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Boundary conditions for a capillary fluid
in contact with a wall

H. GOUIN (MARSEILLE) and W.KOSINSKI (WARSZAWA)

ConTacT OF A FLUD with a solid or an elastic wall is investigated. The wall exerts
“molecular forces” on the fluid which is locally strongly non-homogeneous. The pro-
blem is approached with a fluid energy of the second gradient form and a wall surface
energy depending on the value of the fluid density in the contact. From the virtual
work principle and taking into account the fluid density, its derivative normal to the
wall and the curvature of the surface, limit conditions are obtained.

1. Introduction

TIIE PHIENOMENON OF SURFACE wetting is a subject of many experiments [1]. Such
experiments have been used to determine many important properties of the wet-
ting behaviour for liquid on low energy surface [2]. In fact the wetting transition
of fluids in contact with solid surfaces is an important field of research both for
mechanics and physical chemistry. In the recent paper [3], the first author using
statistical methods has proposed an explicit form for the energy of interaction
between solid surfaces and liquids. This energy yields a bridge connecting sta-
tistical mechanics and continuum mechanics. To obtain the boundary conditions
between fluid and solid, it is also necessary to know the behaviour of the fluid as
well as the solid.

We propose a mechanical model similar to that used in the mean-field theory
of capillarity that leads to the second gradient theory of continuous media in
fluid mechanics [4]. The theory is conceptually more straightforward than the
Laplace one to build a model of capillarity 5, 6]. That theory takes into account
systems in which fluid interfaces are present [7]. The internal capillarity is one of
the simplest cases since we are able to calculate the surface tension in the case of
thin interfaces as well as in thick ones [8]. It is possible to obtain the nucleation
of drops and bubbles [9].

It seems that the approximation of the mean-field theory is too simple to
be quantitatively accurate. However, it does provide a qualitative understanding.
Moreover, the point of view, that the fluid in interfacial region may be treated as a
bulk phase with a local free energy density and an additional contribution arising
from the nonuniformity which may be approximated by a gradient expansion
truncated at the second order terms, is most likely to be successful and perhaps
even quantitatively accurate near the critical point [10].
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In this paper we connect both the interaction of a solid surface and a fluid
phase by means of the virtual work principle. The distribution of fluid energy in
the volume and the surface density energy on the solid surface yield the boundary
conditions. The conditions are different from those obtained for a classical fluid
within the theory of gas dynamics. We obtain an embedding effect for the density
of the fluid; moreover, the conditions take into account the curvature of the
surface. The result is extended to the case of an elastic wall. A discussion is
obtained depending on the value of the density of the fluid at the surface.

Let us use asterisk * to denote conjugale (or transpose) mappings or covec-
tors (line vectors). For any vectors a,b we shall use the notation a*b for their
scalar product (the line vector is multiplied by the column vector), a - b and
ab* for their tensor product (the column vector is multiplied by the line vector)
a@b. The product of a mapping A by a vector a is denoted by A a. Notation
b*A means covector c¢* defined by the rule ¢* = (A*b )*. The divergence of
a linear transformation A is the covector divA such that, for any constant
vector a,

div(A) a = div (A a).

If f(x) is a scalar function of the vector x associated with the Euler variables
in the physical space, df/Jx is the linear form associated with the gradient of f

() *
and consequently, (af) = grad f.

2. Continuous mechanical model of capillary layers

We cousider a fluid in contact with a solid. The fluid occupies the domain [
and its boundary 5 which is common with the solid wall. Physical experiments
prove that the fluid is nonhomogeneous in the neighbourhood of 2 [10]. It is also
possible to consider the fluid as a continuous medium by taking into account a
“capillary layer” existing in the vicinity of X and a form of its stress tensor [11].
One way to present the behaviour of such a fluid is to consider the specific internal
energy € as a function of the density p as well as grad p. Such an expression
is known in continuum mechanics as internal capillary energy, see [4, 5]. It is
related to molecular models of strongly nonhomogeneous fluids in the frame of
the mean field theory and is equivalent to the van der Waals model of capillarity
(see the review by RowLiNsoN and WinoM [10]). The energy ¢ is also a function
of the specific entropy. In the case of isothermal media at a given temperature, the
specific internal energy is replaced by the specific free energy. In the mechanical
case, the entropy or the temperature are not concerned by the virtual variations
of the medium. Consequently, for an isotropic fluid, it is assumed that

e = [(pB),
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where 3 = grad p - grad p. The fluid is subjected to external forces represented
by a force potential (2 per unit mass as a fuuction of Eulerian variables x.

We denote by Y 3 x — B(x) € I? the surface density of energy of the solid
wall. The total energy [ of the fluid in D and its boundary ' is the sum of
the three terms expressing: internal energy [Yy, potential energy F, and surface
energy I's: I = Ef+ E, + Eg, with

By = fpg(p,ﬁ) dv , By= /p 2(x) dv, Eg = /B ds.
D D s,

Let us denote by J a variation of the position of the fluid as in [12]. The
variation is associated with the virtual displacement

D3z — éx = ((x).

We have the following results presented in the Appendix,

dn

‘ S oP PT . 446,
(2.1) ) By l[( div ) deJrA[{ A

(ot ron) o}
with ..
o=—-PI-Cgradp®gradp=-PI1-C (@) f)—p,
ox/) Ox
where C' = 2pejz and P = pQ.E;,—p div (C grad p), €/, denotes the partial derivative

of £ with respect to p, (, :811*( where n is the external unit normal to ) and
L dp dp p
A=Cp—— where — = — n.
Pan VO dn  ox O
The scalar R, is the mean curvature of 3 and grad,, is the tangential part
of grad relatively to X.

Moreover,

- an
(2.2) OEP:/paCdv :fpgradQ-Cdv,
D D

and using the results presented in the Appendix,

y ) 2B
(2.3) dEg = / (()B = ( Rmn + grade> -C) ds.
2

One assumes that the volumetric mass in the fluid has a limit, interfacial
value p, at the wall 2 (which is not the surface density of the wall but the mass
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density per unit volume as in the shock wave analysis). One assumes also that
B is a function of ps only. These hypotheses are confirmed by results presented
in [3]. Then,

0B = B’(ps)d‘ps - —p,,B’(p,) div €.

Let us denote G = —p,B), . Consequently,

/db’ dg = /G’ div ¢ ds = / (C o _ zcn-cfgradtgG -C) ds
B X b,

dn R,

(see Appendix).
Now, H = B(ps) — psB")s(ps) is the Legendre transformation of 3 with
respect to py. Then,

n

_ I
(2.4) §Es _/( B _ fan -+ gradi .g) g,
b

dn

The d’Alembert-Lagrange principle of virtual works is expressed in the form
[12]:
(2.5) VD3 x — ((x), &F =0.

Consequently, from the fundamental leimmma of variation calculus, we obtain the
balance equation in the fluid D and the boundary conditions on the solid wall X.
Equilibrium equations

From any arbitrary variation D 3 x — {(x) such that ¢ = 0 on ), we take

first 90
o . -
/(/) (,)—x'—dlv C") 'Cd'U = ().
D
Consequently,
002
(2.6) div o — p(,)— = 0.
ox

This equation is the well known equilibrium equations [5, 7, 9]

Boundary conditions
a) Case of a rigid (undeformed) wall.

We consider a rigid wall. Consequently, the virtual displacements satisfy on 3
the condition n* ¢ =0 . Then,

f{(G—A) %JF( Wn-kgradtg(/l—llwran) ¥e }(!S*O
4

at the rigid wall.
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Hence, we deduce the boundary conditions at the rigid wall:

(2.7) forxe X G—-—A=0

and moreover, there exists a Lagrange multiplier X 3 x — A(x) € R such that
20A - H

(2.8) —(-—E—)n + grad,,(A— H)+on = An.

b) Case of an elastic (non-rigid) solid wall.

In such a case the equilibrium equation (2.6) is unchanged. On 2}/, moreover,
the condition (2.7) is also unchanged. The only different condition comes from
the fact that we do not have anymore the slipping condition for the virtual
displacement ( n*¢ = 0).

Due to the possible deformation of the wall, the virtual work of mechanical
stresses on ) is,

SE, = / t°¢ ds
5
with t = T' n representing the stress (loading) vector, where T is the value of

the Cauchy stress tensor of the elastic wall on the boundary .. Relation (2.8) is
replaced by:

(2.9) 2 %n + grad,, (A — H) + on = —t.

3. Analysis of the boundary conditions

Relation (2.7) yields:

. dp ;
3.1 ) —+ B =
1] o dn t 8, =0
and we obtain

H—~A=E.

Consequently, from the definition of o,
d
o n=Pn-CL gradp.
dn

Then the tangential part of equation (2.8) is always verified and equation (2.8)
yields the value of the Lagrange multiplier \.
For an elastic (non-rigid) solid wall we obtain
25 dp

o * - 4
(3.2) ,~0  and th = - +P= By,
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where {}, and (,, are the tangential and the normal components of t, respectively.

2B 1 ; : ;

- | 6;(1)’/’,_9)2 and equations (3.2) yield
e

the value of the stresses in the elastic (nonrigid) medium. The only new condition

comes from (3.1).

We have the next consequences. In [3] it is proposed the surface energy in the

Taking into account (3.1), {, = P

form B(ps) = —71ps + Epf, with 71, and 79 as two positive constants. We
obtain the condition for the fluid density on the wall

dp
(3.3) o2 = T — V2P

5= =
1
and hence % is positive (or negative) in the vicinity of the wall if ps < p; (or
ps > pi) with p; = 1 /4 which is the bifurcation fluid density at the wall.
If ps < pi, we have a lack of fluid density at the wall. If p. > p;, we have an
excess of fluid density at the wall.

4. Conclusion

For a conservative medium, the first gradient theory corresponds to the case
of compressibility. To take into account the superficial effects acting between
solids and fluids, we propose to use the model of fluids endowed with capillarity.
The theory interpretes the capillarity in a continuous way and contains Laplace’s
theory. The model corresponds for solids to “elastic materials with couple stresses”
indicated by ToupIN in [13].

We notice that the extension to the dynamic case is straightforward: by the
virtual work principle, equation (2.6) takes the form:

, a§2
py —dive + p— =0,
ax
where <y denotes the acceleration of the fluid. Equations (3.1)-(3.3) and consequ-
ences in Sec. 3 are unchanged.

Appendix

First of all, we recall the following fact from the differential geometry: Let )
be a surface in the 3-dimensional space and n its external normal.

For any vector field ¢,
» 0C

n*¢ —n* — n.

n* rot(n x ¢) = div ¢ + o

Ry
Then, for any scalar field A, we obtain :
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an 2A - "
dn ECH — (grad;,A) ¢ +n* rot (An x ¢)

(A1) Adivg=A

B aA, ., 24 Ca ;i o
= tr Kg(nn -1) i n )(] + A T f n*rot(An x ¢).

Let us calculate 0Fj : since D is a material volume,

Ef:/pedv =><51;'f;/pr5sdv
D

de Os ()ﬂ Q_QQ B % Jc

ith de = — j .
with ¢ ap+ (9[3 d3. From § T % Bx B’

R we deduce:

ap*

7] ap* y
) oG- 25 )%

paﬁoﬂ_stﬂo(ax I

with 2pej = C.

In the mean-field molecular theory, the quantity C' is assumed to be constant
[10], but it is not necessary. One can suppose that the scalar C' is a general
function of p and even 3. Then

,,5:} 03 = div(C grad p dp) — div(C grad p)ép — tr (C gradp grad"ﬁ%) .

Due to the fact that dp = —p div ¢ (see [12]),
pde = div(C grad p dp) — ( 5 — pdiv(C grad p )) div ¢
—div(C gradp grad®p ) +div(C grad p grad®p) ¢
pde = div (C gradp dp — (C' grad p grad*p)¢ — PC)

+d—c +div(C grad p grad® p) €.

Then op
0Ly = ,! ( o T div(C grad p grad*p) )¢ dv

% fdiv(—Cp grad p div { — C grad p grad*p ¢ — P¢)dv
D

/ (dive)¢ dv +f( A div¢ + n*o {)ds.
D
Taking into account (A.1l), we deduce immediately
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2 : ’ (,Cn E - 3 ®
SE; = L[—(dlva)c dv /(—4 in } (Rmn + gradi, A + n ()’) C) ds

z

-%/n‘roL(A n x¢) ds.

z
But, /n*rot.(A %) da = f At - (n x ¢)dé = /.4(t,n,c) de |
5 i F
where I" is the line boundary of J and t its tangent unit vector. If n’ = t x n,
we obtain the relation

(A.2) dE; = f( —dive)C dv + f(— 1(1(,1 - (R n* + grad;, A

+ n"‘a)C) ds +[/1n”(ord€.
f

In the following, we assumne that X' has no boundary and consequently, the termn
associated with I vanishes.
Let us calculate dFg
Eg = / B ds.
5

Then

. : 2B =
(A.3) 0Es = j {()B - (n* 7 + grad*B(1 — nn*)) C} ds 1 fAu’ ¢ de.
2 s "

We notice that grad*B(1 —nn*) belongs to the tangent plane to ).
Let us prove Eq. (A.3). If we write g = /b’ det (n,dyx,dyx) where d)x
5
and dox are the coordinate lines of )/, we may write
Es :/B det F det (F~'n,d; X, dsX),
Zo
where X is the image of ) in a reference space in Lagrangian coordinates X,

and [ is the deformation gradient tensor dx/dX.
Then,

— /63 det Fdet(F'ln,d;X,ng) flf/B d(dc}L I det (F"n,rl,X,ng)).
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Moreover,

/1)’(5((,[(:t F det (F'n, di X, doX) ) :/n dive -dat [, By, dox)
o 5

9 r
+B det ( (r')ic,dlx, dgx) — B det ( g—in,dlx,dgx>
Jx

. 3 . 9¢C
- / (div(55¢) — grad*B ¢ - Bn* 5> n) ds.
o
From (A.1) we obtain
DBC

X

div(B¢) — B (divn) n*'¢ —n" n =n*rot (Bn x ¢).

Then,
f B3 (det. I det (F~'n,di X, doX)) = f (B (div n)n®
2o Yo

+ grad* B(nn* — 1)) € ds +/n*rot (Bn x ¢)ds
z

2
!{I” )
We assume that 2’ has no boundary and consequently, the term associated with
I" is null.

and we obtain (A.3) with divn = —
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