢(q0, ¥) + ve(q0,y) }dy ,

u

which are valid for all u € (0,ug(lp)). As every trajectory in W*(S?) staysin a
plane I = const, thus to prove the desired transversality, it suffices to show that
the projection of W#(S!) onto the space I = I intersects w*(8%) |(P(q),q] 2lONE
the curve u — (u,v%(qo, 1), fo, qo) , for u € (0,u2(ly)) (corresponding to Hjy)
transversely in the plane {(u,v,1,q): I = Iy} which is isomorphic to R3. Here
v%(go, u) = v*(go,u) = v.(go,u). At any point (ug, v, Io, 90),v = v°(go, uo), an
arbitrary vector from the space tangent to the surface (u,q) — (u,v*(q,u), Iy, q)
has the form

[duv U?‘u(qul ‘!.L())d‘h‘. + U:Q(G'o, %)dq, 0, dQ]

and a vector from the space tangent to the surface (u,q) — (u, vi(q,u), Io, q) has
the form

[du, v,ou(qm ug)du + Vs g (QUs uﬂ)d(:"1 0, dq,-

One notes that all vectors from R® can be expressed in terms of these vectors
iff U:;(qo; U{]) 7’% ‘Ut,q(q(), U(]) .
LEMMA 2. For u € (0,us(lp)):

vy(go,u) >0 and v, 4(qo,u)) <O.

Moreover,

. " P =
u}g(f}”-q(%“)_’m‘ .El{,%”*.q(%su)—' 0 .

Proof. Let us note that vl‘;(qﬂ,()) = Vs q(q0, u2(lo)) = O,U:qu(qo,(]) > 0 and
Vs qu(qo, u2(lo)) > 0. Hence, v} (go,u) > 0 for u € (0, d) whereas v, 4(qo,u)) <0
for u € (u2(ly) —9,uz(ly)) forsome § > 0 sufficiently small. Now, suppose that
U, i8 the largest u in (0,u(lg)), such that v, 4(go,um) =0. As v, 4(qo0,u)
satisfies the equation of the form:

Vqu¥ + VqUy = qoc(u)vg +cv

this would imply that v, qu(go,%m) = ¢(um) > 0 - a contradiction. Thus
Vs g(go,u) < 0 for all u € (0,up(lp)) . In the same way we prove that
ve(go,u) > 0 for all u € (0,u2(lp)) . Also m := ll‘i\l;r})v.,q(qc],u) < 0 and
lim
u, (1)
Now, we will prove that the last relation is true. Suppose to the contrary that
m € (—o00,0). Then both sides of Eq. (6.) are (in the limit) equal to 0 for
u =0 and we obtain for u ™, 0:
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A+ o(1)][m + o(1)]u = go[e(0) + o(1)][m + o(1)] + O(u?),

(A~ = qoe(0) + o(1)] = O(u?),

where A_ is the positive eigenvalue of linearization matrix at (u,v) = (0,0) .

As A_ > qoe(0), then passing to the limit u ™\, 0 we arrive at a contradiction.
The lemma is proved. O

6.2. Transversality of W*(S") |sing.oreic and W*(S%)

The intersection of these two manifolds takes place in the set {(u,v,1,q) :
q = qo,I = I'} along the orbit corresponding to Hp. It is easy to note that
this intersection is transversal, if it is transversal in the {(u,v,1,q) : ¢ = qo}
space. So, as above, for I from some neighbourhood of I*, let us denote by
o*(I,u) the stable manifold of the singular point (0,0, I, go) with respect to the
€ = 0 limit of the system (4.1) — (4.4) (for ¢ = qo and I fixed) parametrized
locally by u. Analogically, let o,(q, u) denote the unstable manifold of the point
(u2(1*),0,1,q0). Then, for I from some neighbourhood of I* we have:

(6-8) %of(f,u) = /{qocw)m(:',y)—f(y)—n(:f;)f}dy :
up(I)
1 *2 f *
69) 50w = [{we@eo"(Ly) - S) - K@)y
0

Equation (6.8) is valid for u € [u,([),u2(])], where u,(I) =0 as I — I*.In
the same way Eq. (6.9) is valid for u € [0,u*(I)], where u*(I) — ug(I*) as
I = I For I =101 o'(l,u) =0c.(l,u). Of course o*(I*,u) = c.(I*,u) is
negative for u € (0,uz(I*)). Differentiation with respect to I at I =1I* gives
us the relations:

ug(17)
610)  oui(Iwoul*w) = [ {=gocu)owill )+ 5w)}dy |

u

611) oy wo (1w = — [{~aecW)T(T,v) +5(u)}dy -
0

Now, it easy to see that the following lemma holds:
LEMMA 3. 0, ;(/*,u), and o, (I*, u) satisfy the relations:
os1(I*,u) <0 for u € (0,uz(I")],
http://rcin.org.pl
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aq(I*,u) =0 for u € [0,ug| ,

o(I*,u) >0  for  u€ (ug,ua(l")),

tl‘i{lr%'t:l',..,jr(l",*u) = —00, u/lizr(lp}o:!(f‘,u] =00 :

P r oo f. Due to Assumption 3 we note that o, ;(I*,u3(I*)) =0 . Thus, by
(6.10), we infer that o, ;(I*,u) <0 for u € (0, uz(I*)]. Moreover, o, (I* u) N\,
—oo as u \, 0. It follows from (6.11) that ¢”(I*,u) =0 for u € [0, ug|. Suppose
that o%(I*,n) <0 forsome 7 > ug. Then, by (6.11), o*%(I*,u) <0 for u <mn,
sufficiently close to 7, so it cannot become 0 for u = ug. Hence a?}(f‘, u) > 0 for
u € (ug,uz(I*)). Finally, as x(uz(I*)) > 0, then lim, s, (s+) 0% (I*,u) # 0, as
otherwise the right-hand side of Eq. (6.11) cannot tend to 0 as u  ua([*).
Now, as in the proof of Lemma 2, one can show that lim, »y,(+) 0% (1", u) = oo.
The lemma is proved. O

This lemma guarantees the transversality of the considered manifolds.

7. Existence of a solution to the initial system

Below, we will prove that from the homoclinic solution obtained by means
of Theorem 1 we can construct a solution to the system (2.1) — (2.3) satisfying
the conditions (2.4) - (2.5). First, we will state some properties of the solution
homoclinic to the point (0,0, Iy) obtained by means of Theorem 1.

LEMMA 4. Let (u(§),v(§),1(€)) be a solution to the system (4.1) - (4.3)
homoclinic to the point (0,0, Iy). Then:

1. u(€) >0 for | £ |# oo.

2. Let (1,w-) and (1,w4) denote eigenvectors corresponding to the eigen-
values A_ > 0 and Ay < 0 of the linearization matrix of Eqs. (4.1), (4.2)
for ¢ = q(e,Iy) at (0,0). Then w_ = A_, wy = Ay and (u(€),v(§)) =
u(§)(1,ws +o(1)) as €& — *oo.

P roof. Suppose to the contrary that the first part of the lemma is not true.
Then there must exist such £ that u(§) is a negative minimum. So, — f(u(€))—

k(u(€))I(€) = 0 . This is, however, impossible according to Assumption 3. The
second part is obvious as, due to Assumption 2, &(u)=0 for ue [0,u] .O

LEMMA 5. For & > 0 sufficiently small, the u-component of the homoclinic
solution to Eqs. (4.1) - (4.3) may have only one maximum and no minimum.

Proof. As £, 0, then homoclinic solution to Eqs.(4.1) - (4.4) obtained
by Theorem 1 tends to the singular solution defined in Section 5. The projection
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of the singular orbit onto the (u,v) space touches the v =0 axis for u =0 and
u € [ug(I*),u2(lg)] . Suppose that the function u attains a maximum different
from the global maximum (or from a fixed global maximum if there are more
than one) at some point (ps . According to Lemma 4, for € small, u({ps) must
be close to the set [ua(I*), ua(lg)] . As there is another maximum, the function u
must attain a minimum at some point (,, , where (,, < u* and u* — u,(I*) for
€ — 0. However, due to Assumption 3, us(I*) > wy(I*)+d, d >0, for I €
(Ze, I€). This would imply that the distance between the considered solution and
the singular solution would not tend to 0 as & Y\, 0. Hence we arrive at a
contradiction with Theorem 1. The lemma is proved. O

LEMMA 6. Let u(f) <wug for € <&_ . Then I(§)=Iy for € € (—o0,E-).

P roof. Suppose that this is not true and that for some ( < £_ we have
I(C) # Iy. Then I(€) = In+ (I1(C) — Io)exp(—= f(? k(u(s))ds) and consequently,
I(€) would diverge as £ — —oo unless (I(¢)—1Ip)=0.0

In view of Lemma 4, 5 and 6, the following theorem of existence is valid:

THEOREM 2. Let Assumptions 1-5 be fulfilled. Then for each € > 0 sufficien-
tly small there exists q(g, Io) such that for q = q(e) there exists a (locally unique
modulo shifts in €) solution to the system (2.1) — (2.3) satisfying the conditions
(2.4), (2.5).

Proof. Fix £ >0 sufficiently small. Let £_ be the same as in Lemma
6 and let &; be such that u(§) <wug for € > &4 . (Of course €. and &,

may depend on &£.) Then a solution to our problem can be determined by the
equations:

U(E) = u(€), (&) =v() for €€ (—00,00) ,
I(€) = I(§) =Ty for Ee(-o0,6) ,
I(§) = I() for €€le_,&4) ,

I(€) = I(€y) for £e€[éy,00) .

The theorem is proved. O
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