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Dimensional analysis and asymptotic expansions
of the equilibrium equations in nonlinear elasticity
Part I : The membrane model

O. MILLET, A. HAMDOUNI and A. CIMETIERE (POITIERS)

IN THIS PAPER, we develop a new asymptotic constructive approach in nonlinear pla-
te theory. The dimensional analysis of the three-dimensional equilibrium equations
naturally leads to dimensionless numbers which reflect the geometry of the structure
and the magnitude of forces. These numbers also define the domain of validity of the
two-dimensional models which will later be obtained by asymptotic expansions. For
nonlinear plates, we prove that the two-dimensional models we obtain by asymptotic
expansions are determined by the magnitude of the forces applied. In this first part,
we consider a plate subjected to large loads. In this case, we prove that the nonlinear
plate model we obtain by asymptotic expansions is a membrane model. In the second
part of this article, we will consider a plate subjected to smaller applied forces.

1. Introduction

THE FIRST RIGOROUS JUSTIFICATION of the nonlinear plate model has been obta-
ined at the end of the 70’s by P.G. CIARLET and P. DESTUYNDER |1, 2]. In these
works, the asymptotic expansion method is applied to a mixed variational formu-
lation (in terms of stresses and displacements) of the three-dimensional elasticity
problem. Afterwards, a variational approach was formulated only in terms of di-
splacements [3, 16]. These works have also been extended to some linear [4 — 7],
8, 12], [17 - 20] and nonlinear [11, 13] shell models.

Nevertheless, to our knowledge, two problems still exist concerning the justi-
fication of the nonlinear plate model by asymptotic expansions:

1 — The choice of a priori scalings on the components of the displacements.
These scalings determine the order of magnitude of the ratio between the normal
and the tangential displacement.

2 — The difficult physical interpretation of the scalings on the applied loads.
Indeed with these scalings, the applied body forces density depends on the thick-
ness. However in usual elasticity problems, the plate is often subjected only to
the gravity body force (pg) which is independent of the thickness.

We propose to solve the two previous problems by extending to the nonlinear
case, the new asymptotic approach we have developed in the linear case [14].
This new constructive approach, directly derived from the asymptotic expansion
method, successfully used in fluid mechanics, can be considered as a continuation
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of A.L. GOLDENVEIZER’S works [10]. It is based on the dimensional analysis of
the three-dimensional equilibrium equations and needs no a priori assumption
on the ratio between the normal and the tangential displacements. The dimen-
sional analysis of the three-dimensional equilibrium equations naturally leads to
dimensionless numbers which reflect the geometry of the structure and the forces
level. These numbers also define the domain of validity of the two-dimensional
models which will later be obtained by asymptotic expansions.

In this paper, we prove that the reference scales of the normal and the tan-
gential displacement and the corresponding two-dimensional model we obtain are
determined by the forces level. Indeed, in order to allow for large displacements,
the reference scales of the normal displacement u3, and of the tangentiel displa-
cement V, are first assumed to be equal to Ly, diameter of the middle surface of
the plate whose thickness is 2fy. For large applied forces, the asymptotic expan-
sion leads to a membrane model which differs from the von Karman model. Then
going back to the variational formulation, we prove that this membrane model
and the one obtained by D. FOX et al. [5] from a three-dimensional variational
formulation are identical.

In the second part of this article we will consider a plate subjected to moderate
forces. Then we prove that these moderate forces lead to new reference scales
(ugr = hg and V, = €hg) for the normal and the tangential displacement. The
new reference scales we obtain as a consequence of the forces magnitude are
formally equivalent to the scaling assumptions generally made in the literature
and naturally lead to the two-dimensional nonlinear von Kéarmén model.

2. The three-dimensional problem

In what follows, Greek indices take their values in {1,2} and Latin indices
take their values in {1,2,3}. We assume that an origin O and an orthonormal
basis (e;, €2, €3) have been chosen in the three-dimensional Euclidian space which
will later be identified with R®. We denote by a superscribed asterisk (*) all
the dimensional variables. On the other hand, within the framework of large
displacements, the reference and the current configuration cannot be confused.
Thus the reference configuration variables will be marked by (o).

Let wg be an open bounded connected set of R? in the plane spanned by the
vectors (e, ) with a “smooth enough” boundary ~j. Let Ly be the diameter of .
Let us consider now a thin plate of thickness 2hg, whose middle surface is w.
The plate itself occupies the open set £ = wp x| — hg, ho| of R® in its reference
configuration.

We denote by X* = (z*,z3) the generic point of () where z* € wj. Let
I3y = @) x {xho} be the upper and the lower faces of the plate. In what follows,
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we consider only thin plates (hg < Lg) subjected to dead loads (independent of
the configuration). Finally, in this paper we will use the following notations:

d/0X* and Div* denote the gradient and the divergence in the three-
dimensional space,

d/9z* and div* denote the two-dimensional gradient and the two-dimensional
divergence.

If U and V are two vectors of R?, we denote by UV the tensorial product of
U and V (the overbar denotes the transposition operator).

We assume that the plate, subjected to the applied body forces f* = f;
fies : 25 — R® and surface forces g** = g;* + giTes : I, — R?, occupies the
set (2* in its deformed configuration.

The unknown of the problem is then the displacement U* : 25 — R® such
that if X* € (2 denotes the initial position of a material point, its position in
the deformed configuration is X* + U*(X™*). Moreover, as the plate is assumed to
be clamped on its lateral surface I'] = ~§ x [—ho, ko), we have U* =0 on I7.

Within the framework of nonlinear elasticity, the displacement U* : (25 —
R?* and the second Piola-Kirchhoff tensor ©* solve the equilibrium equations

Div*(Z*F') = —f* in 23,

(2.1) U* =0 on Iy,
(F*2%) 0" =g"™ onlfy;
where Ot (X°) st
. f,&'* ‘:’l i *
A B ik il B
A ax toxs

denotes the linear map tangent to the mapping function X* — *(X*) = X* ¢
U*(X*), and n* is the external unit normal to the upper and the lower faces
These equilibrium equations can be completed with the mass conservation
law p* detF* = pj where pj and p* denote, respectively, the voluminal mass of
the material in the reference and the deformed configuration. In what follows, we
assume p* to be bounded, which can be written as:
anp*

(2.2) det F'* = det (5?;) Zza>0 in 23,

where a > 0 is a constant. This condition will be used later.

Limiting our study to Saint-Venant-Kirchhoff materials, the constitutive re-
lation takes the following form:

* = XA TvE*I + 2uE",

(2.3)
o Lo o A (EF O 100FREE
e _”‘E(W*'W)Jrﬁﬁ"?axfe i
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where e* and ~* denote respectively the linear and nonlinear part of the
Green-Lagrange strain tensor 5* and [ the identity of R,

REMARK 1

Constitutive relation of Saint-Venant-Kirchhoff is obtained by linearizing mo-
re general Lagrangian constitutive relations with respect to E*. Therefore our
model is limited to small deformations even if large displacements are allowed. -

Let us decompose the equilibrium equations so as to separate the linear
from the nonlinear part. Writing E* as E* = e* + v*, we get

— 1
Div*(X*F') = Div*E* + Div‘(S‘gi‘,,)

Div*(ATre*I + 2ue*) + Div* ™ + Div*' E;,

Il

which leads to
Div*(X*F") = (A + p)Grad*( Div*U*) + pA3U* + Div' I™ + Div* E,

where:
I'* = ATey'1I + 2uy",
au* ou*
e = XY E* s ;
E; Tr ¥ G + 2ulk X

Now decomposing UU* into a tangential and a normal component :

U*=V" +u3ez ,

we get:
ov* ov* ov* grad u3
* * " 3
ppe | o 9% oy i
R (T N
grad uy —; ekl
oz} oz} or}
Thus we have
. _1oU*our
T T 202 ox
ov* ov* e OV O i
| o HEA B Gy ¥
o = :
R A, pe— VT ov* (au;;)-*
T + = grad uj
dzy Oz* Oz} dxy Ox} oz}
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(mz av* av* ||

i\ 2
d (=) .
dxy Ox* ) +llera u%“ N or} ; (c)_[';)

Therefore we can express ™ and FE; as a function of V* uj and of their
derivatives. We will use the following matrix notations:

gl 1 R ek
= and E! = .
: R Q" E,

The explicit expressions of F and /™ are not written here to simplify our
derivations. We will directly introduce their nondimensional expressions.

So the equilibrium equations can be written in (2§ = wi x| — hg, hg| as:

ouy  o*v*
(A + p)grad®(div*V*) + pA*V* + (A + p)grad® — +p
dxy dzi*
+div*[E] +F‘|+ (1 +Q*) = —f¢,
(2.4)
( F pAtul + (A + 2 )d 2‘3 +div*[ES, + I7)
ad
{Fa t(Lun ) fds

with the boundary conditions on the upper and the lower fa.c&s.

%
plgrad*uy + —) + Q* + I = £gi¥  on @ x {xhe},

oz}
(2.5) Syt
ou; Y * S Y * —f
(A + Q'H)E)xf +Adiv* V* + E}, + Iy = +g3* on wy x {xhe}.
3

3. Dimensional analysis of the equilibrium equations

Like in the linear case [14], let us define the following dimensionless physical
data and dimensionless unknowns of the problem:

v s a* z
V = — ug = —2 r =— Ir3 = —3,
V' 8 T ! Lo’ > " ho
/3 + 9:;:2: It + Q:i
f3 = 9’3 = ff, = H g, = ]
f3r‘ 9ar ’ f.*.‘r : Gir
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where the variables with subscript r are the reference ones. The new variables
which appear (without the asterisk) are dimensionless.

To avoid any assumption concerning the order of magnitude of the displa-
cement components, the reference scales ug, and V, are firstly assumed to be
equal to Lg. Thus we a priori allow large displacements. If necessary, it will al-
ways be possible to define new reference scales for the tangential and the normal
displacement.

Introducing the previously defined dimensionless variables into Eqgs. (2.4) and
(2.5), we obtain a new nondimensional problem posed on 2y = wgx| — 1, 1:

€2 [(1 + B)grad(divV) + AV + div (Ew + n)]

Oug J 92

E[(l -I—ﬁ}gl'ada—m'f‘a—n(Q‘l'Fs)] <7 = —eFifi,

e
(3.1)

2| Auig + div (Bop + T)| + €| (14 8) 2tiv V 4 2 (Bun + I)

3 s us 8 81:3 1v 8;1:3 un Lo

2‘[..'.3

;.
The boundary conditions on the upper and the lower faces become:
oV
elgradus + Q + 1] + 5 = %e Gigi for z3 = 1,
C}l‘;;
(3.2)
[ﬁde+Fm+F]+(z+;3)a = %€ G3g3 for 23 = %1,
T3
A
with 4 = — and
I
_ P aV ov av oV
= Tr (8‘3: o ) I3 + ngad ug|[*I> + = ke grad uz grad ug
B av Ou;
+25‘2 l Oy ( L,

1 (BV OV  Oug
I, =-
£ {81 63:,;+8;r &rad t }’
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. Ba [OVoV 3.l oV S
= g (5 s (o DT G

. _| B (0VoV avev oV v ; B 2
Ey - [3 (XE) Ve e + B + O + B divV Iy + 2|lgrad ug||® I

| OV 1 V. Duz OV

2 : =iva
dug aVv dav\ aV  Ouy aV
ozs)| T (ar,)]'a—g K’? ar)a—rﬁamd”‘*] oz }

IV ¢ v
B, — lﬁ,ﬂr(dvov)b _dl@__dv oV

T i}ir—-l-()—-l-ﬁdlvaQ

; B 2 1 N
+(1 + E)ngad ug|| !2} grad ug + = {(1 + ﬂ)a—Ia grad ug

1 )5} B r0uz\?2 dug av | v
+£2 {[ +(1+§)(6—I3) ]gradu3+8—‘1‘3'[12+5‘| E},

, oV I} oV av oV av
(lo— o grad ug + { [—Tr ((’lr (')r) Iy + 9z Oz + BdivV Iy

aVv
6’[‘3

_”gmd wsll? I + av] oV 9V au Ouy AV

bz | 95 | Oz o g’ad““} 22+ P) s s

1 B.lIovV |2 [6us\?| oV
+s—s‘”§)[”a Bl

) 1 (|8, ,0Vov .
Eun = |lgrad u3||2 + = {[g'ﬁ(aa] + pdivV

B 2] ouy | OV [ av]
+ 5 )||lgrad us]| 91 81 Iy + grad us
Jug 1 B Oug Oug
s+ oG |0+ LGl + () | 2=
where I5 denotes the identity of R2.

&3
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Hence, the dimensional analysis of the equilibrium equations leads naturally
to the same dimensionless numbers as in the linear case [14]:
h- h r ar Yir
0 e ot Gy — B G, - Ir

b far
&= ’ F3 = ﬂ} 3 Bi==tnr—n .
Ly 1 J i 7

On the other hand, writing the condition (2.2) in a nondimensional form, we

obtain
) 0X o oX :
4 — L 2
det ([gd)‘ (3X‘) IO det(ax) de t(ax*) a in 2

*

with 9 = ol Since we have

0
oX 1
e (5%) "7y -
the condition (2.2) becomes:

(3.3) det [’ = det (?i ) Zea>0 Ve > 0.

3.1. Interpretation of the dimensionless numbers

hg
i) The shape ratio £ = !— of the initial thickness of the plate to the diameter
-0

of the middle surface w( is a known parameter of the problem. For thin plates, ¢

is a small parameter.

ho fir hﬂf 3r Jir gar

y F3 = and G = i O3 = ;

&
represent respectively the ratios of the resultant body forces (acting across the
thickness of the plate) or of the surface forces to ;2 considered as a reference
stress. These numbers depend only on known physical quantities and are known
data of the problem.

ii) The ratios of forces F; =

3.2. Reduction to a single-scale problem

In order to obtain a single-scale problem, ¢ is chosen as the reference para-
meter. Therefore the other dimensionless numbers must be linked to &.

In usual elasticity problems, the body force f* is often due to the gravity.
As an example, let us consider a thin steel plate, of Im diameter and 10 m
thickness, whose Young’s modulus, Poisson’s ratio and voluminal mass are, re-
spectively, 12 = 2.1 10! Pa, v = 0.285 and p = 7800 kg/m®. If we assume that
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/
the plate is subjected only to the gravity force, we find F3 = 29 = 1078 = &%,

L

In this example the tangential component of the weight is equa.r to zero, so that
we have F; = 0. Accordingly, in this paper we consider the body forces level to
be of the order of magnitude of the weight which satisfies 3 = * and F; = 0.

Nevertheless we will distinguish two different magnitudes of surface forces
which lead to two different two-dimensional models. In this first part of the article,
we consider large surface forces such as G; = G; = ¢ to obtain large displacements.
In the second part of this article, we will consider a plate subjected to the same
moderate surface forces as in the linear case [14]: G3 = &* and G, = £3.

However it would be possible to take into account other body forces (like
centrifugal acceleration) whose tangential component is not equal to zero. In this
case, J; must be linked to e.

4. The nonlinear two-dimensional membrane model

Let us consider in this section a thin plate subjected to body forces such as
F3 = €', F, = 0 and to the important surface forces of the magnitude G3 = G, = €.
Problem (3.1)-(3.2) being reduced to a single-scale problem with £ as a small
parameter, the standard asymptotic expansion method leads to write the nondi-
mensional solution (V,u3) as a formal expansion with respect to &:
V= V4Vl 4 2V2 4o,
(4.1)

ug = ug it eu;'; T €2u§ e

Therefore, we obtain the following result:
REsuLT 1
For a plate subjected to applied forces such as F3 = &* and G, = G3 = ¢,

the leading term (V' ug) of the asymptotic expansion of (V, u3) depends only on
r = (1, r2) and solves the following membrane problem:

ovo
. 0 o
dw(Nt [I;; + = ) = —py,
div(N? grad ud) = —pa,

VO=0 and 4§ =0 on g =8uy,

where:

48

2+
1 (8V0  HV0  Jyo gyo T

EP = > ( o e o u§ grad ug)a

NP: “E? I2'+4Et01
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p3s =94 +9;

=g +9;.

P roof. The proof of this result is divided into several steps from i) to iv).

i) V9 and u§ depends only on (z;, )

Replacing V' and ujz by their expansions (4.1) in the nondimensional equi-
librium equations (3.1) and (3.2) and equating to zero the factors of successive
powers of £, we obtain the coupled problems P_5, P 1, Py....

The problem P_; can be written as

J -3 =3y _
(4.2) E(Q +I,°) =0
(4.3) fi(E"“ +I73) =0

i 313 umn n
(4.4) Q3+I,2=0
(4.5) EZ+r;3=0
with:

-3 _ [14.8) [[12¥2

e = (1 b 2) { dry
el : é - 8_W

I3=0 r®=o0

in (2,
in Qﬂ,
for z3 = +1,
for T3 = +1,

813 i 8.1‘3 :
dz3 | | O3’

Taking into account the boundary conditions (4.4) and (4.5), equations (4.2) and
(4.3) imply the relations

avol?  [aud\?] avo )

U 3_1'3 -} (4_9?3) -EE =) in {2y,
avol?  (0ug\*] oul _

l *55 + (E) *6-:-‘:-; =0 in (2g,
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oud V0
which lead to —1— =0 and S = 0 in 2. Hence, we finally obtain:
()1‘3 8.!‘3
VO = VO(zy,22),
(4.6)

ug = ud(z1,T2).
ii) Determination of u} and V!
Considering expression (4.6), we have Q2 = E,2 = I72 = 0 so that

problems P_; and P, are evidently satisfied. Equating to zero the coefficient of
!, problem P; can be written in the form

82V1
(47] (Q 25 FO B 0 in .QQ,
axa
a 5%l
4-8 —_— FU _Eiju 2 _ /- 3 . 0 .
( } 813( n I un] g ( + lj) 81‘3 m \Q(],
P 1% ,
(49) Q"+ Is - K + grad ug = 0 for 23 = +1,
3

8 il
(410)  I?+E%, + Bdiv VO + (2 + ;3)—32—3 =0 forzg =,
3

with
Oul avo oV
o= =3 Qg R
i Ory ko b dr Ozz'

, B (OVOOVO dvl
I} = S (‘E)?E' |gl‘ad u||” + (1 s

o[
Jz3

2+ ol 2
dzz /) |

- +dvﬂmuavﬂ V!

2" 5z oz | Or | Oz3

Q° = [ﬁM? i 2”(

avo Ou
+ a—grad t;r,_-3(1+'9 3)

2
ouy V1 avo
1)] 323 + = . lfz ta lgrad ug

o1 %) Jerad o8]

&pl

L?gn = [ﬁ'[‘r}_;,'? + ( 8.1‘3
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and

1/ov0 av0 Hyoayo 00—t
E?“E(B:r "o t oz oz 80 Us gred v |

Let us define

Vl

1 1 1

— V ” —

Y + (23 + uz)es (Ia + “:1;)(5

2 2
+ 3uq 2 é?u-;
13 Oz’
The endomorphism FE} represents the membrane strain due to the displacement
(V9,4d). In particular, we obtain

so we have
2
vl

Oxa

31'[)1

gl
Oz3 &

0 0
Tr E? = div VO + ’I‘r(av gk ) L

dr Oz

REMARK 2

It is natural to introduce the functional mapping 1! to simplify the equations.
Indeed, introducing the functional mapping v*, we have

Wt =X* 40 :z;e¢,+I§ea+U‘..

We then obtain the following nondimensional equation:
Y

Y= 1 = (Tata +U) + 2504

where U = V + uges. The expansion (4.1) of (V,uz) with respect to ¢ implies
then the following expansion of :

(4.11) ¥ = Ta ea+ VO +ules te [(13 +uj)es + V'] +-
"bi} ,L,l

The functional mapping ¥° represents the deformed middle surface wq at the
leading order of the expansion. With these notations, the membrane strain £}
can also be written

avo
(4.12) Eo_l 3_1"908_1“’{]_1 ith 8_"00_ lrt oz
i t =2\ 98 . ks gz
grad uf tedy
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Considering the boundary conditions (4.9) and (4.10), Eqs. (4.7) and (4.8) lead
to

v
(4.13) Q+I%4+ — +gradud =0  in £,
dxs
. . o
(4.14) ré+ ES, + pdiv VO + (2 + ﬁ}ﬁ =0 in §2.

Since we have

ol A\ (|lovt |
0 3 di 0 € paiter) PR f‘o_ — —
I, + 3divV +(2+;5)813_ﬁ'ﬁ{4k(l+2)(013 1 1y
equations (4.13) and (4.14) become
avl avo
A s +(’2+W) =l
1
A (1 | 3)+gradu28=0,
R
with
2
{ o (14 8) (11228
A__ﬁ'I‘.rEfl(IF?)(ara 1),

Oul 0 avo\ ov!
B = (l R E) gradua+ I2+W W

Using matrix notations, the last equation can be written as

3V1 Ford ovo
e g i
A drgu ne dr | B =0,
14 =2 g
1 s grad uy
and considering the expressions of ¥/? and !, we get
ol
4.1 -— + — B=0.
(4.15) A T + Er B =0

Now we finally use the mass conservation law. As ¥ is independent of the variable
x3, the expansion of the condition (3.3) gives

ot [ o° o
01:3'(81"1 A +0{e)2a>0 Ve > 0,

8.1'2
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where A denotes the cross product in R®. Thus, we must have

81‘,:,1 - ( 8_"{}0 awl}

0 in (2.
8.'.!‘3 8.1:1 g 8x2 ) v -

e a0 ot

This condition implies that the vectors (3 o 3_3:2' dz3

) are linearly inde-

pendent, and form an R® basis.

o0 (o0 O
Going back to equation (4.15) where — gy (811 ' g

basis of the deformed configuration " (wg), we have

) represents the local

0
(4.16) A:ﬁ’I&-E?+(lkﬁ)( 2 1):0
313
and T\ oy
duy v\ ov
(417) 55— (1 + a;) grad U3 (12 rf E) ﬁ =
The second equation (4.17) can also be written as
dr Orz
and implies that :
np
é)_z;; =nN,
where N denotes the unit normal to the surface w = 9%(wq).
o
Thanks to equation (4.16) it is now possible to determine the norm ’ (Z?i . Indeed
3
we have 3
! 23 2\
4.1 —fl =14-—"Tv B} =1 Tr E?.
(18 Bz3 MR 32

Finally we obtain the following expression of v

1,[)' = nN —I—ﬁl(.rl,xg),
(4.19)
2\
2
=i
1 : At2p

iii) The first membrane equation

The cancellation of the coefficient of £2 leads to the problem P in (2y:
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oul
(4.20) (1 + B)grad(div V°) + AVO + div(ES, + I'?) + (1 + B) grad —2

0.1'3
02v'?
al
+ 5 (@ + I+ 5T =
| 0 )
0, om0 L 70 4 (142 Ay vl 1, g0l
(4.21)  Au+div(ES, + I + (1 tB)gg=div V1 + 5 (3 + EL,)
2
+(2+58"5—0,
3

with the following boundary conditions on the upper and the lower faces:
2
81‘3

& 2
(4.23) BdivV'+Il4+EL +(@2+ 5)5%1 =+gF  for z3 = +l.
3

(4.22) graduy + Q' + I'y + — 4gF  for z3 = £1,

Considering equations (4.17) and (4.18), the expression of EY,, I'?, ¥, and I}
can be written as:

Sut = [;{jﬁ F? I + ,l:] +T +T8@l;“ + grad ug m]%{j,

r° = %‘3 grad u} 0{:;./:%.1%

B = |y g ot DO OOV erad uf? 12] grad w3,
t = ‘{— (88‘./“ 661/”) I + —]|grad u|? Iy + da_WBa_V“ + grad ug grad ud ul

Vl

81‘3

E 2,.|_ _au_} : I
2 83:3 2

grad(div V°) = div(div VO I,)  and  grad ouy _ o (fhs Iz)
Oz

Then using the fact that

81?3
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and taking into account the boundary conditions (4.22), integration by parts of
(4.20) leads to

1
(4.24) / lgrad(div Vo) + AV + div (Eﬁ,, + I+ 8

—1

3,1
OJug
ol
()1‘3

+ Adiv v’ lz)l dry = —pg

with ps = g + g .

On the other hand, considering the expression of I}, we get:

203 o avo g0

2+ ﬁaua I + div VO I =

2 i ﬁTI‘ﬁt [2 -t Ea_ 3F gTad 'U.d grad Hd
Using the relations
Vo
grad(div V°) = div(grad V°) = dw(( o ) and

avo

% _ Awlerndl70
AV® = div(gradV!) = dw( o

equation (4.24) becomes

6V
d“’(Nt [12 i ) ==

with
NO = i TrE] I + 4E}
244
1(ovVe avOo gy gyo —_—
b‘ﬂ —_ L : : 0 0
. 2(0 o i dr Oz +gradu3gradu3),
pe = g5 +9; -

iv) The second membrane equation

Considering the boundary conditions (4.23), an integration from —1 to 1
of equation (4.21) leads to

1

1
(4.25) /[ Aug + div (Ega + Fso + al)]dl'a ==p3

8.1‘3
-1
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with p3 = g — g3 .
Using the property Auf = div(graduj), we obtain

V!
Au + div (FP + ——) = divB =0
: dry

thanks to the orthogonality condition (4.17). Finally equation (4.25) becomes:
div (Nt” grad ug) = —p3

and the RESULT 1 is then proved.

4.1. Associated variational formulation

Let us define the space of admissible functional mappings
Q(wp) = {w :wo — R3, “smooth”, ¥ =1I, on '70}
and the space of kinematically admissible displacements:
V(wg) = {'UU : wo— R3, “smooth”, v=0 on ’}'{]}.
If the displacements are assumed to be smooth enough, then the two-dimensional
membrane equations of the RESULT 1 can be written in the following variational
form which depends only on #° (instead of V° and u3):

REsuLT 2

Y0 € Q(wy) satisfies the following variational problem:

WO 9
(4.26) f"n»[ ‘0;; 8’;]m0_/pu dug Vo € V(wp)
where
Ne = 4B TeE? (4°) I + 4EP (4°),
TR
00 - L [0 a0
E?(T.f ) 2 ( ot oz Jlr2 1
P = pt + paes.
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Indeed, considering the expression (4.11) for ¥° = z,¢e, + ujes + VY, the mem-
brane strain £} can be written as:

RYEE
E?—ﬁ(ﬁa“h-

0

Now, if we consider a displacement field of V (wg) of the form v" = v) + vJes, the

membrane equations of the RESULT 1 becomes:

f div[N? (I +¥)] 0 dwg + / div[N{ grad u§] of ds

wp i

— —/pt.v? dwg — /p;;vg duwyg.
wp Wi

Setting p = p; + paes, we get

aVO\ Y s
/ 'D‘[NP(IQ +——) —"u] duso + f Tr [N? grad v grad Ug]dwg
wn

dr / 0Ox
= /p.’uudwo.
wo

wo

Finally, using matrix notations, we have:

0 Tk a_vl) 0 %

%i 0 Bl ™ and %i = Oz
T T e
grad uj grad v§

Thus we easily obtain the variational formulation of the RESULT 2.

This variational formulation of membrane equations is identical (more and
less the coefficient ;) to the one obtained by D. FOX et al. in [9] from the three-
dimensional variational formulation of the problem. Nevertheless, the asymptotic
approach developed in this paper which leads to the membrane equations of the
RESULT 1 presents some advantages:

e we naturally obtain a decomposition of the equilibrium equations into a
tangential component (in the plane (O, e;,ez) of the initial middle surface wy)
and a normal component.

e the naturally introduced dimensionless numbers define the domain of validi-
ty of the two-dimensional membrane model. Indeed the membrane model is valid
for surface forces level such as G, = G3 = £. These forces lead to displacements
of order Ly, i.e to large displacements.
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This remark concerning the domain of validity of the membrane model adds
some importance to a limitation of Lagrangian approaches where the loads are
assumed to be dead. Indeed the membrane model we have obtained is valid for
large displacements, and in this case the dead loads hypothesis is not justified.
However, we can notice that an Eulerian approach for plates with large displace-
ments has been developed in [15]. With this Eulerian approach, the dead loads
hypothesis can be dropped and the Eulerian membrane model we obtain takes
into account the real physical forces.

4.2. Back to the dimensional variables

The return to the physical variables in the membrane equations of the
RESULT 1 leads to the relations:

Ve = Vv =LV,
u = ugud = Loud.

Therefore, we have the following result:

ResurT 3
For applied forces f* and ¢* such as F3 = ! and G; = G3 = &, the displace-

ment (V*", u3) depends only on z* = (z}, z%) and satisfies the following nonlinear
membrane model:

GV'U] ) e

ho div* ( N9 [fz +
ho div*(N;O grad*u}®) = —p3,

V¥ =0 and u}’ =0 on~g=0uw,

where:

*(0 - 4’\#
' A4 2u

TeE I, + 4pE?°,

g0 _ 1 ov*0 N oVv*0 N oV gy*0
B or* az* or* Or*

+ grad'ag? m) ,

pi=g3" +43, pr =gt +g

In the first part of this article we have proved, without any assumption, that
the nonlinear membrane model is valid for large surface forces level. Precisely,
the dimensional analysis of the three-dimensional equilibrium equations naturally

http://rcin.org.pl



972 O. MiLLET, A. HAMDOUNT AND A. CIMETIERE

leads to dimensionless numbers (F3 = hq far/p, Gt = gir /1t and Gs = g3, /p) which
reflect the forces level. Thus the membrane model we have obtained is valid for
forces level such as F3 is of £! order, G; and G3 are of ¢ order.

In the second part of this article, we will consider a plate subjected to mode-
rate forces level. In this case the dimensional analysis and the asymptotic expan-
sions of the equilibrium equations lead to the nonlinear von KArméan model.
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