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On waves due to a line source
in front of a vertical wall with a gap

SUDESHNA BANERJEA AND C.C. KAR (CALCUTTA)

IN THE PRESENT PAPER waves due to presence of a line source in front of a vertical
wall with a gap are studied. A simple expression for amplitude of radiated waves at
infinity is obtained by application of Green’s integral theorem.

1. Introduction

WATER WAVE PROPAGATION in presence of a vertical barrier form an important
class of problems within the framework of linearised theory. Among the various
types of problems in this class, the study of wave motion due to presence of line
source in front of an obstacle has been made by various researchers.

Evans [2], while studying the wave motion produced by small oscillations of
a partially immersed vertical plate, obtained as a special case the amplitude of
radiated waves due to presence of a line source in front of a vertical plate partially
immersed in deep water by simple application of Green's integral theorem. Later
BAsu and MANDAL [3] and MANDAL [4] used the same technique to find the
amplitude of radiated waves when the vertical barrier is completely submerged
and extends infinitely downwards, or is submerged up to a finite depth below the
mean free surface.

In the present paper, the wave motion due to a line source present in front
of a vertical wall with a gap in deep water is studied. These problems have
relevance in manoeuvring of a ship near a wall (cf. [7]). In general, a study of
wave motion in presence of a vertical wall with a gap has practical application in
construction of breakwaters. Here the amplitude of radiated waves at infinity is
obtained by applying Green'’s integral theorem in the fluid region to two suitably
chosen functions. One of the functions represents the velocity potential which
is the solution of the corresponding problem of scattering of a normally incident
wave train by a vertical wall with a gap. This solution is given in [6]. However, we
have obtained it here by a different method using an integral equation formulation
based on Havelock’s expansion of the water wave potential. The other function is
chosen in appropriate form, the unknown velocity potential describing the motion
in the given problem. From the results thus obtained, it is observed that, when
the source is situated within the gap in the wall, then the wall has no effect on
the source.
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2. Statement and formulation of the problem

We comnsider a vertical wall extending from above the mean free surface and
having a gap given by z = 0and y € L = (0,a)U(b, o) in deep water occupying
the region y > 0 with y = 0 as the mean free surface (cf. Fig. 1). The motion is
generated in water due to a harmonically oscillating line source of unit strength
and circular frequency o, acting at the point (§,7), (§¢ > 0,7 > 0) in front of the
wall.

/’\\ 0 ] h\ “‘,/\\.\"‘ PN i1
¥ -_\J £ &Y \/ ; ‘v‘\-_," 7
B_exp(-Ky +iKz) Byexp(—Ky +iKz)
(0,a)
(0,0)
Y 1
Fig. 1.

Assuming the linearised theory, the motion is described by the velocity po-
tential Re{®(z,y) exp(—iot)} where © satisfies the following boundary value pro-
blem:

(2.1) V2¢ = 0 in the fluid region except at (&,7),
(2.2) Ko+, =0 on y=0,

where K = 0?/g, g being acceleration of gravity,

(2.3) $,=0, 2=0, yel,

(2.4) ®~lnp asp—0 where p={(z—&>+ (y—n)’}"/?
25)  r?V® is bounded asr —0, r={(2)?+(y -2},
c=g or b

(2.6) V& -0 asy — oo,
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By exp(—Ky+iKz) asz — oo,
(2.7) o {B_ exp(—Ky—iKz) asx — —oo,

where B4 (unknown) are (complex) amplitudes of radiated waves at infinity on
either side of the wall. Let G(xz,y;&,n) denote the potential due to a line source
of unit strength at (&, n), (n > 0) in the absence of the barrier which is given by
(cf. [1]),

F Mk, m)M (k)
(28)  Clay &) = —zoj Al

(=k [z —&|)dk

—2miexp(—K(y +n) +iK |z —£),

where M (k,n) = kcoskn — K sin k.
We express the potential function ¢ as

(29) =G+ ¢,

where ¢ is the correction of (&' due to the presence of the barrier. Then ¢ satisfies
the equations:

(2.10) V3¢ =0, y >0,
(2.11) Ké¢+¢,=0 on =10,
(212)  ¢(0,y) = f(y) = —Gz(0,y:&,m), 2=0, ye€L=(0,a)U(box),
(2.13) r1/2V¢) is bounded as r — 0,
(2.14) V¢ — 0, as y — 00,
B exp(-Ky+iKz), = — o

=4 p—-— )

(k) ¢ { —B exp(—-Ky—-iKz), = — —o

where 3 (unknown) is the complex amplitude of scattered field. It may be noted
here that because of (2.12), ¢ is odd in z.

3. Method of solution

Let 9(x,y) denote the potential describing the motion due to normal incidence
of a progressive wave exp(—Ky + i/{z) from negative infinity upon the vertical
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wall z = 0,y € L =(0,a)U (b,o0) present in deep water. The explicit form for
Y (x,y) can be obtained as (see Appendix and also [6]):

((exp(—Ky+iKz)+ R exp(—Ky —iKzx)
s ] D(R)M (k,y) exp(kz)dk, z <0
0

Texp(—Ky+iKz)

+ /C(A') M(k,y) exp(—kz)dk, z >0,
\ 0

where M (k,y) is given by (2.8)

= asT fi[’
T | = B= Ay ﬁ
= (Ji[i)’
(3.2) e e_xp_(lzi(ﬂ + oK) — 2012(;(, ")

l')
I = o (K) —az(K)} — ;{al(](, ) - as(K, 1)},

2
{K~! exp(Ka)+ ;&2(—1{, Fi)}
5 S—
aa(—K) '

UFI (aa ba u)

ai(K) = ai(K, 1), oK, F) = exp(—Ku)du,
() = elfo ), el ) = [ 5 e etk
where Ro(u) =| u? — a® |1V/2 | u? — b2 |V/?
(—a,a), g = l,
t"i = (CL’ ()), 1 = 2’

(b?m)i 1= 31
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Therefore,

b
Y — DRy — 2 A coge o fUSQ)
—C(k) = D(k) = T KR + K7) { sinka - A] Ro(u) cosAudu}

B
s(u) = [() - ;1‘1(0,,1), u)} :

Applying Green’s integral theorem to the harmonic functions ¢, within the
region bounded by the lines

y=0, 0<z<X; =07, 0<y<a =0, 0Zy<a;
1 =10, - XLzl g=-X, 0<y<Y; y=Y, - X<z<0
r=0", b<y<oo;, 2=0", b<y<oo y=Y, 0<z<X;
z=X, 0 <Ly<LY;

for X| Y — oo we obtain

(3.3) iB = fg(J y)dy lf W) f(y)dy

b

where
g(y) = (01, (0", y),y) — (07, y).

Using the expression for g(y) from (B.9), the following simplifications can be
made.

[ [y = — ] 2y DY) b )y,
0 0

Lo(y)
(3.4)
f TWg(y)dy = f ?E%j(y)cxp(]{y)dq,
b b oy
where

h(y) = Ay /f(L exp(—Kt)dt
ha(y) = Ay j £ () exp(—Kt)dt
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s(y) is given by (3.2) and f(y) can be obtained from (2.12) and (2.8) as

M (k,y)M(k,n)
k2 + K2

W) = =Gz(0,y; &n) = 2/ exp(—ke€)dk

2r I exp(—(y +n) + iK¢).
Thus, using (3.4) and (B.9) in (3.3), we get B in the form

[e <]
(3.5) B = -2ni {R exp(—Kn+iKE¢) — / C(kYM(k,n)exp(—k&)dk
0

where It and C'(k) are given by Egs. (3.2).

Now B4 can be obtained by assuming | z |— oo in (2.9) after using (2.7),
(2.8), (2.15).
Thus as o — o0, we have

(3.6) By = =2mi exp(—Kn—iK&) + B = —2wip(—&, 7).
Also as © — —o0 ,

(3.7) B_=-B-2mi exp(—Kn+iK§) = - 2migp(&,n).
It is obvious that

(3.8) By + B_ = —4wi exp(—Kn) cos K&.

This shows that if K¢ is an odd multiple of 7/2 and /{7 is arbitrary, then
the wave amplitudes at either infinity are the same, the surface elevation being
exactly 180° out of phase with each other. Similar conclusion were also drawn by
Evans [2] and BAsu and MANDAL [3].

Again,

(0, ) =T esep(—Enfi 4 / C(k)M (k, n)dk.
0
Using (B.4); we have for n € (a,b)

Y(o,n) = (T + R) exp(—Kn)

and immediately it follows from (B.3) that

(3.9) ¥(0,n) = exp(—Kn).
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Therefore,
(3.10) By(0,n) = B_(0,n) = - 2xi exp(—Kn).

This shows that the wall has no effect on the source if the source is situated
within the gap in the wall.

4. Appendix

Let us consider a wall x = 0,y € L, L = (0,a) U (b,o0) imunersed in deep
water with y = 0 as a mean free surface. A train of surface waves exp(— Ky +ilKx)
of frequency o is incident on the wall fromn negative infinity, then it is partially
reflected and partially transmitted. If Re{v)(x,y) exp(—iot)} denotes the velocity
potential, then 1) satisfies the following boundary value problemn:

(i) V=0, y20,

(i1) Kyp+¢y,=0 on y=0,

(iii) i =10, y € L=(0,a)U(b,ox),

(iv) r1/2Vy is bounded as r — 0,

r being the distance from the sharp edges of the plate,
(v) Vi —=0 as y— o,
fvil b= { C)‘qp(—h'y + ?'.K.EL‘);{‘ Rexp(—Ky —iKz), as x — —oo0,
T exp(—Ky +iKz), z— oo,

where [t and T are reflection and transmision co-efficients, respectively, to be
determined. Using Havelock's expansion of water wave potential, 1)(z,y) can be
expressed by

[ exp(—Ky +iKz)+ Rexp(—Ky —iKz)

o0
" / D(k)M (k,y) exp(kz)dk, z <0

B 0
(B1) %@ = pexp(—ky +iKz)

o]
& / CRYM(k, 1) expl(—kz)dk, = >0
0

\

where M (k,y) is given by (2.8), and C'(k) and D(k) are unknown.
Let

) N 0, Yy €L
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where by (iv)

v ] O(ly—al|™V?) y — a,
i { Oy —b2) as y—b.

Then by Havelock’s inversion theoremn,

T=1-R= —2i/1“(y)cxp(—1\"y)dy,

2

=6 = Bkl = rw

/F(y Mk, y)dy,

Now an integral equation for ['(y) can be obtained from the fact that v(z, )
is continuous across the gap in the wall. Thus,

P(+0,y) = ¥(-0,y), y € (a,b).

Using (B.1) and noting (B.3) we have,
(B.4), R exp(=Ky) = ] M(k,y)Ck) dk, 3y € (a,b).
0

Substituting C'(k) from (B.3) we get
(B.4),

b
Mk, 1
(%) f F)M(k, t)de dk, y € (a,b).

™
=2 B il = | ol
g & expl=Ky) GRS

. d
Applying the operator (@ + K) to (B.3) we have the following integral equation:

(B.5) / F(t) {A In|’

t 1 1
- it =0 1 ,0).
+ley—t+y+t}( i y € (a,b)
The solution of integral equation (B.5) is given by (cf. [5])

T

(—Kz) / ol Bkt

b

(B.6) Fz) =

where A E
(VP28 - :
A = - —F
(u) Ro(u) [() = 1(a, b, u)} .
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Ro(w), £i(a,b,u), & and A; are given in (3.2). One relation connecting A; and
I? can be obtained by substituting [(2) in (B.4);. After some simplification we
obtain

2/1]

(B.7) R = 04 [a1(K) — as(K)] — Z2 e (K, 1) — ag(K, )],

—_

"

where o;(K) and o;(K, F) are given by (3.2).
Also substituting £'(t) in the first equation of (B.3), we get another relation
connecting R, Ay which is given by

1 '
~ % exp(—Ka)| (i.A;).
Thus from (B.7) and (B.8), R and A, can be obtained. Again, C'(k) is obtained
by substituting 7'(1) in the second equation of (B.3). After simplifications, C'(k)
can be obtained as given in (3.2).

Let g(y) = ¥(+0,y) —¢¥(—0,y). Using (B.1) we get

2
(B.8) =R = |6 ax(I) + = aa(K, )

gly) = —2Rexp(—Ky) + 2 f C(k)M(k, y)dk.
0
Therefore,
o0
Kg+gy(y) = —2_/(](.&‘)(](2 + k%) sinky dk.
0

Substituting C'(k) from (B.3) and making simplification we have,

( 0, o< y<b,

- 2y M SGy)
Kg)+90) =3 ~ Roly) <y<a,

. b g y< oo,
\ Rﬂ(y) "
which gives after integration
(0, a < y<b,
F 2t S(1) exp(Kt)
L S(L) exp(Kt
exp(—K1 / dt, 0 £y<u;
B9) g =1 "PT ] TR .
Y
2t S(t Kt
—exp(—Ky)/ ie) B )dt, b <y<oo,
/ Ro(t)

\
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where the constant of integration can be chosen to be zero, and s(y), A; is given
by (3.4).
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