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Dimensional analysis and asymptotic expansions
of the equilibrium equations in nonlinear elasticity
Part II: The two-dimensional von Karméan model

O. MILLET, A. HAMDOUNI and A.CIMETIERE (POITIERS)

IN THE sECOND PART of this article, which is a continuation of [8] which dealt with
a plate subjected to large loads, we consider a plate subjected to moderate applied
forces level within the framework of nonlinear elasticity. We then apply the new
constructive asymptotic approach developed in the first part which needs no a priori
assumption. For these moderate forces, we prove that the two-dimensional model we
obtain by asymptotic expansions is the von Karman one. Finally the two-dimensional
stress field in the plate is deduced from the three-dimensional constitutive equations
without any a priori assumption.

1. Introduction

THIS PAPER IS A CONTINUATION of [8] to which we will refer for the definitions and
the notations not explained here.

In the first part we have proved that for a plate subjected to large applied for-
ces such as F3 = ¢* and G; = G3 = &, the asymptotic expansion of the three-
dimensional equilibrium equations leads to the nonlinear membrane model. In
this part we assume the plate to be subjected to the same moderate applied for-
ces as in the linear case [6]: F3 = G3 = €' and G, = £*. We recall that in the
linear case such forces lead to the two-dimensional linear Kirchhoff-Love model.

The aim of this second part is now to prove, as in the first part, that the refe-
rence scales of the displacement and the corresponding two-dimensional models
we obtain by asymptotic expansions are determined by the magnitude of forces.
Indeed, we prove that the force magnitude considered here (F3 = G3 = &* and
G = %) leads to new reference scales (uz, = hg and V. = ehyg) for the normal and
tangential displacement. These new reference scales we obtain as a consequence
of the forces applied, are formally equivalent to the scaling assumptions gene-
rally made in the literature [1-4, 9]. They naturally lead to the two-dimensional
nonlinear “von Karmén model”, even if the designation “von Kéarmén” is often
reserved for particular boundary conditions. Finally, the two-dimensional stress
field in the plate is deduced from the three-dimensional constitutive equations
without any a priori assumption.
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976 O. MiLLET, A. HAMDOUNI AND A. CIMETIERE

2. Determination of the reference scales

Let us consider now the same applied forces level as in the linear case [6],
such as G; = €3, F; = 0 and Gy = F3 = €*. Then for these forces, the variational
formulation of the membrane equations obtained in the first part of this article
(result 2 of [8]) becomes:

1,’ € Qwg) = {L! wo R3 “smooth”, 1 =1y on 'm},
00 90
f’l}[ i (—]dwg —0, WP e Viw)

The solutions of this membrane problem without a right-hand term are the
smooth enough inextensional, mapping functions defined on wq ([5]). So we
0 5,0
have ¢¥° € Sy where Sy = {l;irﬂ : wo — R 3—1!)—%?— = Ig} denotes the
space of the inextensional mapping functions deﬁfled J'ncun wg. On the other
hand, as the plate is assumed to be clamped on its lateral surface, the space
of the inextensional mapping fuctions Sy reduces to the identity Io of RZ.
Hence we have 1" = I, which implies that V? = uJ = 0 (see relation (4.11) of [8]).

Since we have proved that V? = u§ = 0, we get

V‘ V‘

V = — = :EV1+32V2+...,
Ve Ig
u3 u§ 9
ug = -- =gu} +ud + -+,
57 us Lo # 8
which is equivalent to
~ V‘ e R ~ ~ ~
V= =Vi4+eVi4...=V0teVl4eV2 ...
EV h{)
— _ u3 _uz 4 2 0 3
oS —E—u3+su3+---—u3+5u:’,—l € u§+

Hence for these forces, the reference scales of the tangential displacement V,. = Lg
and of the normal displacement uz, = Lg are not properly chosen. V and 1z will
be of the order of one unit provided the reference scales of the displacement satisfy
the condition V;. = ug, = hg. Therefore the new reference scales of the tangential
displacement V* and of the normal displacement u} we have to consider are
Ve =ug, = ho.
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Consequently, the dimensionless equilibrium equations are written again with
V. = ug, — hg as reference scales. The dimensionless components of the displa-
cement will still be denoted by V' and u3. Thus for the magnitude of forces such
as F3 = Gy = €', F; = 0 and G; = £°, the dimensionless equilibrium Egs. (2.4)
and (2.5) of (8] become in 2y = wox| —1,1]:

e [(1 + B)grad(divV) 4 AV] +& [(l ek ﬁ)grad% +div (Ew + I})
3

&%V

—{0 )i
dI-3

+ —(Q + 1) +
(2.1)

sod - ! 3 L
e2Auz +¢e|(1 + B)—div V +div (Eys + I3) | + 7—(Eun + I'n)
dxa dxa

6211.3 4
+@+B) 5y = —'fs

The boundary conditions on the upper and the lower faces become:

v .
e gradug + Q + I Ig = el forzz =41,
T3
(2.2)
811.3 A1k
Eﬁdwv+[4un+[u1(2+ﬂ)—=ﬂ:£‘g3 for oy =%1 ,

where 8 = A/p and

1

A av ov oV ov
t = [ —Tr (8 ()I‘) Iy + ngad 1..‘.3” I + -5—-5— + grad uj grad Uz

5
ol [

.

OV |12 /Ouz\?]
] J645

Ox3

_ 4 [H Qv OV P 2 By 1w
A [‘2%(31' Jr +2l|gradu3|[ % (l+ ) dxs
, By (VOVY, TV g
B = |

- [ Tr(drd.r)l "or ot

2, (2’
Oz ;

av
nga.d ug||® Iy + grad uzgrad u;;}

or
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[cont.]

v aVv | oV du, 7%
2 : i A ol i) i
£ [ﬁdwl/lg+ar—l 8:]814 s{(l+,I3)gradua :
2 (2us Noav L VIV
Ox3 Oz Oz Ox3 '’
LB (Vv Vv v 3 )
g [ Tl‘(a o1 )Igﬁ-aa{—(l-l-g) ||grad u3|| I5| grad ug
p
4 (; . 5)

Jua Jug 6‘!133?8‘/ dug OV
"(a.ra) O ) e }g"‘d U+ By 0z 023 |  Bas O3’

waug?f“ IV oV oV ;3[

Oxs Ox L oz (‘):1:3 Oxa

8:::3

v IV 3|l av |2
lﬁleV fg+‘5" -+ 6 lgra«d us 4 € {[EHS_IQ‘

dug\ OV B, (Wav),K ovav
— Mt =t S i
P {(1+8x3)8 i 3+[2r“(a i )I2+8:58:r

av av] av
o éllgrad us? | =— } +¢ |BdivV I + — v
2 8.‘!:3

dr | Oxg
Hid) ‘9‘12 dus\* | 0us | OV
2 8173 8.173 3.1'3 61:3 !

B =% { [ T‘(ax 31) 2 rad usl?] | + (14 522 lgrad wa

oV ov Oug T
+ 3::38 —grad ug} {ﬁdl _— 3 grad ug}

e D[R (g | s
31‘3 63:3 (91‘3'
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We assume again that there exists a formal expansion with respect to £ of
the new dimensionless solution (V,u3) of the dimensionless problem (2.1)—(2.2):

V =VoieVl 42024 ... |
(2.3) ‘
ug = u§+-su;’,+£2u§+--- .

We then obtain the following result:

RESULT 1

For applied forces magnitude such as 73 = G3 = €* and G,
Vve=0.

= €3, we have

P roof. The proof of this result is divided into two steps.
i) uJ and V° depend on (z;,z9) only.

Replacing V and ug by their expansions (2.3) in the dimensionless equili-

brium Egs. (2.1) and (2.2), problem P can be written in 2y = wox| — ko, ho[ in
the form
J a*Vo
24 —(Q% 419 =
( ) 8.1'3(@ +Fs)+ aIg 0!
d 62u3
(25) (‘r‘r? + “u n =0 3
Oxg
with the boundary conditions on the upper and the lower faces
0 ovo
(2.6) QY+ 12+ o =0 forzz==£1,
T3
0 dug
(2.7 RP+EL +(248)=2 =0 forzs==1,
82}‘3
and where
i 0|2 0\ 2 0 0
QO (1 + E) SL -+ ?E"i % 3L
2) ||| Oxs Oxg Oxa | 9z3 :
A\ [lave|®  [aud\? ,0u8] oug
, 2(1+_)h+ﬁ 0ug] ou3
i 2 Ox3 dxa 31‘3 dzg
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2 2
I (8 i
2= (1+9)[|55] + (32)].
Ig =0

It is then possible to introduce the mapping function

ove
81‘3

P = VO 4 (23 + ud)es = ve
i ¢ 3 + ‘ug

to simplify the expressions of Q° and EZ,,. So we have:

2
o _ (12 B\ ([(2L] _,) °
@ = (1+2)( 013 l) Oz’

2
}aw‘ _1) ong

Ory Ozz

REMARK 1
It is natural to introduce ' as a function of (VY u§). Indeed, going back to
the mapping function 1*, we get:

Y*=T14+U" =33 eq + V* + (z3 + u3) e3-

Taking into account the expansion of (V,u3) with respect to £, the dimensionless
form of the previous equation with V, = ug, = hg can be written as

(2.8) P = i’% = Zq €q+E L(:ra +ud)es + VOJ + e

¥0=Iy P!

Thus we obtain 7° = I, which complies with the new reference scales of the

displacements. -
According to the boundary conditions (2.7), Egs. (2.5) leads to

0
Oug

ey
which can also be written as

0 2
(1+3ﬂ)( —1):0 in 2 .
Oz
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Consequently we obtain:
il
813

!

dra

(2.9)
=

We must use again the mass conservation law to conclude the analysis. Indeed,
taking into account the new reference scales of the displacements, the expansion
of the condition (3.3) of [8] gives

1 0 0
i (W Aaﬂ)>m

Ors \ 0 Oz
a1,
As Y0 = I, we get w.&;} > 0 which becomes
3
ol
(2.10) (1 + _,‘_‘g) >0 in (2,
dxy

according to the expression of 4'!. Hence Eq. (2.9) gives

oy

(2.11) %

Finally, according to the boundary conditions (2.6) and to Eq. (2.11), Eq. (2.4)
becomes

ovo

— =0 in (2

8.1'3 m e
and yields
(2.12) VO =vO%zy,25) in 2.

Therefore equation (2.11) becomes

: 2
(54) 4238 -0

CT):I‘_;; 3.1'3
: . ol ;
and according to the condition (2.10) we have e 0, or equivalently
3
(2.13) u) =u)(z1,23) in 2.

ii) Equation satisfied by V.
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Taking into account Egs. (2.12) and (2.13), we have 0, = 0. Thus the second
equation and the second boundary condition of problem P; can be written as:

32113

3

(2.14) %(f‘,ﬁ +EL)+(2+ ﬁ) 0 in (2,
‘3

(2.15) I} +Ej, + (2+;3) +ﬁdwv°=0 for z3 = +1 .

These two equations lead to a relation which couples u} and V9 :

6“’1 ﬁ
2.16 Ao T O d“g ‘;’0
( 1 ) 81'3 2 +ﬁ

The cancellation of the coefficient of £ leads to the problem P, whose first
equation and first boundary condition can be written in the form

1
(2.17) (1 + B)grad(div V°) + AV? + (1 + B)grad gﬁ + fa—(Q2 + I?)
I3 83_"3

0%v?

),
i ox3

V2
(2.18) grad ud + Q* + I'? + % =0 for zz = +1 .
3

Using the boundary condition (2.18), the integration from —1 to 1 of Eq. (2.17)
gives:

1

1
/ l(l + B)grad(div V9) + AV + 3 grad (g—?)] dzz =0.
3

-~

Then replacing du}/dz3 by expression (2.16), the previous equation becomes

div(n) =
with
43
n? - 2+ﬁTf3:(VU) 12+4e£(V°),
o0y - L(OV2 oV _1 0 =%
et(V)_Q(ax = —2(gradV + grad V9) .
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As the plate is assumed to be clamped on its lateral surface, we obtain a linear
boundary problem:

div(n]) = 0 in wg ,
Vo‘awg =— 09

which has (if we assume that V7 is smooth enough) a unique solution V% = 0 in
(1 (o)’

Therefore for these forces level, the reference scale of the tangential dis-
placement V. = hy is still not properly chosen. We have to consider V, = ehg.
Thus the dimensionless equilibrium equations must be written again with ug, =
ho and V, = chg as the reference scales. The dimensionless components of the
displacement will still be denoted by V and us.

3. The two-dimensional von Karman model

With the new reference scales of the displacement (us, = hg and V, = ehy)
which are obtained as a consequence of the order of the forces applied, the di-
mensionless equilibrium equations assume in 2y = wox| — 1, 1| the form

. Bus OV

2((1 - : g petlee. TRl

e”[(1 + B)grad divV + AV] + (1 + B)grad B, + 922

1 8
+div (Euf-l—.{g) +_d_(Q+ Fs) =0
(3.1)

d Pu
1 A s 5 5 > 0ug
e“[(1+ ﬁ)a;rsdlvi/ + Aug| + e div (Eys + I3) + (2 + 8) 523

) REPRY-
'l"a_%(Eun 1 In) = = f3 .

The boundary conditions on the upper and the lower faces 5+ become:

I

ov
gradu3+5—+ (Q Ly) :i:€2gti for z3 = +1,

(3.2) 5
(2+ ﬂ)é%i + BE2divV + Eyp + I, = etz for x3 = £1 ,
3
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')V

2
Ly

2
e 3 ( Oug
_kgraduggradua} %(B‘Hﬂ) g

By (B TV L[
- {5 (o) s T {3 (ot

V ov a'u
Iy = 33—1-—3?3 + & Sgrad ug ,

aVv

av av 5} B
. a2 B 2, (1 8\ 2V
I, = 2'1'1‘(31 Ee ) b {2||grad ug||” 4 (l s 2) 23

)

s 125y
dl‘; }
B, — ¢b {B,n_ (avav) av v avav

g L Sy oF B
9z O aIJ“azazax}Jr {[’““'Wﬁ (

av. v vV OV oV OV
+ ||lgrad u3|| Vo + (*é; + 8_) + grad uz grad 113] - A }

dr ' dx dry Dy

aVv
8.(‘3

+ 52{[;—V + grad ug -+ a}u grad u;;] ?V 3 [{jau‘i i ‘g(%) }i“i} ‘

dxy dxs dr

. _ s[Br (VOVY, VoV _ BV |12
Eus—E{2 (3 oz )[2 0 oz }gradu3+£ {[ﬁdJVVIQ—I-EHb—-r;

ﬁ) 2 oV av Oug AV OV
= L T aih e S
i ( i 2 llgrad us]|” Iz + dr i dr grad ug + dxrz Oz Oxy

2
B\ [ Ous Bus S
+ E{l(l-FE)(Eﬁ:—;) +(1+;f3)a{‘;]gradq,.;:,4..I__}1
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Q=g {gTr (()p ()V) av 1 c)_VE)_Vﬂ} + €3 {[,(3div1/ I

2 Oz Or | Ox3 = Oz O O
4 245 (__g)a_v2g_‘.i AL
+3 grad ug||“dis+ (14 2) | oz3 | | 3 o+ 3z | 5z t grad ug

2
(I}H:{ ﬁ) 0?1,3 . 8“3 8V
WL P - e e et X 3 | S
’raragrad u‘;]} l-& [([ s 5 ( 91 + (2 + / )(')3:3 923’

o a8y (VOV O OV OV
Lyn=¢ {Q'I‘r (r').r % | T - 923 02 grad ug

+2d|gaivv B 2, _E)fi"_"?aﬂ
| e {l})’dw‘/ + (1 + 2) |lgrad ws|[*+ (1 t 2 ) |5zl | 7z
2
av ) 2 il (?1;3 ! 2) 3!1,3 é)u;;
1 (._)I:igfad uzt+ ||grad ug| }+ [(3% !3)613 + (1 +3 ( T o

The asymptotic expansion method enables us to write again the new dimen-

sionless solution (V,u3) of the problem (3.1) — (3.2) as a formal expansion with
respect to € :

V=VliteVl+eV2 ...,
(3.3)
Uz = ug+5u§+€2u§+--- .

Then replacing V and ug by their expansions in equations (3.1) — (3.2) and
equating to zero the coefficients of the powers of £, we obtain again a chain of
coupled problems.

RESULT 2

For the applied given forces of the magnitude such as F3 = G3 — &' and
G = €3, the leading term (V°,u9) of the expansion of (V, u3) is a Kirchhoff-Love
displacement which satisfies the following conditions

i) ud = (§(z1,239) , VO = (Q(x1,22) — x3 grad (§ ;

ii) ¢Y = (¢, ¢Y) is a solution of the following problem:
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divnl = —p, inwg,
div(div m?) + div(n? grad u3) = —p3 —divM, in wq ,

a¢
c&:—fﬁzo and (=0 on~g,

where v denotes the external unit normal to 7, and where

n = S rSTENC) L + (),

- (grad ¢ + grad (7 + grad ¢§ grad &) ,

b3 | =

ap

1
Ot 0 2 0
m; = {3(2+ﬁ)Aualg+ 3grad(grad ua}} y

Il

p3 /fadra +g3 +g; , pe=g7 +95 M, =gt —g; .

Proof. The proof of this result is split into several steps from i) to iii).

i) uf et V? is a Kirchhoff-Love displacement.

The cancellation of the factor of ¥ leads to the problem 7 :

L V| ;
(34) (1 4—ﬁ)grad~aT§ o7t —(Q +IY) +div(IP) =0 in 2,
(3.5) s “3 ; + O (B +r%=0 inm,
81'-3
Vo g g
(3.6) é—{gra.d w3+ Q + I =0 forzs==+1,
(%:3
(3.7) 2+8)5= + Eyn+ I3 =0 forazs =1,
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with

2 S0 0,0
ik E ) g GUJ dV 1 0!;3 0
= {(l 1 2) (0—1‘3 + (2 1—/5)—* —-5'.1'3 = _813 grad usy,

3 2
B\ [ 0ul r)u B [ o0ul
0 _ e W R -3 el R )

0 B\ ( Oul
r-a+9 (52)
Equations (3.5) and (3.7) lead to:

(?+ﬁ)%+5ﬂn+ﬂ?:0 .

Equivalently we get
2
oul) duy 36u) 1 {06ud ]
2 L —s = 2
( Pﬁ] [+2813+2 ('J.r;; s
which gives

ol ol ol
—2 =0 or —2=-1 =

= -2 in {25 .
8.‘1‘3 8I3 el 6.1‘3 e

Then using the mass conservation law condition (2.10):

0
(H £)>0 in 2,
Oz

0

o
which is still valid with the new reference scales, we have 8_:3 = 0 which implies
3

(3.8) ug = (§(zy,22)  in 2.

On the other hand, since the condition (2.10) can be extended to the upper and
the lower faces Iy, equation (3.7) leads to

ol
dxa
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REMARK 2
In [2] and [3] appears a similar indeterminacy in the evaluation of du}/dz3,

even if a variational formulation of the problem is used. To remove this pro-
0

N —
blem, P.G. Ciarlet and P. Destuynder assume that 8;:3 € C%12). With the

new approach presented in this paper, the condition (2.10), which is obtained as
a consequence of the mass conservation law, enables us to drop this additional
assumption concerning the regulariy of dul/dx3. 8

Then according to (3.8) and (3.9), equations (3.4) and (3.6) become
o%vo

— =0 in 2 ,
oz
ovo
W-Fgradug:[) for z3 = £1 ,
3
and lead to
(3.10) VO = ¢)(21,22) — zagrad (7,

where (® = (¢, (9) represents the displacement of the middle surface wq. Hence
step i) of the RESULT 2 is proved.

Since the problems are two-two coupled in the linear case, problem P; leads
to a similar result with u} and V!. Even if this result is not necessary to prove
the steps ii) and iii), it will be used for the stress calculus. So it is explained here.

Taking into account (3.8), (3.9) and (3.10), problem 7; can be written as

r?u-, &#vl 8

3.11 1 GO a Sy iy :
( ) ( + [j)grad )13 ()J’.‘d t axa(Q 1 Fs) 0 m -r‘?ﬁ )
2
(3.12) @2+ ;1)0 . in 2 ,
1
(3.13) c;v tgradul + Q%>+ I2=0  for ry=+1,
I3
011-;
(3.14) (2 + /J) =0 for z3 = +1 ,
with 4
oul VO dul
2 2. yRs ey, S
Q“+1TI; (2{;38 83:3+8 gadud

Then equations (3.12) and (3.14) immediately lead to

(3.15) uj = (3(z1,22) .
http://rcin.org.pl
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Hence equations (3.11) and (3.13) give

oVl :

,)I + grad u;:() in (2 ,
or equivalently
(3.16) V! =¢/(x1,22) — x5 grad (3 .

Therefore the second term (V'!,u}) of the expansion of (V,u3) is a Kirchhoff-Love
displacement as well.

ii) Extension-compression equation

According to the results previously obtained, the cancellation of the coefficient
of £2 leads to the problem Ps in (2 :

2 av2

(3.17) (1 + B)grad divV? 4 AVO + PBgrad g— + —(grad ud -+ 9z —_—)
T3

d
+div I + s @+ =0,
3

i 2 -
(3.18) (1 +;3)dd divV? + Auf + (z+;3}8 "3 = 2-0,
.3 ')1‘3
ov?
(3.19) grad ud | D2a + Q3+ I3 =g for z3 = +1,
I 2 )
(3.20) (2 +ﬂ) I-ﬁdiVVﬂ +T2=0 forxzz = +1,
with
2
3 . 0 E 0u2 ﬁ) avﬂ av(l au2 avﬂ
L [ﬁdl\’ i 2[|grad wll ( i Oz || | Oxa (Z—I—ﬁ)am Ory
2
i 3 0 £
e 5( |lgrad ug||* + - )12 + grad ug grad ug ,
2
V“ 5 Oul VI Yo
2 = 21grad «9)2 + (1 B s 94 o AV
n ng U‘SH + 8 813g1‘ad Uy b (').1‘ 8_1'3
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Then replacing the expression (3.10) of V¥ in (3.17) and integrating the equ-
ation so obtained from —1 to 1, we have

1
Ou?
(3.21) 2(1 + B) grad (div ¢°) + 24 ¢® + /ﬁ grad 6—241-3

thanks to the boundary condition (3.19).
On the other hand, taking into account (3.10), Eq. (3.18) can be written as

d Ou?
6—$3(2-i ﬁ}a 7 L BdivVO T2 =0,

and becomes, in view of (3.20),

0i o :

e . 170 2
s -3 +ﬁde ~ 216 ;j[“ 4
or equivalently
Bu?, ,-‘3 . 0 I} o2 1,0V0
(29 =g dvV s lgrad wg|" - —aba I

Then using (3.22) and the relation
div(alz) = grad a for all scalar fields o ,

equation (3.21) finally becomes

4+63
2+

grad div ¢ + 2A¢ + div ( 25

o1 Hllgrad ug|* Iz

+2grad uf grad uf ) = —(g +9,) ,
or equivalently
div nd = —p; ,
with
o_ 48

715 BB HEXCE)

...1
o~

-
I

l - - —_—
EY(¢°) = 5(grad ¢! + grad ¢7 + grad uf grad u)

=g to -
http://rcin.org.pl



DIMENSIONAL ANALYSIS AND ASYMPTOTIC EXPANSIONS ... PART 11 991

Step ii) of the result 2 is then proved.
iii) Equation of bending

Now replacing the expression (3.10) of V¥ in (3.17), we obtain

w2 b oVv?
—z3(2 + B)grad A} + 3 grad — 4 Bre grad uj + Doe
T3

e

+[{(14+8)grad (div Q) +A ¢]+div I} ii(Q%F‘) - 0.

Then after multiplying the last equation by x3 and taking its divergence, an
integration between —1 and 1 leads to

1 1
_24. 20_/i2__/i-2
(3.23) 3(2 +B)A%us + 3 | z3 373 Aujdzrs + 1 T3 Bn (Auj
=1 b

1
+ide2)dJ:3 + ‘[Isidi\f' (@*+ Fss) =0
dry j O3

Now using (3.22) it is possible to express the second term of (3.23) in terms
of uJ. Indeed we have

1
@ .3 23 2.0
(3.24) -{Idaxa Auzdry = 321 ﬁ)A ug .

On the other hand, integration by parts of the third and fourth terms of
(3.23) leads to

1
8 2 6 1 2 > 3 3 e . 2
_{135;;[.41;3 + B_:r;;dwv +div (Q°+ T; )]dlg = |z3 div (grad uj

1

BV 3, 3 ST T A VO, SRR

toa )] l—][A uj + godivV? +div(@® + Fs]]d.ra,
-1

and with the boundary condition (3.19) we obtain

. 2 ov? 3 Nk i A =
[I3 div(grad uj + — + Q° + F,]] =div(gy —g,) -
8:]’.'-3 =1
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Finally equation (3.23) becomes

(3.25) gg

9
A% + f A ul + 8—‘dwv2 + div(Q® + 1‘3)}413 = divM,
I3

where

My =gl g .
Now in order to eliminate the unknowns u3 and V? we have to analyse the
problem P;. The second equation and the second boundary condition of the
problem P, are given by

8o o DI 32“3
(3.28) @ +ﬁ)—8~£;dwv +Auz+ 2+ B) 2

+div(E3, + I3
+ -8—-(E1 o+ F") — —fg on (2
8.1‘3 un T ;]

Out
(3.27) (2 + 5) us J’.ﬂdi‘fl"& +E; +I2 = :1:33 for z3=41,

with
: 0
(328) L2, = [Bdiv VO 4 ( ) lgrad w32 + (;: ] rad 13
‘3
avoe ogvo 0 o Ouj 0, du3 avo
+ ( oz t —— =y grad uz + (1 -I—,H)E)-E grad uy + s 31‘;

s _ avo gy 8u;

* = B Bas T Bey T

Then integrating (3.26) between —1 and 1, and using the boundary condition
(3.27), we get

1 1
/ [* divV® + Au%} day + [ div(ES, + I$)dzs = —py
ol 8.1‘3

where
1
p3 = /f:;dla + g3 +93.
-1
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Hence we have:
1 (} 1
/ (Aud + 5 —divV? + div(@® + 1) dra = —pa + / div(Q® — E3 )dzs .
3
—1 =

Replacing then Q* and 2, by their respective expressions and using the coupling
relation (3.22) we obtain

Q:i—ﬂ'gs:—{%di"vo + 5 erad w ||2] grad u§
ve  gyo .
‘(“a?*‘ﬁ)gmd“ﬂ-

Finally the bending equation (3.25) becomes

83+1 2 0 . 43 4+4,( 9
3;3‘{-2Au3—d1 oF ﬁdl @ + .Hfj”grd ug||® | grad ug

] ave avo _
—2div l(‘g‘ + E) grad ug] = p3 +divM, ,

or equivalently

84 +1
357 2A2u3 — div(n! grad u}) = p3 + divM, ,
with
n = LB + B
2+ 0

l . o
B (") = 5(grad ¢ + grad ¢ + grad u§ grad uf) ,

ps=ffadr:s +93 +95, Mi=gt—g;.

It is also possible to write the last equation in a more classical form. To this end,
let us define the dimensionless tensor of bending moments:

4
m? = { 30 fﬁ) Augfg + Sgrad(grad ua]}
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Therefore we have
div(div m{) + div(n{ grad u}) = —ps — divM; ,

which concludes the proof of the RESULT 2.

4. Stress analysis

Now the components of the stress tensor can be deduced from the three-
dimensional constitutive equations and from the previous results. We recall that
the constitutive equation of Saint-Venant-Kirchhoff materials is given by

2 = ATE T +2uFE"

o Lo o 130F 8. 13000 _
Br=glitcll=slpe b a el tear o =

2
where e¢* and y* denote, respectively, the linear and the nonlinear parts of the
Green-Lagrange strain tensor E*. So it is possible to write ¥* in the following
form:

e’ +9%,

E» = aﬁ + I‘t ?
where
ot = XTee T 4+ 26"
I' = A\Txy*' T+ 2uy* .

Then decomposing U* as U* = V* + ujes and writing the components of ¥*
in a dimensionless form with ug,. = hg and V, = cug,., we obtain
s du

3 2 fj - 2 ov 2)
= - R e : St
% [5813 I+ e {‘Zet( ) + 3 (2 divV + ||grad ug||® + ”813 1) 12

+ grad ug grad ‘Ug} + 0(53) ,

1 0 NV Ou IV,
m —e{gradu3+a+éz—agradu3}+e 5‘1’31‘3—}_0(6)1
&_ 811,3 ﬁ 6u3 2 2 R [3 2
= 2 +B) e+ (1+ 2) (322) +e paiv v + 5 lgrad
é) av ||? 1) B oV ov _ 5
+(1+2 ozl (TE120\ 3582 ) [ HO€)-
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Now let us replace the dimensionless components of the displacement (V, ug)
by their expansions (3.3) and let us use some of the previous results to simplify
the formulas. On the one hand, the first and the second terms of the expansion
of (V,uy) satisfy the kinematic Kirchhoff-Love hypothesis :

ol ave ouy avl

! I-gr ud o 81‘3 83

+grad ua =0 .
83 Br ’Ua

81‘3

On the other hand, we easily remark that the problem P3 leads to a coupling
equation similar to (3.22):

Ouy B e v B Iyl g 0 2
(4.1) 925~ 34+ div V" — 52 1 ) [||grad uz||® + 2grad u3 grad U3]
1[||ovi|® . avOav?
2 31’3 81‘3 33.‘3 :

Then using the previous relations, the formulas for the components of the
stress tensor assume the form :

4 ]. 3
L = =ndg Qrsmt +0(e) ,

ZITR)
:;i = E{grad uj + %g; + girfgrad ug + i%ﬁ%i;;} +0(e?) ,
):i N 52{(2 + m%ﬁ Th i s ’g)( g;if: )2 + B divv? + g[llgrad ug|?
+ 2grad uf grad u3]+ ( +ﬁ) [ g‘; 2 g:fg_ﬂ
+ gn(%ﬁ%’; )} + 0@ .

The reference scale %, = €2 of the stresses naturally appears so that at least
one component of 3 = — is of order 1.

Yr
The existence of an expansion of the solution (V,u3) into a power series of &

then implies the existence of an expansion of ¥ with respect to & :
(4.2) $=3"4eB! et b,
http://rcin.org.pl
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where
1 3
3 §n?+ —2~I3'm?=
W2 Oul avo Vo
o 2 ov -~ b 0 s
¥, = grad uj + ) +8;::3grad 3t Oz Oz3 '’
(4.3)
ud 3 B )" ¢] b
2 e PRI N E S § el v %3 dly
7= @+ A+ (1+5) ( o Rt |
] 2 BVt 2, ,0V0OV?
i) Qgrad uy g[‘a.d U.:;l +(1 - 2)[” 8-1'3 ” 2 8.’1‘3 81‘3

B [oVOay0
Myl ——=.,
+'2 (0.1' dr
»% =0, ¥ =0 i=0,1.

The explicit expressions of )} and 2 are obtained by integration across the
thickness. This process is similar to the one developed by P. G. CIARLET and P.
DESTUYNDER in [2].

4.1. Evaluation of 3}

Taking the gradient of (3.22) and inserting the obtained expression in (3.17),
we get, according to (4.3),
0 A
5:@2; = —divX] on %,

El = igt:t on ng :

The integration of ¥J! leads then to the classical expression:

3 9 -9 T3 x
1_ 90 N v 9% =@ T[4
Ny = 1 (1 x3) div(mny) 4 3 S 5 (gt + g, ) .
4.2. Evaluation of ¥:2

The equation (3.26) can be written as
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Py 2 ov? 2
(4.4) [(z +B) 5 2  AdivV ] +dw[()I3  grad u;;]

i div("—;s +F3) (Ltin—ll I‘l) : '_‘f:] y
with

avo|’
Dx3

B—VU | or ad ug
T+ or oz | T8

\81/0 avoe  gv2
]L'iu = o e + 973 + grad u{\ grad u, + Ilgrad u: |[2

O

B
3 B, ]grad u

3
i3, - [ﬁ v+ (14 geaa 7 +

aVOave  ou}

* " Oz Ors i 6ngrad u3

=
3
|

2
,L‘i 8?1.% Ij 1 2 0 2
0 (1 i ) ( az; | T2 ”grad u““ + 2grad uy grad u

2

ﬁ) avt ovoov? ,d avo gV
Lipe : ST
' (‘ *3) | 3za || * %523 o3 . o

The intermediate steps of the previous calculation are not difficult, so they will
not be discussed in details. In these steps, use is made of relations (3.8), (3.10),
(3.15), (3.16) and (3.22).

On the other hand, a simple analysis leads to

ov?

a1
B33 + grad u3 =%

E3, = X0 grad o] ,
4
@+ 4 pdiv V2t =52
01‘3

El —=¥lgrad 4] .
http://rcin.org.pl
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Hence Eq. (4.4) and the boundary conditions on the upper and the lower faces
give us

8 2 . =1 6 =1 0
6.1'3 E dlv(z‘ gra'd uS) —le(Ls) = 01‘3 (Lagra’d u‘3) i f3 on -rzﬂ 1

¥ = ig_.,i on Ijyyt.
Finally, the integration of ¥2 leads to the classical result:

»2 = —2—3(1 — z2)div(div m)) + g(l - I%)'I‘r[m? grad grad ug]

n

+1-|—I3

1 T3
. = T3, 4 -
[ tades - [ fa(2)dz + 500k - 03) + Lot +o7)
=3 =1

ol

: v o 1 b T3, 4 i
+—(1 —23)div (g} +g;) — grad Cg-{g(yf -9)+ ;J(y? + g )} :
5. Passage to the initial variables

Now let us go back to the initial domain Q) and to the physical variables
V*, ui, f* and g*. To do this, let us define

V9O = WV =ehgV?,
u§0 = ug,.ug = hgug :

Thus we have the following result :

REsSuLT 3
For applied forces of order f* and g* such that 3 = G3 = € and G; = &%,
(V*0,43%) is a Kirchhoff-Love displacement which satisfies
u’ =0, 23), V0= ¢at, 73) — 2} grad’ (3O ;

where ¢*® = (¢;9,(39) is the solution of the following nonlinear problem :

hy div*(div*md*) + hg div* (nt grad*(; ) —p3 — divM;
ho div*(n;®) = —pj ,
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o
(30 = ‘Cu =) and ¢°=0 on~,
with
“ 4A# * * »
= Qumm(c )Ly +4pE;°(C*°)
A\ p
0 * 407 * * ~»0
mi’ = \gpy g G e e )
= 1 & D 20 1 ~0
E{(C*) = 5 (grad G + grad” ;¥ + grad G;° grad 7°)
ho
P8 = f fidei+a3t +oi ., pi=gt e, M =ho(gt-g7).

—hp

In the same way, let us define
S-Sz, E0=dusl, 5P=clurd
Then the expression of the physical stresses are as follows :

RESULT 4

. 3z3
L;O = n{o + mfo ,

2
~x0 3 2 #1294 1. * *0 IE »t g
Lig = _Z("'o_(xa) )div* (m;”) + —( ) 2_5.?(9‘ +97),
=0 = —’;5(:;3 — (23)?)div* (div* m}°) + ~ (a3)?)Tr [migrad® (grad* u3")]

ho z3
]' I' * * * » * I * *—
50432 [ fasy— [ g3t + 56t - )

~ho —hp

+2,‘ (65t +937) + ( (%)2) div* [ho(gi* + g7 7)]

1 *
—~grad< { ~ +E(9§++g¢‘")}-
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The return to the initial variables does not create any difficulty. The procedures
are similar to those exposed in [6] and (7).

6. Conclusion

The results obtained in the first part [8] and in the present article prove that
the reference scales of the displacement and the corresponding two-dimensional
model we obtain are determined by the magnitude of forces, mainly by the surface
forces. Thus the scalings of the displacements generally used in the nonlinear
case cannot be considered anymore as a simple change of functions. Indeed, as
it has been proved in the first part, there exists another change of functions
(corresponding to V, = us, = Lg) which leads to the nonlinear membrane model
for large forces and not to the von Karméan's one.

On the other hand, we have proved in this second part that for moderate
applied forces, the standard asymptotic expansion method leads to the nonline-
ar two-dimensional von Karman model. Its domain of validity is then specified
thanks to the dimensionless numbers naturally introduced. Indeed the von Kar-
méan model is valid for applield forces magnitude so that 73 = hg[sr /i and

ho\’ ho

3
G3 = ga-/p are of order (7{1) y Gt = gar/p of order (T) (where F3, G3 and

G; are known data of the problem). These forces lead to deflections of the order
of thickness.
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