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Plastic propagation of band-waves in solids

K.C. VALANIS (VANCOUVER)

HEREWITH WE PRESENT a thermodynamic theory of “plastic propagation” of strain
bands. The theory results in a Wave equation where the time of propagation is not
the Newtonian time ¢ but the intrinsic fime z (in the sense of Valanis), the increment
of which is proportional to the norm of the increment of the plastic strain tensor. To
our knowledge the concept of plastic propagation is new in theoretical mechanics.
The equation is solved exactly for the case of a flat semi-infinite strip under axial
tension. The solution depicts the propagation of bands, upon plastic extension of the
strip, in the axial direction, very much in accordance with observation.

1. Introduction

NUMEROUS INVESTIGATORS, see for instance LUBAHN and FELGAR [1], have re-
ported the formation of “adiabatic” bands, commonly near the loaded boundary
of an axial specimen in tension, and their propagation in the interior of the mate-
rial domain. The bands become prominent, in the sense of being observable with
the naked eye, when the stress reaches the vicinity of yield, and propagate in
the interior as plastic deformation increases. The propagation is not time-depen-
dent, in that it stops when the plastic deformation ceases. Therefore what we are
witnessing is the propagation of plastic waves whose position in space depends
parametrically on some measure of plastic deformation.

We infer on the basis of this observation, that the propagation of the bands
obeys a wave equation with a “plastic inertia” term which is proportional to the
second derivative of the wave function with respect to an intrinsic time z, and
not the clock time t, where z is a non-decreasing measure of plastic deformation
in the sense of VALANIS [2]. This inference has led to the present paper whose
object is to arrive at the defining equation that describes the phenomenon of
“plastic” propagation of adiabatic bands.

2. Thermodynamics

The thermodynamic theory of formation of bands — single bands or deforma-
tion patterns — in the presence of uniform surface tractions, was given previously
in the context of a Helmholtz as well as a Gibbs formulation of gradient ther-
modynamics of internal variables, under conditions of uniform temperature and
infinitesimal deformation, VALANIS [3, 4]. A cogent and detailed derivation of
the equations, pertinent to the gradient theory, is also given in the Appendix.
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92 K.C. VALANIS

The thermodynamic treatment in Ref. [4] addressed the general case where
the Gibbs free energy density ¢, in a material domain D, is a function of stress
and three different classes of internal variables, p, q and ¢, each with a different
physical behavior and thus, a fundamentally different form of evolution equation.
The pertaining form of ¢ is given in Eq. (2.1):

(2.1) & = ¢loij; pijs Gigs @i &igs &),

where o is the stress tensor, p stands for the class p” (r = 1,2,...,n,), q for
the class q" (r = 1,2,...,n,) and £ for the class p (r = 1,2, ..., n¢). Note that p
are local while q and € are not-local in that their gradients are also constitutive
variables of ¢.

Following VALANIS [4], the strain in D is given by Eq. (2.2):

(2-2) Eij = —aqb/ao,-j 3

The stress tensor is symmetric and obeys Newton's law of motion, i.e., Eq. (2.2')
just as in the case of local theories:

(2.2) oiiq + fi= 32u,—/3t2,

where f; and wu; stand for the body force and displacement field, respectively.
However, the evolution or field equation that pertains to a specific internal vari-
able depends on whether it is local or non-local. Of the three classes, the first,
pij, the local class, are tensors of the second order and obey a local evolution
equation, i.e.,

(2.3) 90/ 0pi; + bijki Opki/0z = 0.

This equation is predicated on the position that the internal force P;;(=—0¢/0pij)
is linearly related to dp;;/0dz through the positive definite resistance tensor b;;x
which is symmetric in the indices ¢ and j, the indices k& and [ and the pairs of
indices (#,7) and (k,l). These variables are dissipative since the inner product
P-dq/dz is not zero, and in fact positive — unless ||@q/dz|| = 0 and/or ||Q| = 0,
double bars denoting the Euclidean norm.

We remark that z is the intrinsic time scale in endochronic plasticity, proposed
previously by VALANIS [2]. Specifically for rate-indifferent materials,

(2.3) dz = d(/f,

where f is the isotropic hardening function and d( is the length of the increment
of the plastic strain tensor, with respect to a material metric tensor P such that

(2.3 d(? = Pju de¥; def .
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PLASTIC PROPAGATION OF BAND-WAVES IN SOLIDS 93

In the event that the material is plastically incompressible, then:
(2.3") d¢ = kl|de%,

where efj is the strain deviator and k is an arbitrary constant, unity if convenient.

The second class g; are non-local (vectorial) internal variables in that ¢ de-
pends on the variables g; as well as their gradients ¢; ;. These variables obey the
field equation (2.4):

(2.4) (0¢/0qi;),; — 0¢/0q; = Qi

where @; is the internal resistance force. The derivation of this equation as well
as the complete set of equations pertaining to the gradient theory of internal
variables, is given in the Appendix.

In this paper as well as in our previous work, we stipulate that @; is linearly
related to dg;/@z through the resistance tensor b;; symmetric in ¢ and j and such
that ||b|| # 0. Hence the variables g; obey the partial differential equation (2.5):

(25) (6¢/3q,-‘j)‘j == 6¢/6ql = b{j qu/ﬁz.

We note that g; are also dissipative, since again Q;0¢;/9z # 0. Of fundamental
importance is the stipulation that the evolution of the g-class of internal variables
is expressed with respect to the intrinsic time z, i.e., the length of the plastic
strain path, generated strictly only by virtue of the change in the local internal
variables p;;.

The third class & is again vectorial and non-local but inviscid, in that the
internal resistance force = = 0. These variables are either associated with dislo-
cation glides and other changes in material conformations that take place with
negligible (ideally zero) internal resistance, or are descriptors of terminal equi-
librium states. Their spatial variation in the material domain D is given by
Eq. (2.6):

(2.6) (09/0¢;,;),; — 0¢/0& = 0.

REMARK. Of note is the fact that all generic internal variables of the gradient
type, say (i, obey one and the same fundamental equation, i.e., Eq. (2.7), where
Z; is the internal resistive force (see VALANIS (3, 4] for details):

(2.7) (00/0¢i;),; — 00/0C = Z;.
The constitutive equation pertaining to the different sub-types of such variables
depends on the nature of the resistive force Z;. In the case of the g-class, Z; =

Qi = b;j0q;/8z, while in the case of the £-class, Z; = Z; = 0.
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94 K.C. VALANIS

2.1. Boundary conditions on (;

Previously, VALANIS [5, 6], we demonstrated that the physical mechanism
of particle migration and hence the non-affine deformation of the associated
material sub-domain, is a cause for dissipative behavior. On the other hand it was
also demonstrated, VALANIS [3], that internal variables (; also arise as a result of
heterogeneity of the internal material structure. While the field equations that
describe the spatial distribution of (; as well as their temporal variation are
the same irrespective of their physical origin, the boundary conditions on the
material surface S depend on the underlying physics. We, therefore, distinguish
two different cases: (i) structural and (ii) migratory internal variables.

2.2. Structural internal variables

The surface is composed of two parts: St on which tractions are prescribed,
and its complement S, where displacements are prescribed. In this case the
boundary conditions are as follows (VALANIS [3]):

(2.8) on ST: ng/aci‘jnj- = 0;
(2.9) on Sy Go=0,

provided that the tractions and displacements on the boundary are “locally ho-
mogeneous” in the sense of VALANIS [3].

2.3. Migratory internal variables

Here the surface S is again composed of two parts: the permeable surface S,
on which the migratory displacements are unknown, and impermeable surface
S; on which the migratory displacements are zero. The boundary conditions are
therefore as follows:

(2.10) on Sp: a¢/8¢i jn; = 0;
(2:11) on S;: G =0.

The derivation of these equations is given in the Appendix.

REMARK. There may exist physical circumstances, though these are difficult
to ascertain experimentally, where a surface is impermeable in the normal but
permeable in a tangential direction; in other words, surface diffusion is possible.
To deal with this situation, we construct a system of surface coordinates z such
that z) is normal to the surface and z5 and z’ are tangential. We also let (]
be the components of ¢ in the primed system and let S;; be the coordinate
transformation such that:

(2.12) i = S55 G =Sij G-
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PLASTIC PROPAGATION OF BAND-WAVES IN SOLIDS 95

Following VALANIS [6], the appropriate variational boundary condition is:

(2.13) f 06/8¢; ;n;0¢;dS = 0
S

for all arbitrary variations §(; such that Z;6¢; > 0. Or, in view of Eq. (2.12):

(2.14) f 96/9¢; j1;SimdC,, dS = 0.
S

Since ] = 0, it follows that 6(; = 0 and Eq. (2.14) holds for m = 1. However 6(}
and 4¢3 are arbitrary since (} and (} are not prescribed. Thus, if Eq. (2.14) is to
hold for m = 2 and m = 3, then:

(2.15) 0¢/0¢; jn;Sia =0, 0¢/0¢i jn;jSiz = 0.

It was demonstrated, VALANIS (3, 4], that the band formation is attributable
to the presence of a non-local internal field. If such multiple fields are present,
the material domain is then an ensemble of sub-domains, the behavior of each
of which is governed by its own internal field. The geometric extent of each
sub-domain is the same as the entire domain D.

3. Wave variables

In this paper we add a fourth class of vectorial variables, which we call wave
variables. These come in pairs, i.e., for each “primary” variable w; with a resis-
tance force §2;, there is a “dual” variable w} with associated resistance force §2;.
Of importance is the fact that though |2 and [|$2;| are different from zero in
the course of plastic deformation (||p|| # 0), the scalar product §2;6w; + 2}6w; is
zero, for all arbitrary variations dw; and éw!, and thus the dissipation of the dual
pair is zero. However, w; is non-local while w} is local. Thus ¢ depends on w; as
well as on w; ; and on w; (and not its gradient).

As we shall demonstrate, the primary variable w; has an evolution equation
which is a pertial differential equation of the wave (hyperbolic) type — the desired
form for the propagation of plastic bands.

The Gibbs free energy density ¢ now has the augmented form:
(3.1) ¢ = #(0ij; Pij Ggs i Gig & Wiy wis W)

with the resulting additional equations (3.2) and (3.3) that govern the wave-
variables w; and wi:

Il

(3.2) 2; = (0¢/0wi;),; — 0p/0w;
(3.3) 2 = —0¢/0w;.

Il
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96 K.C. VALANIS

A coupling between w; and w! is now introduced through a relation between
2; and 2] on one hand, and dw;/dz and Ow]/dz on the other, by means of the
resistance matrix 7 in the manner of Eqs. (3.4):

2; = m10w;/8z + Mm20w;/ 0z,

(3.4) ; ;
2; = 1210w; [0z + 1220w;/0z.
We remark that the Onsager form of 7, is symmetric. Here, however, it is not.
We now recall that the pair of variables w; and w; is inviscid giving rise to
zero dissipation. This being the case, the matrix n;; must be such tha:

(3.5) 2;0w; |8z + 2}8w}/8z = 0.

This is accomplished by letting  be an antisymmetric matrix, in which event
m1 = na2 = 0; M2 = —n21 = . Equations (3.4) now reduce to the form:

(3.6) 2; = Bow; [0z,
(3.7) R, = —POw;/dz.

Note that the pair (w;,w!) is in fact inviscid since Eqgs. (3.6) and (3.7) satisfy the
inviscid condition (3.5) identically.

In the light of Egs. (3.2) and (3.3), the field equations for the wave variables
w; and w, are now the following:

(3.8) (ng/nglj)__,- — 0¢/0w; = 66{»2/62,
(3.9) 8¢/ 0w, = BOw;/dz.

REMARK. We remark that, in irreversible thermodynamics, the resistance
matrix, such as 7,5 for instance, that relates the internal resistance forces to
their dual internal velocities, need not be symmetric, provided that the work
done by these forces is non-negative to satisfy the constraint of positive rate of
dissipation. In our specific case above, where the material is inviscid, their inner
product is zero.

It is of interest that the “resistance” matrix is now antisymmetric. The
off-diagonal terms play the role of thermal inertia giving rise, as we shall see
shortly, to a wave equation, instead of a diffusion equation, which is the case
when the resistance matrix is symmetric — and positive definite.

4. The wave equation

To avoid complexities associated with the generality of dependence of ¢ on
the variables of the various mechanisms, we make the reasonable stipulation
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PLASTIC PROPAGATION OF BAND-WAVES IN SOLIDS a7

that the energies of the mechanisms are additive, in which event Eq.(3.1) has
the partitioned form:

(4.1) @ =p+ g+ d¢ + b,

where

(4-2) ‘f’p = (b(o"l)). ¢'q = ¢q(aqua Q)v ¢£ = ¢£(U: VE; E)\
(4.3) P = du(o, Vw,w,w').

The strain in the domain D consists of the contributions of the various mecha-
nisms that are active during loading. In fact, and in view of Egs. (2.2') and (4.1),

the strain € is the sum of the strains produced by the individual mechanisms.
Thus:

(4.4) eE=€pt+€E;+etey.

We remark that the suffix p denotes the strain contribution of the local mecha-
nism and that e, will consist of the elastic strain €'®) plus the plastic strain e(?).
Equations (3.8) and (3.9) now become:

(0w /0w j),j — 0¢u/Ow; = BOw;/0z,

(4.5)
0o /00, = B0/,

4.1. The wave equation in one dimension

Because, to begin with, we are interested in the essential physics of the prob-
lem, we do the analysis in a one-dimensional domain D signified by the variable
T, —00 < & < 0o and in the context of a linear theory and, therefore, a quadratic
form of ¢,,.

Historically, quadratic forms of the free energy densities, Helmholtz or Gibbs,
have been powerful in giving insight to the constitutive behavior of solids. For
instance, in local viscoelasticity a quadratic form of the Helmholtz free energy
density v results in the stress being a linear hereditary functional of the strain,
while a quadratic Gibbs free energy density ¢ results in the strain being a linear
hereditary functional of the stress. The same situation arises in plasticity except
that the functionals are taken with respect to the intrinsic time ¢ — in the manner
of endochronic plasticity, VALANIS [7].

We begin, therefore, with 1) because under isothermal conditions it has the
physical significance of stored energy, with the attending stability condition that
it must be a positive function of its arguments. Thus, in one dimension, we let
th, have the form shown in Eq. (4.6):

46) %o = (1/2)4u(1?)? — BotPws + (1/2)Cuw? + (1/2)Fuiw? + w'?),
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98 K.C. VALANIS

where a suffix  denotes differentiation with respect to z, u* is the displace-
ment field, ©¥ is the (uniaxial) strain field ¢, and A,, B, and C, are material
constants. Quite clearly and without loss of generality we may put B, equal to
unity, since we may define a new variable w* = B, w, substitute in Eq. (4.6) and
drop asterisks. Thus:

(4.7) Yo = (1/2)Au(1?)? — uCw; + (1/2)Cow? + (1/2)F, (w? + w'?).

Note that ' is of the local type so that its gradient does not appear in the
expression for 1. Also because 1) is a positive function,

(4.8) 4,>0, Cu, >0, E,>0 and A,Cy > 1.

Our purpose is to use Eq. (4.7) to obtain the ancillary form of ¢, by means of
the Legendre transformation:

(4.9) bu =Y — Owtu
in the light of the fact that
(4.10) o, = 0, /0t .

Following a simple computation and since o, = o, common to all mechanisms
in the light of Eq. (4.2), we find that:

(4.11) b = —02 (24, — (0/Au)wz + (C5/2)w? + (F,/2)(w? + '),

where we have set C* = C,, — AZ'. In view of the inequality (4.8)4: C, > 0.
Equations (4.4) and (4.5) in one dimension become:

(4.12) (8¢ /OuZ)z — B /0w = PO 02,
(4.13) 8¢, /0w = PBOw/dz

while, in view of Eq. (2.2’) and for quasi-static processes without a body force
field:

(4.14) o = 0.

At this juncture and as a result of Egs.(4.10), (4.11), (4.12) and (4.13), the
following equations for w and w' are obtained:

(4.15) Clwey — Fw = Bou' [0z,
(4.16) Fu' = Bow/0z.

Elimination of w' from Egs. (4.15) and (4.16) gives the following wave equation
for w:

(4.17) C*wsz — Fuw = 0,6°w/082?,
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PLASTIC PROPAGATION OF BAND-WAVES IN SOLIDS 99

where p, = %/F. Thus p, plays the role of the plastic inertia which is not
related to the mass density but to the off-diagonal coefficient of the resistance
matrix that relates the internal forces to the rates of the dual variables w and w'.

The strain contribution ¢, of the internal field w to the total strain in D, in
the light of Eqgs. (2.2) and (3.1) is given by Eq. (4.18):

(4.18) uy = —0¢/do.
In view of Eq. (4.11):

Note that uy consists of the elastic “local” contribution o /A, and the “gradient”
contribution wy/A,. Also note that the dual variable w’ does not contribute to
the strain in D,

It is also pointed out that ¢, in Eq.(4.11) consists of the “local term”
~0?/2A,, and the non-local remainder. Furthermore and in view of Eq. (4.1), the
local terms in that equation are additive to one grand total local term, which in
conjunction with ¢, constitutes the local part of ¢, which as it happens, is of the
same form as ¢,. Thus in conclusion we may say that ¢ may be partitioned in
the form of Eq. (4.1), but with the proviso that the terms ¢, ¢¢ and ¢, contain
o as a variable, but only in algebraic terms that are coupled with the gradients
of the internal field variables.

4.2. The wave equation in three dimensions

With the above discussion we have laid the foundation for the three-dimen-
sional generalization of the expression for ¢,, as it appears in Eq. (4.11). We thus
set:

(4.20) bw = —Ag'oijwij + (Cu/2)wi jwi j + (Fo/2)(wiw; + wiw).
Wij Wi

This is not the most general form of ¢, but it will serve us well in the present
study of the physics of propagation of band-waves in solids.

At this point in the light of Eq.(2.2') and in the absence of body and accel-
eration forces, Eqs. (4.5) become:

(4.21) wai,jj = Fww,' = ﬁ@w;/az,
(4.22) F w! = Bw;/8z.

The variable w; is now eliminated from Eqs. (4.21) and (4.2) and the following
wave equation for w; is thereby obtained:

(423) Cuw,'.kk — Fuw,' = gwc’izwi/azz,

where as before g, = 32/F.
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100 K.C. VALANIS

4.3. Boundary conditions

The boundary conditions depend on whether w; is a structural or 2 migratory
variable. The following cases arise.

(i) Structural variables. We recall Egs. (2.8) and (2.9) according to which and in
conjunction with Eq. (4.11):

(4.24) on St: wijn; = (1/4,C,)T;,
(4.25) on 8y ; i =10.

(i) Migratory variables. Substitute p for subscript 7' in Eq. (4.24) and ¢ for u
in Eq. (4.25). For more complex conditions follow the discussion subsequent to
Eq. (2.14).

REMARK. The propagation of the “plastic” wave generated by the wave
Eq. (4.23) is in terms of the intrinsic time z — where z is the length of the plastic
strain path, within a proportionality constant — and not in terms cf the clock
time t. When the deformation is brought about by application of tractions (or
tractions and displacements) on the surface of the material domain D. the plastic
wave will propagate from the surface toward the interior of the domein and will
stop either when the surface tractions (or displacements) cease to ncrease, or
when these change in a manner that constitutes “elastic unloading”. We illustrate
the above plenomenon by solving the problem of plastic strain bands yropagating
in a longitudinal direction in a flat strip under axial loading.

5. Band propagation in a flat thin strip under uniform axial traction

We consider the domain D to be a semi-infinitive flat strip, |z; < a, 0 <
Ty < 00, |z3| < b. At x; = 0 a uniform tensile traction 7T'(z) - independent of
z; and z3 — is applied while the edges |z1| = a and |¢3| = b are stres-free. The
initial conditions in D are such that w; and dw;/0z are equal zerc at z = 0.
One can verify that w; = 0 and w3 = 0 on the basis of the fact that Eq. (4.23),
the initial conditions and the boundary condition (4.24) are satisfied identically.
Furthermore, the boundary condition at zo =0, i.e.,

(5.1) A,Cyuwas = T(2)
and the boundary condition at |z;| = a and |z3| = b, i.e,,

{52) w21 = 0,
(5.3) wa3 =0,

require that wy be a function of zz and z only.
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Briefly, Eq. (5.1) demands that w; be of the form:
(5.4) wy = Xi(z1,23,2) + X2(22,2),

where X; and X5 are arbitrary functions, while Eq. (5.2) and (5.3) demand that
X, be, at most, a constant field. Thus:

(5,4!) Wwo = wg(l‘g,z).

At this point we change the notation to simplify the presentation of the
analysis and set: we = w and o = y, Ay, = A, C, = C and F, = F. Equations
(4.23) and (4.24) then reduce to the following equations. In D:

(5.5) Co*w/8y? — Fw = p,0°w/02°.
On Saty=0:
(5.6) AC Ow/dy =T(z)

while at y = oo, w is bounded.
5.1. Solution by Laplace transform

Let @(y,p) be the Laplace transform of w(y,z). Then in view of the initial
conditions, Eq. (5.5) becomes:

(5.7) C 0?0y — Fio = p,p°®.

Let

(5.8) ¢ =Clow; *=Flen, z=yle
where c is the wave velocity. Then Eq. (5.5) becomes:

(5.9) 5% /02 — (® +p2)@ =0

while Eq. (5.6) leads to the boundary conditions:

(5.9") I'ow/dz = T(p),

where I' = AC/c. In view of the required boundedness of the solution at y = oo,
it follows from Eq. (5.9) that

(5.10) a:Kexp{-(a%p?)l«’?x},

where K is to be determined from the boundary condition at y = 0.
It thus follows from Egs. (5.9') and (5.10) that:

. R () B rr =)
e i~ L

where T(p) is th Laplace transform of T'(z).
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Discussion. Before we consider, in its generality, the inverse transform of @, we
discuss some special cases of interest. Specifically we pose the case where the
local constitutive behavior of the material is that of an elastic perfectly plastic
solid, in which event the function T'(z) is a Heaviside step function, Le.,

(5.12) T(z) = T°H(z),

where T? is the value of yield stress. In this event 7 = T°/p. Notiag that the
Laplace transform of dw/9z is pw (w(0) = 0), then:

20 2 ]
5.13 [ e e o 2T e
( ) I'y(a*+p )e

The inverse transform of Eq. (5.13) is now standard and in fact,

(5.14) dw/dz = (T°/T)Jo {a(z2 -2l (220),

where Jy is the Bessel function of order zero. One must note, however, that
because the intrinsic time z is the length of the plastic strain path, dw/0z is not a
“velocity” in the normal sense, but the rate of change of the internal displacement
w with respect to the “magnitude” of the plastic local strain. Specifically at z = 0:

(5.14') Ow/dz = (T°/I')Jo(az).

Equation (5.14) is that of a wave propagating into the interior of the strip at a
speed ¢, since = y/c.

In reference to Eq. (5.14) and because of the properties of Jy, we observe that
at fixed z, Ow/0z is an alternating function of @ with decreasing amplitude, i.e.,
its absolute value is largest at the wavefront but diminishes as = approaches the
boundary = = 0. A plot of dw/8z vs. z, for a = 10, is given in Fig. 1.

0.6

LI A AAA

-0.2

F1G. 1. Displacement (arbitrary units) vs. z. Displacement history at ¢ = 0 (a = 10).
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PLASTIC PROPAGATION OF BAND-WAVES IN SOLIDS 103

The displacement field is found by integrating the right-hand side of Eq. (5.14)
with respect to z. Thus:

(5.15) w(z,2) = (To/T) j {a (23 — 22) }dzl.

T

The lower limit of integration reflects the nature of the solution whereby dw/8z
is null for z; < z. Of particular interest is the displacement history at y = 0, i.e.
at x = 0. Then by simple integration:

(5.15") w(z,z) = (T°/al')Ji(az),

where J; is the Bessel function of order one.

The remarkable feature of the solution is that the displacement is highly
oscillatory — particularly for large values of a — even though the traction at
z =0 is a constant of z. Figure 2 shows a plot of w vs. z for a = 10.

3.5 3.6 3.0 338 39

F1G. 2. Displacement vs. z. Displacement distribution close to the propagating
wave-front.

5.2. The strain field
The strain is found upon using Egs. (2.2) and (4.20). Thus:

(5.16) &5 = —0¢/00i; = (1/Aww(i ),

where w(; ;) is the symmetric part of w;;. In the case at hand only the axial
strain €45, = ¥ is non-null. A simple calculation shows that

(5.17) gy = (1/CA)0w /0.
Thus, and in view of Eq. (5.11):

(5.18) &Y = @e"’ a+p%)
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At this point we note that the inverse transform of the function f(p), where
(519) ?(p) = e_x (32+P2) :
is giver. by Eq. (5.20)

(5.20) f(z)=5(z—y)———i(_z,“i_ﬁ.a{ a(z? - )2},

where 3(-) is the Dirac delta function. Thus in the event that T = T?/p, as
above,

z J 2 _9y\1/2
(5.21) & = (Ty/C) {H(z e a:cf 5 {a(z_ x:;ljz }dz'}.

(212

The spatial strain distribution €2 behind the wave front is given in Fig.3 for a
value of a equal to 10.

x

| 25
- 20

F 15

F1G. 3. Strain (arbitrary units) vs. z. Strain band-waves close to the propagating front.

We note that T'(z), in the general case, pertains to and is the function of
the “local” stress-plastic strain curve of a plastic hardening solid. In this general
case, € is given by the convolution integral depicted in Eq. (5.22):

12 2\1/2
(5.22) S S G Jy {a(z z?) }dz’
. - ~ (2;2 = x2)1f2 .

Discussion. As pointed out earlier, the strain field in D consists of the separate
contributions of the several activated mechanisms. To bring out the effects of
the wave mechanism, we assume that only the local and wave-mechanisms are

active, so that

(5.23) E=¢€ t+E€u.
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Prior and up to yielding, the strain field is local, elastic and z = 0. When the
plate is stretched at and beyond yield, if the material hardens, z increases and
the local strain field is given by Eq. (5.24):

(5.24) e, = e 4 £l®),

where €/P) is the local plastic strain while €(®) is its elastic counterpart. Note that
z is the Euclidean norm of the plastic strain tensor, i.e.,

(5.25) el

so that in simple tension:

(5.26) 2 =1/(2/3) e = \/(2/3) P

assuming plastic incompressibility.

Thus during extension at yield, if the material is elastic-perfectly plastic, or
beyond yield if the material is hardening, the strain field will consist of a uniform
local field €, given by Eq. (5.27):

(5.27) epz = (T/E) +/(3/2) z,

where T' is the traction and E the elastic Young’s modulus, and the internal
(wave) field ¥ given by Eq. (5.22).

5.3. One final note

The oscillatory nature of the solution has already been pointed out. As the
material parameter a increases, the solution becomes more and more oscillatory
and its spatial visual representation will be that of numerous bands of increasing
thinness. Likewise, the history of the solution will become highly oscillatory.
This is illustrated in Fig.4, where the displacement history is shown at z = 0
for a = 20.

F1G. 4. Displacement (arbitrary units) vs. z. Displacement history at « = 0 (a = 20).
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Appendix

The field equations and boundary conditions, pertaining to the gradient the-
ory of internal variables, have been derived elsewhere (3, 4, 6]. However, because
at times the analysis has been too concise and because the physics of the problem
needs to be well understood, we give here a detailed and cogent derivation for
the sake of completeness. Specifically, the boundary conditions are discussed at
some length.

We begin a mathematical derivation, without concern for the physical na-
ture of the internal variables, but discuss the resulting equations and boundary
conditions, in the context of the pertaining physics, later in the Appendix. We
limit the analysis to small deformation and isothermal conditions. The large de-
formation case has been discussed elsewhere [6]. Both the Helmholtz and Gibbs
formalism are presented.

A.1. Helmholtz formulation

Let the material domain of a body of volume V and surface S be a closed
thermodynamic system in the sense that it cannot exchange matter with its
surroundings, is devoid of sources and sinks (either of the heat or material type),
and is free of chemical reactions and electromagnetic fields. Then the following
fundamental thermodynamic inequality applies under isothermal conditions:

(A.1) ¥ < fT,-vg d5+ffi-a;,- av,
S Vv

where ¥ is the Helmholtz free energy of the domain, T; the surface tractions, f;
the body forces (including inertia forces) and v; the velocity field, real or virtual,
i.e., due to the set (T}; f;) or an external agency.

Let D denote the internal dissipation in the sense that

(A2) D= [ Qiav,
/

where Q; are internal dissipation forces, ¢; are dual internal displacements, dif-
ferent and independent of the continuum average displacements u;, and a super-
posed dot denotes a time derivative. Both u; and g¢; are continuous and twice
differentiable in V.

Note that D is the rate of work done by @; and is always non-negative for
|q;| # 0, bars denoting the Euclidean norm. Thus:

(A.3) D=/@mwz0
|4
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and therefore, applying Eq. (A.2) to infinitesimal volumes,
(A.4) Qig; 20

the equality in Eq.(A.4) pertaining to the case only when |¢;| = 0. Inequality
(A.1) may now be stated in terms of the dissipation D, i.e.,

(A.5) - fﬂu,-ds+/f,-u,- dv —D
S
or,
(A.6) U = fﬂ-m dS+/fav;- dv — st’éidV'
S

Quite clearly, if |g;| = 0, then the body behaves as non-dissipative and the rate
of change of the free energy is equal to the rate of work of the surface tractions
and the body forces, as in the case of an elastic body. Equation (A.6) is true for
all actual and virtual v; and ¢; in V, subject to Ineq. (A.4).

At this point we introduce the free energy density 1 where

(A.7) o= [ypav
/
such that,
(A.8) ¥ = Y(uij; Giji &)

In view of Egs. (A.7) and (A.8) and upon use of the Green- Gauss theorem,
we now have the following identity:

(A9) &= [ (89 /Bus j)n;vi dS — f (89/0us ;) ju; AV + / (89/0g; j)n;d; dS
S Vv S
- [@/0vi) 5.0V + [ (00/0a)i;.
¥ v

REMARK. Quite clearly ¢; on S are not subject to Ineq. (A.3). They constitute
a set of measure zero in so far as the integral / Qiq; dV is concerned, in the sense
4

that their value on S contributes nothing to the integral. However, other physical
considerations apply. We have given two different physical interpretations for g;
in the literature: 1) where g; are material migratory vectors, VALANIS [6], and
2) where they are structural vectors, i.e., deviations from the average continuum
displacements u; — the averaging volume depending on the heterogeneity of the
material structure, VALANIS [3].
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CASE 1. Here ¢; are migratory vectors and their behavior at the surface is
determined by the physical nature of the latter. We shall deal with two cases:
a) when the surface S, C S is totally permeable and b) when S; C S is totally
impermeable, where S, N S; = 0. On S, ¢; are generally different from zero but
are unknown since they are not measurable. However on S; ¢; = ¢; = 0. This is
an inviolated kinematic constraint.

Thus, the virtual integral velocities q; are arbitrary on S, but zero on S;.

The more general case where a surface is impermeable in the normal direction
but permeable in the transverse directions, is treated in the text.

CASE 2. Here g; are structural variables. We shall treat the case where u; are
“almost” uniform on the part of the surface S, C S where they are prescribed,
in the sense of VALANIS [3]. Then on Sy, ¢; = ¢; = 0. On the part of the surface
Sp C S where “almost” uniform tractions T; are prescribed, g; are not known
and generally different from zero.

Thus wirtual ¢; are arbitrary on St and zero on S,,.

A.2. Derivation of field equations
Equation (A.6) and Eq. (A.9) combine to give rise to Eq. (A.10):

o 3

w0 [[( 28] s [ [(82) 1]
3;!) 3_¢. " 1. .

+{[ |:(6‘Ii,j)lj " g :] g;dvV = 0.

Let v; and ¢, be virtual and set ¢; = 0 in V and on S. Also set v; = 0 on S.
Then since v; are otherwise arbitrary in V, it follows that

(A.11) ( & ) LA
J

du; j

This is the equation of (dynamic) equilibrium. For instance if f; are inertia forces
then according to Newton’s law, fi = —po0?u;/dt*.

Since ¢, is zero on S and in V and for all arbitrary v; on S, it follows from
Eq. (A.10) that

(A.12) ( oy ) n; =T

Odu; j

which is the boundary condition for the tractions T;.
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In the light of Eq. (A.10), the following identity now holds for all virtual g,
subject to Ineq. (A.6):

o oY ;
(A.13) i l(—) . Qi] G.dV =0,
4 BQLJ 2 dq;
Since Eq. (A.13) must be true for infinitesimal dV/, then:
oY o :
A14 — ] —=—-Qi|g;=0
(A.14) [(8% ) oy Q } q

for all virtual ¢; such that Q;q; > 0. Let ¢;(") be three linearly independent
vectors that satisfy the foregoing inequality. The existence of such a triad is
geometrically obvious since thay lie in the open half-plane of vectors that make
an acute angle with @;. Further let

Y oY !
A.15 s - ——-Qi|l¢;=Ri.
(A.15) [(8%,;).}. 94, Q ] q

It then follows that
(A.16) ¢."'R; = 0.

This is a set of three linear and homogeneous algebraic equations in R;. The
determinant of the coefficients is different from zero since ¢;(") are linearly inde-
pendent. Thus:

(A.17) R;=0
and hence:
N N
A.18 -— =0Q;.
30 (aqw) ; 9 <

Equation (A.18) constitutes an internal equilibrium equation for the internal
forces Q;.

A.3. Boundary conditions

In view of Eqgs. (A.11), (A.12) and (A.18) and in the light of Eq. (A.10), it
follows that

(A.19) [ (@6/04:5)ms4:45 =o.
S
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CASE 1. In view of Eq. (A.19):
(4.20) [ (©v/045)m;d:d5 + [ (@6/9gi,)n;d: S =o.
Sp 5
But, ¢; = 0 on S;. Thus,
(A.21) [ (00/18g:5)m5i:ds =o.
Sp

However, ¢, are arbitrary on S,. Letting ¢; be non-zero on an infinitesimal part
of S, and zero elsewhere, it follows that:

(A.22) (0¢/dqi j)njq; =0

for all ¢;. Now letting ¢; be equal to (1,0,0), (0,1,0) and (0,0,1), we find in turn
that

(A.22") (0¢/0gij)n;j =0 on S,.
On the other hand, on S;, per force:
(A.23) ¢ =¢i=0.

CASE 2. In a similar manner:

(A.24) (31{#/3(}1_3‘)?‘13‘ =0 on Sr,
while:
(A.25) G =q=0 on Sy.

A.4. Conservation of linear and angular momentum

In the presence of migratory motion and similar types of non-affine deforma-
tion one cannot assume a prior: that the local equations of conservation of linear
and angular momentum will be preserved. To arrive at these laws we invoke the
following axiom.

AxioM. ¥ = 0 and q; = 0, whenever v; = v} are virtual rigid body velocities.
The physics of the Axiom is self-evident and was discussed at length elsewhere,
see VALANIS [6]. It follows from Eq. (A.6) that:

(A.26) fT,-u; ds + ff;v: v =0,
S %
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Let v be a translational velocity, constant in V' and on S. Then since it is also
arbitrary:

(A.27) f:nds+ff,-dv =0

S v
Then by the usual arguments of continuum mechanics,
(A28) T = ajin; on S,
(A.29) aiji + f; =0,

where o0y is the stress tensor. On the other hand if v} are the result of rigid body
rotation, i.e.,

(A.30) v; = eijpf2jzy,

where e;;) is the permutation tensor, zj are the reference coordinates and (2; is
the angular velocity vector, then in view of Eqs. (A.26), (A.28) and (A.29):

(A.31) Oij = Oji .

It then follows by straightforward analysis, using Eqs. (A.6), (A.7), (A.8), (A.18),
(A.28) and (A.29) that

(A.32) oij = 0Y/0u; ;
and thus,

(A.33) 0/ 0u;,j = 0y /duj;
whereby

(A.34) ¥ =9(eij, - - ),

where €;; = (1/2)(uij + u;)-
A.5. Gibbs formulation

Let ¢ be the Gibbs free energy density of the domain, where
(A.35) #oijs Qg @) = ¥ — gij€ij -

Upon use of Eqs. (A.6), (A.7) and (A.35) one finds the following expression for ¢

(A.36) f¢dV = —/u,;T,;dS—‘[u,-f,-dV—V/Q,-fjr,-dV.

v )
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Equation (A.36) is the variational principle, in terms of ¢, true for virtual traction

rates T';, body force rates j',— and migration velocities ¢;. Use of the Green - Gauss
theorem on the surface integral in Eq. (A.36) gives the following result:

(A31) [ 108/00i; + 1650V + [ (09/00i,)n;d;dS
Vv S

- [ @8/94:5); - 06/04: ~ Qi aV = 0.
S

Repeating the standard variational arguments presented earlier, we find the fol-
lowing equations in V'

(A.38) €ij = —0¢/00i;

(A.39) (06/94i;) ; — 9¢/0gi = Qi

On S:

(A.40) d¢/0gijnj =0 on Sp, g=¢;=0 on S

for migratory ¢;. However, for structural g;:
(A.41) 0¢/9¢ijn;j =0  on S, ¢=q;=0 on Sy.

The analysis is now complete.
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