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Boundary conditions for a capillary fluid 
in contact with a wall 

ll. GOUIN (MARSEILLE) and W. KOSINSKI (WARSZAWA) 

CoNTACT or A FLUID with a solid or an elastic wall is investigated. The wall exerts 
"molecular forces" on the fluid which is locally strongly non-homogeneous. The pro-
blem is approached with a fluid energy of the second gradient form and a wall surface 
energy depending on the value of the flu id density in the contact. From the virtual 
work principle and taking into account the fluid density, its derivative normal to the 
wall and the curvature of the surface, limit conditions are obtained. 

1. Introduction 

Ttm PHENOM ENON or. SURfo'ACE wetting is a subject of many experiments [1]. Such 
experiments have been used to determine many important properties of the wet-
ting behaviour for liquid on low energy surface [2). In fact the wetting transition 
of fluids in contact with solid surfaces is an important field of research both for 
mechanics and physical chemistry. In the recent paper [3), the firs t author using 
statistical methods has proposed an explicit form for the eneq,ry of interaction 
between solid surfaces and liquids. This energy yields a bridge connecting sta-
ｴｩ ｾ ｴｩ ｣｡ ｬ＠ mechanics and continuum mechanics. To obtain the boundary condiLious 
between fluid and solid , it is also necessary Lo know the behaviour of the fluid as 
well a:s t he solid . 

\\'e propose a mechanical model similar to that used in the mean-field theory 
of capillarity that leads to the second gradient theory of continuous media in 
fluid mechanics [4]. The theory is conceptually more straightforward than the 
Laplace one to build a model of capillarity [5, 6]. That theory takes into account 
systems in which fluid interfaces are present [7). The internal capillarity is one of 
the simplest cases since we are able to calculate the surface tension in the case of 
thiu interfaces as well as in thick ones [8). It is possible to obtain the nucleation 
of drops and bubbles [9) . 

It seems that the approximation of the mean-field theory is too simple to 
be quantitatively accurate. However , it does provide a qualitative understanding. 
Moreover , the point of view, that the fluid in interfacial region may be treated as a 
bulk phase with a local free energy density and an additional contribution arising 
from the nonuniforrnity which may be approximated by a gradient expansion 
truncated at the second order terms, is most likely to be successful and perhaps 
even quantitatively accurate near the critical point [10). 
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In this paper we connect boLll the inLeraction of a solid surface and a fluid 
phase by means of the virtual work principle. The distribuLiou of fluid energy in 
the volume and the surface dcnsiLy energy on the solid surface yield the boundary 
conditions. The conditions are different from those obtained for a classical fluid 
within the theory of gas dynamics. We obtain an embedding effect for the density 
of the fluid; moreover, the conditions take into account the curvature of Lhe 
surface. The result is extended to the case of an elastic wall. A discussion is 
obtained depending on the value of the density of the fluid at the surface. 

Let us use asterisk * to denote conjugate (or transpose) mappings or covec-
tors (line vectors). For any vectors a , b we shall use the notaLion a" b for their 
scalar product (the line vector is multiplied by the column vector), a · b and 
ab* for their tensor product (the column vector is multiplied by the line vector) 
a ® b. The product of a mapping A by a vector a is denoted by !1 a. Notation 
b* A means covector c* defined by the rule c* = (A* b )*.The divergence of 
a linear transformation A is the covector divA such that, for any constant 
vector a , 

div( ; l) a = div (A a). 

If f (x) is a scalar function of tl1C vector x associated wiLh the Euler variables 
in the physical space, fJ J / fJx is the linear form associated with the gradient of f 

(
EJf) * and consequently, &x. = grad f. 

2. Continuous mechanical model of capillary layers 

We consider a fluid in couLact wiLll a solid. The fluid occupies the domain D 
and its boundary E which is common with the solid wall. P hysical experiments 
prove that the fluid is nonhomogeneous in the neighbour hood of 2.-' [1 0 j. It is also 
possible to consider the fluid as a continuous medium by taking into account a 
"capillary layer" existing in the vicinity of E and a form of its stress tensor [11 j . 
One way to present the behaviour of such a fluid is to consider the specific internal 
energy c as a function of the density p as well as g,Tad p. Such an expression 
is known in continuum mechanics as internal capillary energy, see [4, 5] . It is 
related to molecular models of strongly nonhomogeneous fluids in the frame of 
the mean field theory and is equivalent to the van der Waals model of capillarity 
(see the review by RowLTNSON and WmoM (10]). T he energy c is also a function 
of the specific entropy. In the case of isothermal media at a given temperature, the 
specific internal energy is replaced by the specific free energy. In t he mechanical 
case, the entropy or the temperature are not concerned by the virtual variations 
of the medium. Consequently, for an isotropic fluid , it is assumed that 

c = J(p,(3), 
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where {3 = grad p · grad p. The fluid is subjected to external forces represented 
by a force potential f2 per unit mass as a function of Eulerian variables x. 

We denote by E 3 x --t B(x) E n. the surface density of energy of the solid 
wall. The total energy E of the fluid in D and its boundary E is the sum of 
the three terms expressing: internal energy E f, potential energy Ep and surface 
energy Es : E = Ef + Ep + Es, with 

E1 = j pE(p, {3) dv , 
0 

Ep = j p ft(x) clv, 
0 

Es = j B ds. 
E 

Let us denote by 0 a variation of the position of the fluid as in [12]. The 
variation is associated with the virtual displacement 

D 3 x---) Ox = ( (x). 

We have the following results presented in the Appendix, 

( 2. 1) o E f = j (-cl i v a) · ( dv + j {- ａ｣ｾｾｾＧ＠
D E 

+ ( ＺＭ＿ｾＬ＠ n + gradt9 A + an) · (} ds 

with 
a = -PI - C gradp 0 gradp = -PI - C ___p_ ___p_, (

f) )* f) 
ox ox 

where C - 2pc0 and P = ｰ Ｒ ｅ ｾＭｰ＠ div (C grad p), ｅｾ＠ denotes the partial derivative 
of E with respect to p, (n = n*( where n is the external unit normal to E and 

dp dp op 
Jt - Cp - where - = - n . 

dn dn ox 
The scalar R,,. is the mean curvature of x; and gradt9 is the tangential part 

of grad relatively to E. 
Moreover, 

(2.2) - J ()[2 J oEP = p ox ( dv = p grad f2 · ( dv, 
D 0 

and using the results presented in the Appendix, 

(2.3) oEs = j (oB- ( ｾ＠ n + gradt9B) · () ds. 
E 

One assumes that the volumetric mass in the fluid has a limit , interfacial 
value Ps at the wall E (which is not the surface density of the wall but the mass 
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density per unit volume as in the shock wave analysis). One assumes also that 
IJ is a function of Ps only. These hypotheses are confirmed by results presented 
in [3]. Then, 

oB = ｄＧＨｐＮｾＩｯｰｳ＠ - -psB'(Ps) div ( . 

Let us denote G - - Ps ｕｾ Ｎ ＮＮ＠ CousequenUy, 

j oH ds - j G div ( ds = j ( C ＨＺｾｾｾ＠ - ｾｾ＠ n · ( - gradt9 C · ( ) ds 
E E E 

(see Appendix). 
Now, JJ = B(ps)- ｰ｟ＬｮｾＮＨｐｳＩ＠ is the Legendre transformation of 13 with 

respect to Ps. Then, 

(VI) oEs = j ( C Ｈｾｾ［＠ - ( "211 ｬｾ ｮ＠ t- gradt91I) · () ds. 
E 

The d 'Alembert-Lagrange principle of virtual works is expressed in the form 
[12]: 

(2.5) VD3x-t ( (x ), oE = O. 

Consequently, from the fundamental lemma of variation calculus, we obtain the 
balance equation in the fluid D and the boundary conditions on the solid wall L;. 

Equilibrium equations 

From any arbitrary variation D 3 x -t ( (x) such that ( 0 ou X , we take 
first 

j ( p ｾｾ＠ - div CJ) · ( dv - 0. 
D 

Consequently, 

(2 .6) 
. [)[2 

d I V (J - (J OX = 0. 

This equation is the well known equilibrium equations [5, 7, 9] 

Boundary condltions 
a) Case of a rigid (undeformed) wall. 

We consider a rigid wall. Consequently, the virtual displacements satisfy ou E 
the condition n* ( = 0 . Then, 

j {(C - A) ｾｾｮ＠ + ( Ｒ
ＨｾｬｾＬｊｉＩ＠ n + gradL9(A- Il) + CJn) · (} ds - 0 

E 

at the rigid wall. 
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Hence, we deduce the boundary conditions at the rigid wall: 

(:2 .7) for x E LJ: C - A = 0 

aild moreover, there exists a Lagrange mu!Liplicr E 3 x ｾ＠ .X(x) E R such tl1at 

(:2.8) 
2(A- II ) 
--'---....:...n + grac.IL9 (A - Il ) + a n = ), n. 

Rrn 

b) Case of an elastic (non-r igid) solid wall. 

lil such a case the equilibrium equaLion (2.6) is unchanged. On E, moreover, 
the condition (2. 7) is also unchanged. The only different condition comes from 
the fact that we do not have anymore the slipping condition for the virtual 
displacement ( n*( = 0). 

Due to the possible deformation of the wall , the virtual work of mechanical 
stresses Oil ｾﾷ＠ is , 

6Ee = j e c; ds 
E 

with t - T n representing the stress (loading) vector, where T is t he value of 
Lhe Cauchy stress tensor of the elastic wall Oil the boundary E . Relation (2.8) is 
replaced by: 

(2 .9) 
(A- H) 

2 I trn n -1 gradL9 (A- J-1) + an = - t . 

3. Analysis of the boundary conditions 

Relation (2.7) yields: 

(3. J) c dp + IJ' - 0 
dn p., 

and we obtain 
H -A = B. 

Consequently, from the definition of a, 

dp 
a n = Pn - C- gradp. 

dn 
T hen the tangential part of equation (2.8) is always verified and equation (2.8) 
yields the value of the Lagrange multiplier >.. 

For an elastic (non-rigid) solid wall we obtain 

(3.2) and 2IJ I dp 
ln = -1) + P -Bp.-d' 

ｾｮ＠ 71 
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where LT
9 

and Ln are the taugential and the normal components of t, respectively. 

Taking into account (3 .1), Ln = P 1 
2

JJ + Cl ＨｂｾＮｦ＠ and equations (3.2) yield 
If,// 

the value of the stresses in the elastic (uourigid) medium. The only new condition 
comes from (3.1). 

VIe have the next consequences. In [3] it is proposed the surface eucrgy in the 
form B(ps) = -!JPs + ｾ Ｒ＠ ｰｾＬ＠ with ｾ ｦ ＬＬ＠ and 12 as two posit ive constants. We 
obtain the condition for the fluid deusity on the wall 

(3.3) Cl dp 
-
1 

= /1- r 2Ps, 
c n 

dp ( ) ( and hence is positive or uegative in the vicinity of the wall if Ps < Pi or 
dn 

Ps ｾ＠ Pi) with Pi = / J h2 which is the bifurcation fluid density at the wall. 
If Ps <Pi, we have a lack of flu id density at the wall. If f?s ｾ＠ f?·i, we have a.It 

excess of fluid density at the wall. 

4. Conclusion 

For a conservative medium, the first gradient theory corresponds to the case 
of compressibility. To take into account the superficia l effects acting between 
solids and fluids, we propose to use the model of fluids endowed with capillarity. 
The theory interpretes the capillarity in a continuous way and contains Laplace's 
theory. The model corresponds for solids to "elastic materials with couple stresses" 
indicated by TOUPTN in [13]. 

VIe notice that the extension to the dynamic case is stra ightforwru·d: by the 
virtual work principle, equation (2.6) takes the form: 

[)[2 
PI - diva + p ox = 0, 

where 1 denotes the acceleration of the fluid. Equations (3.1)-(3 .3) and consequ-
ences in Sec. 3 are unchanged. 

Appendix 

First of all, we recall the following fact from the differential geometry: Let E 
be a surface in the 3-dimensional space and n i ts external normal. 

For any vector field ( , 

n * rot(n X ( ) = div ( + ｾ＠ n*( - n * ｾ Ｚ＠ n. 

T hen, for any scalar field A, we obtain : 
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(A.1) 
d( 2A 

A div ( = A -l n - n ( n - (grad;9A) ( + n* rot (An X ( ) 
c n ' "'" 

= tr [(oA (nn*- 1)- 2
A n* ) <] + A d( n I n*rot(/\ n X (). 

&x n,lt dn 
Let us calculate 8E1 : since D is a material volume, 

E1 = j p c dv =* oE1 = j p oc dv 
D D 

with 6c - 8c op + 8c 6{3. From 6 Dp = Dop - fJp fJ( , we deduce: 
fJp o{3 fJx ox &x ox 

I !:[3 _ 2 1 J:(f}p) 0p* 
P€(3 u - p cf3 u - -

ox fJx 
c (( ｦｊ ｣ ｾｰＭ op o( )) fJp * 

fJx &x fJx Dx 

with Ｒｰ ｣ ｾ＠ = C. 
In the mean-field molecular theory, the quantity C is assumed to be constant 

[10], but it is not necessary. Oue can suppose that the scalar C is a general 
function of p and even {3. Then 

pc'p 6{3 div(C grad p 6p) - div( C grad p)6p - Lr ( C gradp grad* p ｾ ｾＩ＠ . 

Due to the fact that 6p = - p div ( (sec [12]), 

Then 

p6c = div (C grad pop) - Ｈｰ Ｒ ｣ ｾＭ p div(C grad p )) div ( 

-div(C gradp grad*p () +div(C grad p grad*p) ( 

p6c = div (C gradp op- (C grad p grad* p) ( - P ( ) 
or 

-1 -
8 

( + div(C grad p grad* p) (. 
X 

6EJ = j ( oP + d' (C d d* ) ) ; dv &x 1v gra p gra p -. 
D 

+ j div ( -Cp grad p div ( - C grad p grad"" p ( - P ( ) dv 
D 

= j - (diva)( dv + j (-A div ( I n*a ( )rls. 

D E 
Taking into account (A.l), we deduce immediately 
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-1 j n *roL(!l n x ( ) ds. 

E 

But, j n*rot( A n x ( ) ds - j At· (n x ( )de= j A(t , n ,() de, 
>; r r 

where r is the line boundary of X aucl t its tangent unit vector. If n' t x n , 
we obtain the relation 

+ n*a) ( ) ds + j J\.n '* (a de. 
r 

In the following, we assume that ;; has no boundary aucl consequently, tile term 
associated with r vanishes. 

Let us calculate i5Es 
Es - j 13 ds. 

E 

Then 

(A.3) i5Es = j {o13 - (n• :t, I gracl*B(l - nn*)) (}ds 1 j J\n'* ( d(. 
E r 

We notice that grad* B(l - nn") belongs to the tangent plane to X. 

Let us prove Eq. (A.3). If we write Ｏ ｾＧｳ＠ j 13 deL (n , d1x, d2 x) where d1x 
E 

and d2x are the coordinate lines of X, we may write 

Es= j B det F det(F-1n ,d1X ,d2X ), 
Eo 

where Eo is the image of E in a reference space in Lagrangian coordinates X, 
and F is the deformation gradient tensor &x/ oX. 
Then, 

i5Es = j oB det Fdet (F- 1n,d1X,d2X ) + j 13 o( dct Fdet (F- 1n,d1X ,d2X )) . 

Eo Eo 
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Moreover, 

j 13c5( dct F det (F - 1n , d1X , d2 X )) = j J3 div( deL (n , cl ,x, r/2x ) 
ｾｯ＠ E 

+ B del ( ｾ Ｚ＠ (, cl 1x , d2x) - B deL ( ｾ ｾ＠ n , cl1x, d2x) 

= j ( di v(D( ) - grad* B (- IJn* ｾｾ＠ n) ds. 
E 

From (A.l) we obtain 

T hen , 

(}JJ ( 
div(B() - [] (div n ) n*( - n* n = n*roL (Bn x ( ). Dx 

j B6 (det F det (F - 1 n , d1X , d2X )) = j (B (div n)n* 
Eo Eo 

+ grad* B(nn* - 1)) ( ds + j n*roL (Bn x ()ds 

E 

2 
and we ootaiu (A.3) with div n = -

H," . 
VIe assume that >"7 has no boundary and cousequeut.ly, the tenn associa ted wi Lh 
1' is uull. 
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