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On elastic energy of structures under proportional
loading

A. GAWECKI (POZNAN)

THE pPAPER CONCERNS the proportional loading of structures made of time-
independent materials. It has been shown that the elastic energy can be a decre-
asing function of the load multiplier if unilateral constraints are introduced into an
elastic-plastic structure. Results obtained in the work seem to be of importance for
the theory of structures and may have some theoretical implications. An exhaustive
example illustrates the theory.

1. Introduction

TTHE PRESENT PAPER CONCERNS the problems of energy in structural systems. The
energy, being a scalar quantity, is a diagnostic measure of the current mechanical
state of the system and is of importance for theoretical considerations.

The elastic energy of structures made of the elastic-perfectly plastic materials
will be evaluated. The load is assumed to be proportional and the problem is to
establish whether the elastic energy is a monotone function of the load multiplier
or not. It seems that the answer is “yes”, but there is no theorem concerning
this question known to the author. However, the problem is not trivial in general
cases of time-independent systems. A case will be shown when the elastic energy
can decrease while the proportional load increases.

The distortion approach has been applied in our considerations. The essence
of this approach consists in the observation that all deformations due to nonli-
nearity of the material and/or boundary conditions are caused by the presence
of distortions imposed on the linear elastic structure. Distortions are defined as
enforced deformations which are not kinematically admissible, in general. The
concept of distortions was introduced in the last years of the 19th century and,
among others, was used in the papers of V. VOLTERRA [1] and G. COLONNETTI [2].
The distortion approach allowed us to obtain many valuable results, particularly
in the thermoelasticity and shakedown theory of elastic-plastic structures. Some
information concerning this topic can be found in the monographs of W. Nowacki
[3] and J. A. Konig [4].

All considerations presented herein are carried out in the framework of the
kinematically linear theory. The FEM-oriented matrix description, worked out
by G. MAIER [5] and his co-workers, is used.

The elastic energy will be estimated for elastic (F), elastic-perfectly pla-
stic (IZpP), slackened-elastic (SF) and slackened-elastic-perfectly plastic (SEpP)
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structures. “Slackening” is a structural property, consisting in the presence of gaps
(clearances) at structural joints. Thus, on the macro scale, the slackened structure
behaviour exhibits the locking effects. Deformations of slackened systems are due
to elastic e, plastic ep and also concentrated clearance strains £, (i.e. relative
displacements of members and connection elements). The plastic and clearance
strains can be treated as distortions imposed on the linear elastic structure. It
should be pointed out however that clearance strains are “load-dependent” di-
stortions, because they can vary during the deformation processes. More details
concerning the slackened systems can be found in [7, 8].

2. Mathematical description of elastic systems with distortions

Consider an linear elastic systemn subjected to external loads p and distortions
er. The elasticity coefficients are assumed to be constant and independent of
distortions. A current mechanical state, independently of the deformation history,
can then be described by the following system of matrix relations:

Cu=¢€=¢p+E€pn
2.1) e = p,
o = Egg.

In Eqs. (2.1) p, u, 0 and ¢ denote the vectors of loads (or generalized loads),
displacements (or generalized displacements), stresses (or generalized stresses)
and strains (or generalized strains), respectively. All these state variables are
consistent in the sense of the virtual work equation:

(2.2) plu=o0Tg¢,

where 1" denotes the transpose. C is the geometric compatibility matrix, which
depends only on the geometry and boundary conditions of the system. I denotes
the strictly positive definite, square and symmetric matrix of elasticity. Since the
kinematically linear approach is used, the strain vector € can be split into elastic
€ and distortion € parts.

From (2.1) the following matrix relations can be derived, [8]:

B = Ku—CTEsR, oy = K‘lp, 05 = K_ICTEER,
(23) u = u.+u,, 0. = ECKlp, o, = Z¢p,
O = O+ 0, K = CTEC, Z =ECKCTE-E.

where K is the square, symmetric and strictly positive definite stiffness matrix.
In Eqgs. (2.3) subscript e relates to the linear elastic structure without distor-
tions, subjected to load p, and subscript r indicates all the quantities due to the
presence of distortions.
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The distortion influence matrix Z is square and symmetric. It is well-known
that the same stress state can be induced by various distortions, but any difference
between these distortions is kinematically admissible. Thus, the matrix Z has to
be singular. It is easy to show that

(2.4) ZC =0 ad CTZ =0

Irom (2.4) we can formulate the following properties of distortions, namely:
e any kinematically admissible distortion field (i.e. eg = Cu,) does not induce
self-stresses 0,
(2.5) O, =Zep=2Cu, =0

e the self-stresses due to the presence of distortions (0, = Zgg) are in equ-
ilibrium with zero-valued external loads:

(26) P; = C’I‘O'r — CTZER =0.

Compute now the total elastic energy V5 of a load-free (p = 0) elastic stru-
cture subjected to steady distortions €p:

1. 1 . [ 1
2.7 Wg= EO'PEE = 501(Cu —€ep) = EpIu — EO'TER = —;GTaﬂ.

The elastic energy is positive definite unless the distortions € are kinematically
admissible. Hence

2.7y olep=ekZeg <O.

From (2.7)" it is clearly seen that matrix Z is negative semi-definite.

In order to avoid a possible confusion, it should be mentioned that the di-
stortion description used herein corresponds to the standard approach which is
slightly different from the Colonnetti’s one where the total strain vector is divided
into three parts (for details see |9]), namely

(2.8) e =P 4 (el 4 gp).

In Eq. (2.8) £ denotes the compatible strain vector due to the load vector p
in bvarepe pure elastic structure, while ££R) is the elastic strain vector induced

by the distortions € in the absence of the load p. Thus, the sum e?” + €p is
kinematically admissible. Consequently, the relations between the standard and
Colonnetti’s descriptions take the form:

ep = e® 4+ glP),
(2.9) 0. = Ee” = ECu, = E¢; — o,
o, = Eel® = E(Cu, — ¢p) = Eep — 0. = Zep.

http://rcin.org.pl



852 A. GAWECKI

3. Bounds on the elastic energy

Assume that an elastic structure is subjected to two load and distortion sys-
tems p;, €r; and p,, €po, respectively. The difference of the elastic energies of
both the systems can be expressed as

U 1
(3.1) AWg = Wgo — Wi = 5058,;2 - 50{ £r1.

Turning now to the general case of deformable systems we use the positive
definiteness of the elasticity matrix E in order to formulate the following inequ-
ality:

(3.2) (€p2 — €81) E(ep2 — €51) = (02 — 01) (52 — €51) 20,

where the equality sign occurs if both the elastic strain vectors are equal to each
other. Inequality (3.2), using Eqgs. (2.1), can be rewritten in the form

(3.2) (P2 —P1)" (u2 — w1) — (02~ 01) (€2 — Em1) 2 0.
On the other hand, inequality (3.2) leads to
i

(3.2)" (02— 01)T e < (02— 01) e

It can be easily shown that if @ < b then a < (a + b)/2 < b. Using this result in
inequality (3.2)"” we obtain

, 1 , ,
33) (02—01)Tep < (02— 01) (e + €p1) < (02 — 01) g0,

Since 0‘?532 = 0;851, we can conclude that the intermediate term of (3.3)
represents the difference between the elastic energies of two systems of loads and
distortions, namely:

1 - 1 1
(3.4) 5(02 — o) (ep + emo) = 50%18132 - 501T€E1

= Wiy — Wgy = AWp.
Thus, Ineq. (3.3) takes the form

(3.4) (02— 01) T ep < AWg < (09 — 01) T e .
The left-hand side of (3.4)" can be modified as follows:

(02— 01) ep1 = (02 — 01)"(Cus — €r1) = (py — py) W + (01 — 02) e,
or, using the reciprocal principle (cf. [8])

(02 —01)Tep; = (ug —u))Tpy + 67 (€r1 — £ro).
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Similar transformations of the right-hand side of (3.4)" allow us to construct
the following inequalities, [8]:

Ly £ AWg £ Ry,
(3.5)
Ly < AWp < Ry,
where
Li = (pp—p1) uy + (01 — 02) ep,
Ry = (py —py) us + 02)" ena,
(3.6)

(
(o

Ly = (uz —uy)"py + (er1 — er2)’ 01,
(

Ry = (ug —u)) py + (er1 — €r2)T 00

AWpg = (L1 + 121)/2:’ AWEg = (Ly + [{2)/2; Li = Lo and Ry = Rs.

The equality signs relate to the particular cases of kinematically admissible di-
stortions which do not induce any additional stresses.

It should be pointed out that inequalities (3.5) hold true for any unspecified
loading paths. These inequalities will be used to evaluate the elastic energy for
various types of structures under proportional loads.

4. Elastic energy changes during proportional loading

4.1. Definitions and assumptions

The proportional loading can be defined as follows:

(4-1) P = [wPo;

where /iy is a positive definite scalar multiplier, and p, denotes a reference load
vector. Consider two levels of proportional loads p; and p,, which are associated
with two load multipliers p; and pg, respectively. If p; = pipg and py = popg
then for o > 11 > 0 we obtain:

(4.2) P2 = [IPy,

where po = po/p > 1.

Since the problem is considered in the frame of kinematically linear theory,
the total strain in general cases of S[pP structures is a sum of individual par-
tial strains. In particular, the distortion vector consists of clearance and plastic
strains:

(4.3) Er=¢r+ Ep.
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Usually, during proportional loading of structures no local plastic unloading
occurs. Such a behaviour corresponds to the path-independent (holonomic) mo-
del. Further considerations are restricted to this model.

If a SEpP structure is subjected to proportional load p, which induces cle-
arance and plastic distortions, then the following inequality holds:

(4.4) pTu =ole= O'T(EL + eg+ &p) = ole,+07eg+0Tep >0.

The inequality sign results from the following. The product of stress and
elastic strains 0”7 ¢ is positive due to the definition of elasticity matrix. The
clearance work o7 ¢, in slackened structures is always positive semi-definite (cf.
[6]). The product of stresses and plastic strains o7 € p represents the positive
semi-definite plastic dissipation in [“p/° sysytems. Relation (4.4) is also valid for
the remaining kinds of structures (i.e. I+, SE, EpP) because they are particular
cases of the SEpP structure.

The yield condition and contact condition are assumed to be convex. For the
holonomic model, these assumptions can be expressed in the following mathema-
tical form:

(01— 02)Tep; >0,
(4.5) |

(€1 —e12) 0 > 0.

In (4.5) 0}, €p; and €7 denote true vectors of stress and strains, whereas o7y
and €y are arbitrary statically adinissible stress and kinematically admissible
clearance strain vectors, respectively. Moreover, using inequalities (4.5) and assu-
ming that 0, €ps and €7 represent true associated stress and distortion states,
we obtain

(G'y — Uz)T(EPl — €p3) = 0,
(4.6) |
(01— 09)"(e1 — €12) > 0,
hence
(4.7) (01— 02)"[(€1 + €p1 + €p) — (2 + €p2 + Ep)| 2 0,

where € denotes a steady distortion vector. All the possible distortions which
can occur in the class of time-independent structural systems considered herein
can be presented as

(4.8) Eti+Epg+HED = ERi} i=1,2
Substituting (4.7) to inequality (3.2)" yields

(4.9) (P2 —p1)T (uz —uy) > 0.
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Using (4.2) in Ineq. (4.9) we obtain

(e —1)p] (ug —uy) > 0,

(1 - pd(ug —uy) > 0.
For proportional loading (jz—1) > 0 and (1 — z~') > 0. Thus, we can state that

pi(uz —uy) > 0,
(4.10) ,
P (uz —uy) > 0.

Relations (4.10) will be used in further considerations.

4.2. Linear elastic systems
In elastic structures €; = €g; and ep; =0 (i = 1,2). From (3.5)2 we have
pi(uz —uy) < AWp <pj(up —uy) for p>1.

According to (4.10); pT(us — u;) > 0, hence AWg = Wgy — Wpyp > 0. It
corresponds to the obvious conclusion that the elastic energy in linear elastic
systemns is an increasing function of the load multiplier.

It will be shown that the same conclusion is also valid for elastic systemns
with any initial, load-independent distortions. Consider an elastic structure that
exhibits steady distortions €p. Denote by subscripts 1 and 2 the elastic ener-
gies of the self-stresses and load p, acting on the structure without distortions,

respectively. Then
lepy =0, €m =8€p, Cu =£Egi+€ep, 01 =FEesn =Zep;

2ipa=pn, €tm=20, Cu; = gppo, 0y = Egp.

The total elastic energy Wg including the distortion and load effects reads

1 . 1 .. 1 ..
Wg = 5(01 +02) (e + ep2) = 501[ Ep1 50'1 €2

1 ; 1 = ) .
e = 50’{51;;2 + E()"ﬁ ep1 = Wg1 + Wps + O'IFEEZ.
The last term in the above expression vanishes due to the virtual work principle
(py = 0): i .

GT&EQ — UTCUQ = CI O1ug = p‘1, uy = 0.
So, the elastic energy can be decomposed into the energy of steady distortions
and the energy of external loads; the mutual, load-distortion energy is equal
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to zero. The same result has been obtained in [10]. However, this interesting
observation is valid only for linear elastic systems. Since the external load energy
is distortion-independent, the elastic energy is an increasing function of the load
multiplier.

Finally, let us determine the explicit form of expression for the elastic energy
of self-stresss:

(411) Wgi = 50"118151 = EE{)ZEH] — §££Z(CU1 = f.D) = —iﬁngf.[)

B s T Lo
= —EabZ(Cul —&m) = Esf)ZE‘lm = 58}’)(ZE“Z)£D.
From (4.11) we conclude that ZE™!'Z = —Z. Indeed, using the definition of
matrix Z and taking into account that ZC = 0, we find

(4.12) ZE'Z=2ZEYECK'CTE-E)=2Z(CK'C'TE-I)=-Z

4.3. Elastic-perfectly plastic systems

For both levels of loads p, and p,, the total strains consist of elastic and
plastic (distortion) parts:

(a) & = € t+ Epis Er = Epij i=1,2,
so, from (3.5); and (a) we obtain
AWg > L1 = (pg —p1)Tus + (01 — 62)T€p1 = (6 — 1)pTus + (01 — 02) eps.

Since (1« — 1) > 0, and according to (4.4), pJu; > 0, the first right-hand side
term is positive. If the yield condition is convex, the second right-hand side term
is non-negative (cf. (4.5)). Thus, AWy > 0 and the elastic energy is an increasing
monotone function of load multiplier .

4.4. Slackened-elastic systems

In slackened systems the strain vector can be divided into elastic and clearance
parts

(a) & =¢&p+ Em; ER: = ELi} i=1,2.

The elastic energy is an increasing function of the load multiplier if Ly is positive
definite. Using inequality (3.5)2 we obtain:

(b) Ly = p] (up —w1) + 07 (€r1 — €re) = P} (U2 —u1) + 07 (€11 — £12) > 0.
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The positive definiteness of Ly results from (4.10) and from the convexity of
the contact condition (cf. (4.5)2). In view of (b) we can state that this conclusion
holds also true in the case where steady distortions e are additionally imposed
on the slackened-elastic structure.

4.5. Slackened-elastic-perfectly plastic systems

Similarly to the previous case, the strain vector is the sum of elastic and
distortion parts. However, distortion strains in slackened-elastic-plastic systems
consist of clearance and plastic strains:

(a) &i=€mit Eriz; Emi=¢€pit+teEp; 1=1,2

Such systems demonstrate a lot of interesting effects and their behaviour is very
complicated, particularly when plastic and clearance strains are simultaneously
present. A complexity of this problem comes from the fact that clearance distor-
tions, contrary to plastic ones, are always load-dependent. Therefore the signs of
Ly, Ly, Ry and Ry in Inegs. (3.5) cannot be evaluated. It is interesting to notice
that even positive definiteness of right-hand sides of (3.5) does not have to be
always puaranteed.
Let us consider, for example, the expression for Ry:

(b) Ry = (ug —uy) 'py + (€11 — €12) 0 + (ep1 — Ep2) T 0.

According to (4.10)g, the first term in (b) is positive. On the other hand, the
remaining terms consists of the non-positive definite part (€71 — €72)7 03 (cf.
(4.5)2) and the part due to plastic strains (€p; — £pg)7 0y, its sign being un-
determinate, in general; however, for proportional loading the negative sign can
be expected. Similar results can be obtained for L;, Ly and R;. A numerical
example of Sec. 5 will explain this problem.

5. Numerical Example

Consider a simple beam shown in Fig. 1.

I 1.5m % 3.0m |

7 A #

F1G. 1. Slackened beam with clearance hinges.
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The beam is composed of two elements of ideal I-cross-sections. The moments
of inertia and depths for both the elements are equal to J; = 4500 cm’, Jy =
10000 cin* and Ay = 30 cin, he = 40 cin, respectively. Two kinds of the material of
the beamn are assumed: the linear elastic of infinite strength, and the linear elastic-
perfectly plastic with the yield stress oy = 300 MPa. The correspouding full
plastic bending moments of the cross-section for the beam-elements are My, =
90 kNm and My, = 150 kNm. The Young’s modulus for both the materials is
assumed to be the same: [/ = 200 GPa. In addition, at points 2 and 3 the so-
called clearance hinges are introduced. In other words, the angle of free relative
rotations of adjacent beam-elements ¢;(i = 2,3) at these points can vary between
the limits: —¢; < ¢; < ¢. Angles ¢; play here the role of clearance strains. The
cases where clearance hinges are introduced correspond to the systems which are
slackened. If the clearance moduli (i.e. limit free rotations at clearance hinges)
are equal to zero ¢ = qbf’ = 0, the beam becomes a common structure with
bilateral constraints. Then the beam is fully fixed at both the supports (point 1
and point 3). So, we can consider the following four kinds of the system:

e elastic (F) (oy — 00,¢; = ¢f =0),
e clastic-perfectly plastic (/p/°) (oy = 300 MPa, ¢; = 0,¢; =0),
e slackened-elastic (S17) (oy — 00,97 # ¢, 8] #0),

e slackened-elastic-perfectly plastic (SIopP) (oy = 300 MPa, ¢; £ ¢,¢; / 0).

Further considerations will be carried out for identical and syminetrically distri-
buted rotation gaps, i.e. ¢; = ¢ = ¢35 = ¢4 = ¢y. Variations of these gaps
within the limits < 0,0.009 rad > allow us to analyse the elastic energy as a fun-
ction of slackening intensity, including also the beam with bilateral constraints.

The beam is subjected to concentrated load P acting at point 2. The load
increases proportionally up to I = 200 kN (i.e. to the limit load for the elastic-
perfectly plastic beam) and then the beam is proportionally unloaded.

Particular cases of the types specified above of the structure can be examined
with respect to the elastic energy at given levels of the proportional loading.
Additionally, the energy variations during unloading will be also presented.

The beam with rotation clearances belongs to a particular class of skeletal
SEpP structures where distortions are concentrated at the clearance, plastic
or clearance-plastic hinges. The loading and unloading of the structure induce
opening or closing of these hinges. As a consequence, the boundary conditions of
elements (i.e. structure types) are changeable.

The current elastic energy Wy for particular kinds of the beam is calculated
as a function of “deflection length” Sa or “load length” Sp. The current deflec-
tion of the beam A, deflection length Sa and load length Sp are defined as
follows:
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TIL

A:ZAU); SA:ZIAU)E; S]):Z‘p(j)l,
j=1 j=1 j=1
where Al and PU) denote the deflection rate of point 2 and the external load

rate in the j-th step of the calculations, respectively. Symbol m denotes a current
calculation step.

P — A diagrams for IY, EpP, SE and SIpP beams for ¢g = 0.009 rad are
presented in Fig. 2a, while in Fig. 2b the elastic energy W versus the deflection

PIkN] & W, (kNm] 2
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15012 ; 0.8
A
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F16. 2. Elastic energy for proportional loading of the beam; a) P — A diagrams,
b) Elastic energy W versus deflection length Sa.
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length Sx is plotted. Segments O A and segments A correspond to proportional
loading (solid lines) and unloading (dashed lines) of the beam, respectively. All
the intermediate points indicate the structure type changes.

P — A relations for the [J-beam and [KpP-beam take a well-known form of
concave functions. On the other hand, the presence of clearances induces locking
effects which lead to convexity of I’(A) functions. It is clearly seen for the SI/—
beam. The behaviour of S/ p/’~beam is much more complex; both the convexity
(e.g. segment O — d — e) and concavity of P(A) function are noted. The P(A)
convexity concerns also the unloading curve (segment A—/h— [3). Moreover, there
exists the horizontal segment which corresponds to a “clearance-plastic mecha-
nism” (cf. segment f — g). Obviously, the rates of elastic energy on this segment
are equal to zero.

In the range of proportional loading, the elastic energy appears to be a mo-
notone increasing function with respect to the beam deflection, except the case
of the SEpP-beam (cf. Fig. 2b). It confirms the theoretical results of Sec. 4.
Indeed, we can state that the elastic energy in the SEpP-beam can be a par-
tially decreasing function of the load multiplier. Note that the energy of residual
stresses does not have to coincide with that of the EpP-beam.

From Fig. 2 it follows that the elastic energy variations during the deformation
processes must depend on the values of clearance moduli. In order to examine
this problem we calculate 1V;; as a function of Sp during proportional loading
for increasing values of rotation gaps, ¢g. Figure 3 shows Wy (Sp) diagrams for
particular kinds of the bean.

According to the results of Sec. 4, the elastic energy in the [Y~beam and
SE-beam is an increasing function of the load multiplier (see Fig. 3a). From
Fig. 3b it follows that for a sufficiently large values of ¢q, the elastic energy in
the SIKpP-beam can decrease while the load multiplier increases.

a)
W, [kNm] W [kNm]
1.0 1.0
@,=0.009 rad @,=0.009 d
0.8 { —— ®,=0.006 rad 0.8 { ——— ©,=0.006 rad
------ @,=0.003 rod -=-==- ©,=0.003 rad
0.6 P 06 4"~ @,=0 rad
is
0.4 0.4 -
0.2 A 0.2 A
J Sp[kN] S [kN]
0.0 T T = 1 ,0 T T T 1
0 50 100 150 200 0 50 100 150 200

Fic. 3. Elastic energy variations for increasing gaps; a) Slackened-elastic beam,
b) Slackened-elastic-perfectly plastic beam.
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Now, the question arises: what is the physical and structural interpretation
of the decreasing energy function?

Analysing the problem from the physical point of view we conclude that a
part of the elastic energy can be converted into the plastic dissipation. Then the
decrease in current elastic energy is observed. Obviously, such a phenomenon can
occur only for structures whose material exhibits both the elastic and plastic
deformations. To make the problem more clear, the current elastic energy Wg
and the current total dissipation D in the SI/KpP-beam (¢g = 0.009 rad) versus
deflection length Sa are plotted in Fig. 4. It is seen that the elastic energy starts
to drop down just as the plastic dissipation begins (cf. points ¢ and g in Fig. 4).

6.0 W, D [kNm]
5.0 -
404 — We
---------- D
3.0 4
2.0 - ,
1.0 g
| /27./—4(]—"/" A Salm)
(o o - i,
0.000 0.025 0.050

F1G. 4. Elastic energy Wg and total plastic dissipation D in SEpP-beam during
proportional loading.

Next additional question is: “why can it occur only for the SISpP-beam?” An
explanation of this problem can be found in Fig. 5 where changes of the structu-
re type and the corresponding generalized stress (bending moment) distributions
are presented. Figure Sa relates to P = I = G5 kN (point e in Fig. 4) and
Poa = Fo+AP = 65+5 = 70 kN. For P = P, the beam is fully fixed at the left-
hand support and pin-ended at the right-hand support. The load increasing up to
Fea induces the structure type change; the beam becomes pin-ended at both the
supports. Similar situation arises for I = I, = 150 kN (point ¢ in Fig. 4) and
Pya = Py + AP = 150 + 5 = 155 kN. For PP = P, at point 2 the new plastic
hinge forms whereas at point 3 the clearance hinge closes and the beam becomes
statically determinate. The structure-type changes give modifications of bending
moment distributions. It can be easily checked that the elastic energy rates star-
ting from P = 65 kN and P = 150 kN are negative. So, we can conclude that
the elastic energy decrease is induced by deformation-dependent boundary condi-
tion changes. Such untypical changes can appear only for slackened-elastic-plastic
structures where clearance and plastic strains simultaneously appear.
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a) b)

Po= 65 kN Pg= 150 kN

A y ed .
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F1G. 5. Structure type and bending moment changes during proportional loading of
SEpP-beam; a) load level e (12 = 65 kN), b) load level g (P = 150 kN).

6. Final remarks

The present paper concerns the proportional loading of structures made of
time-independent materials. It appears that this particular and simplest case of
loading is not yet sufficiently recognized. It has been shown that the elastic energy
can be a decreasing function of the load multiplier if unilateral constraints (i.e.
gaps at structural connections) are introduced into an elastic-plastic structure.
The results obtained in the paper seem to be of importance for the theory of
structures and may have many theoretical implications. We have in mind, for
instance, the damage mechanics where the elastic energy is usually assumed as
an increasing function of the load multiplier. The problem appears to be much
more significant due to the fact that damaged bodies contain internal gaps and
therefore, this assumption seems to be not quite justified.

In spite the fact that the present work concerns discretized systems, the author
believes that the results obtained herein can be generalized to continuous bodies
made of time-independent materials.
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