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The dependence of dynamic phase transitions
on parameters

K. PIECHOR (WARSZAWA)

WE consipeRr phase changes deseribed by a second order ordinary differential equ-
ation. The equation depends parametrically on the states of rest and the speed of the
wave. We prove that, under some additional conditions, the solution is differentia-
ble with respect to any of these parameters. As an application of the general theory
we discuss the case when the data are close to the Maxwell line and obtain results
generalising those of the previous authors.

1. Introduction

WE TREAT the phase boundary as a one-dimensional travelling wave connecting
two different states of rest. The speed of the wave cannot be arbitrary but it is
an unknown, determined totally by the value of just one of the states of rest. In
other words, the question of existence of phase boundaries is a sort of nonlinear
eigenvalue problem. For a very limited number of cases we know exactly the
structure of the phase boundary and its speed [1, 2]. In the general case, it is only
proved that once one state of rest is given, there is a unique value of speed and
uniquely determined other state of rest such that the travelling wave connecting
themn exists and moves at this speed [3 - §].

The aim of this paper is to formulate sufficient conditions ensuring differen-
tiability of the phase boundary structure, the speed of the wave and the other
state of rest as functions of one of the two states of rest.

The paper is organised as follows. In the next section we present the equation
of the phase boundary deduced from the capillarity equations which we have
derived from a model kinetic theory of van der Waals fluids [9]. In Sec. 3 we
generalise this problem and prove a theorem on the differentiability of its solution
with respect to a group of parameters treated as “independent”. In the final Sec. 4,
we apply this theory to our model equation of phase boundaries as well as to the
case of isothermal phase transitions. We confine our interest to the case when
the data are close to the so-called Maxwell line, in order to avoid complicated
formulae. In the latter case our results not only agree with the previous authors’
results but also generalise them. Moreover, we show that our model theory agrees
qualitatively with the isothermal one.
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812 K. Pizcior

2. The model equations of capillarity and the travelling wave
problem

The model equations of capillarity we are going to consider consist of the
following system of two partial differential equations [9]:

d d
(21) (‘—)Zu' = (T)EU = (),
o 8 R,
(22) au + (:_);p(u-,u) — .‘,2)—1 (‘LL(‘).I‘H)

+ ag® . 14 (“(’)—111)2 = iiu
Or |wb \ Oz wd Oz |

In Egs. (2.1), (2.2), the variable ¢ > 0 is the time, 2 € R! is the Lagrangian
coordinate, u is the velocity, w is the specific volume, p is the pressure, and s
is the coefficient of viscosity.

The pressure formula reads

1 —g® a

(2.3) ¥ = plii, a8 = Nw—b  w?

where a and b are positive constants; a is the ratio of the mean value of the
potential of the attractive intermolecular forces to the mean kinetic energy of
molecules, and b characterises close packing. In the adopted dimensionless units
b is equal to unity.

Next, € > 0 characterises the order of magnitude of the viscosity effect, and
pt = p(w,u) is given by [ 9]

w?(1 — u?) + 26%p%(w) w

2.4 - = - WS '
(2.4) #w, u) Swp(w) ’ plw) w—b

Finally, ae?, with a — const > 0, characterises the intensity of the capillarity
effects which are represented by the space derivative of the term in the square
brackets [ ].

We consider Eqgs. (2.1), (2.2) in the domain D defined by [10]

7 a a

2.5 D= ) tw > b, S, — 1}.
(2.5) {(w w) w u” < 5 5 <
For (w,u) € D, the mass density 1/w does not exceed the close-packing density
1/b, and the pressure p and the viscosity j are positive.

A travelling wave solution to (2.1), (2.2) is a solution of the form
T — 8t

(2.6) (w,u)(z, t) = (w,u)(&), €= ERt.
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such that

(2.7) glim (w,u)(€&) = (wy,w),
(28) &llI{Tl ('(U’u)(&) = (wr, ur),
. ' .
(2.9) i (o) = (0,0,
(2.10) Eggxm(w”,u”) = (0,0),
;d

where s = const is the wave speed, and ()" = & £l
( g
The following procedure is routine. We substitute (2.6) into Eqs. (2.1), (2.2),
perform one integration with respect to &, and use the limit conditions (2.7)-
(2.10). Having done that, we find that the left and right limit states are related
by

(2.11) S U = SWi -+ Ul
—8ur + p(wr, uy) = —sw + plwy, up).

These relations are called the Rankine-Hugoniot conditions and were in detail
analysed in [10].
Next, we find the velocity u. It is given by

(2.12) u=w — s(w—wy),

where w = w(§) is a solution of the following limit value problem:

(2.13) o [%w” - %wm} + sp(w, s, w)w’ + f(w,s,w;) = 0,
where

(2.14) pwlw, s,wy) = plw,uy — s (w —w;)) > 0,

(2.15) Flw,s,w) = p(w,w — s(w —w) — plwr,w) + 84w —wy),

subject to the conditions

(2.16) Eiim w(€) = w,
(2.17) Jim_w(©) =,
2.1 i "&) = i "egy = 0.
(2.18) Jm w/€) =0, I w() =0
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814 K. Piecnonr

These conditions must be supplemented by Eqs.(2.11) which we write in the form

(2.19) Sfwy, s,wy) =0, flwy,s,wy) = 0.

In this paper we assume that

(2.20) [ (g, 8,uy) <0, fi(wy, 8,w;) < 0.

Our problem contains a number of parameters like w,., s,w;, u;, etc. These
parameters are not independent, since some of them are related by the Rankine-
Hugoniot conditions (2.11). However, our problem, under assumptions (2.19),
(2.20), has a solution if and only if the parameters satisfy an additional relation,
unknown in advance. The total number of relations, including the implicit one, is
less than the total number of paramneters. Therefore, we can split them into two
groups: dependent and independent ones. Of course, this splitting is not dictated
by the limit value problem itself, it is rather a result of our current interest. Also,
it is not obligatory to consider the dependence of solutions on all parameters;
simply, we can treat some of them as fixed.

Altogether, there is a great variety of specific problems we can be interested
in. Therefore, in order to avoid repeating similar arguments, each time we ask
a question concerning the character of dependence of the solution on certain
parameters we choose, we formulate an “abstract” problem of dependence of the
solution on the parameters and prove its solvability. In Sec. 4 we show how to
reduce our specific problem to the “abstract” one.

Let us explain that we cannot answer the posed question basing on the well
known theorem on continuous dependence of solutions of ordinary differential
equations on the parameters, because it is not clear in advance whether the
implicit, unknown relation between the parameters is a differentiable function or
not.

3. The abstract problem

The problem we consider consists in determining a function and a set of
functions y(&,A) : R!' x A — Y C R!, and a set of functions x(\) =
(k1(A), k2(A),y .oy ke (A)) ¢ A — K, where A is an open subset of R!, K is an
open subset of R* | and the range Y of y(£,\) contains the closed interval [0,1].
The functions y(&, \) and x(\) are such that:

1) y(&, \) satisfies the differential equation

(3'1) y” :g(y,yl,ﬁ‘,,/\),

and the limit conditions: for any A € A

3.2 I A =0 I Xl= 1,
(3.2) Gt y(&,A) o y(&,A)
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THE DEPENDENCE OF DYNAMIC PHASE TRANSITIONS ON PARAMETERS 815

(3:3) Jm (y(€,2),57(6 A) = (0,0),
(3.4) Eﬂljrlm(y’(éw\),y”(éa)\)) = (0,0),

where the dash denotes differentiation with respect to &.
ii) The functions k;(\), i = 1,2,...,k — 1, satisfy a system of kA — 1 algebraic
equations of the form

(3.5) Gilg, ) =0, i=12,.,k—1

We take the following assumptions concerning the functions ¢ and G(k,\) =
(G](H’a )‘)1 GQ(K’v /\): iy Gk—] (K'a )\))
Hl. g(y,z,k,A) € C™'7(Y x R x K x A) for some integer m > 0,7 > 0.
H2.  For any (k,A) € K x A

(3.6) g0, 0, 5, A) = 0,

(3.7) g(1,0,k,A\) = 0,

(3.8) gy(D 0,k,A) > 0,

(3.9) gu(l 0,&,A) > 0.
H3. Gilr,X) € O™ (K x A), j = 1,2, sk = 1
COMMENTS

i) Conditions (3.6), (3.7) make Eq. (3.1) and the limit values (3.2)-(3.4) com-
patible.

ii) Conditions (3.8), (3.9) are crucial for our considerations. They mean that
the rest points (0,0) and (1,0) in the (3,7') — plane are saddle points.

Equation (3.1) is autonomous, i.e. if y(¢) is its solution so is y(& + ¢), for any
constant c. To get rid of this ambiguity we impose an additional condition:

(3.10) Y0, = 5 [y(~00,X) + y(+oo,X)] = 5.
Our aim is to prove that, roughly speaking, if 110(), 50 € R¥, \g € R is a solution
to (3.1)-(3.5) then, under some additional conditions to be specified, the problem
has also a solution in a vicinity of A\g. The Implicit Function Theorem seems to be
the proper tool to perform this task, but some difficulty arises from the fact that
the number of unknowns is greater than that of the equations. Elimination of this
difficulty is possible owing to the fact that we are looking for special solutions,
namely those which satisfy (3.2), (3.3) for any A. It means that we have to be
cautious and choose suitable functional spaces.

Since our course of action follows the Implicit Function Theorem we start, for
the reader’s convenience, from its presentation (cf. [12])
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816 K. Piecnor

IMPLICIT FUNCTION THEOREM [12]. Let

(i) X, Y, Z be normed affine spaces and X, Y, % the corresponding vector
spaces;

(ii) D(Y,2Z) be the set of linear continuous mappings of the space Y onto Z;

(iii) W be an open subset of X x Y, and (zo,y0) € W,20 € X, 0 € Y

(iv) F': W — Z be a continuous mapping of W onto Z and I'(xg,%0) — 2o,
20 € 4.
if

i) for every fired v € X and (z,y) € W, the mapping I’ has the Fréchel
derivative I, € £L(Y,%);

i) Fy : W — L£(Y,2) is a linear continuous mapping of W onto L(,%);

ii) the linear mapping Fy(xo,y0) : Y — Z has continuous inverse linear
mapping.

Then there are subsets U C X, V CY openin X, Y, respectively, 29 € U,
Yo € V, such that for every x € U there is a unique element y € V, denoted by
y = f(x), satisfying f(z) € V, F(x, f(x)) = 20, f(x0) = yo; f(2) is a continuous
mapping of U onto V.

If additionally, the Fréchet derivative I'x(xq,y0) exists and is a linear continu-
ous mapping of X onto %, then the mapping f is differentiable at the point zy and
its Fréchet derivative is given by the formula

fI(IO) _1‘;_1(1:033/0) o 1“1—,(10:?/0)1
or implicitly

Fy (2o, 0) + I%(x0, Y0) © (o) = 0.
=]
Now we define the spaces suitable for our problem.

DEFINITION 1. The space X is defined as the Buclidean space R' with elements
denoted by A\ € A C R, the affine space X = A(R'), where A(R™) denotes the
affine space associated with R™. W
The definitions of the other spaces are more complicated.

DEFINITION 2. The set of functions y(¢) € CY(R"), for i — 0,1,2, vanishing
ezponentially together with their first i derivatives as €| — oo we denote by B;;
the norms are taken in the form

Iyl = sup (@1 + ... + lyD©)) -
ceR’
The subspace of ‘B; consisting of functions such that
1
y(0) = 5 [y(—00) + y(+00)] = 0
is denoted by BY. m
Of course, B, and ‘B! are Banach spaces.
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THE DEPENDENCE OF DYNAMIC PHASE TRANSITIONS ON PARAMETERS 817

DEFINITION 3. The affine space BS associated with the normed vector space
‘BY is defined as the set of functions y(§) € C?(R') satisfying exponentially (3.2)
and such that |£]]'1m y(‘)(é) =0,1=1,2, also ezponentially. W

—00

DEFINITION 4. The normed vector space Y is defined by the equality Y —
BY x RF with the usual product norm; the affine space Y associated with Y is
defined by Y = BY x A(RF). m

DEFINITION 5. The normed vector space % is defined by the equality %
By x R*1 with the usual product norm; the affine space Z associated with Z s
defined by Z = By x A(RF™!). m

As to the mapping F' mentioned in the Implicit Function Theorem, we take
the pair I' = (A(y, &, \),G(k,A)) : X x Y — Z, where A(y) is defined by

|

A(y1 K, /\) - y” - g(yu yivﬁv’)‘)-

Let (yo(€),ka,A0) be a solution to (3.1)-(3.5) with yo(¢) € BY. The Fréchet
derivative of I with respect to (1, k) evaluated at this solution is equal to

D(y’ﬁ)p(yo, KQ, /\0)(h,, AK) = (L[y(], KO, /\0‘(h, AK)), VkG(H(), /\0) g Afi) ’

where h € BY, Ak € R*, and the operator Lyo, ko, Ao) is the Fréchet derivative
of A(y, s, \). Explicitly,

L[yo; KQ, /\0](}2‘1 A"i) = h” - g; (?/O, ?J(,), Ko, )\O)hll

— 9y (40, Y0, K0, Xo)h — Veg(y0, Yo, Ko, M) - Ak : Y — 2.
Let Lyom|%0, ko, AoJh denote the “homogeneous part” of L|yg, &g, o], i.e.
(311) Lhom[y(]a KO, AC']h = h'” . gr‘: ('!/0, .U(l), KO, )‘())h‘l
— 4, (0, Yo, Ko, Ao)h : BY — Ba.
The adjoint operator L} [yo, 50, Aa] : BS — By is defined by:

+o0

+o0
| 96 Laamlyos 0, XalEE = [ (L [v0: Ko, dolg) )A€

—00
for any two functions g and h from B or, explicitly,

(3'12) Li*wm [yO’ Ko, )‘O]h = s g.lz (yOa y(,)a K0, /\O)h’

d
— [QL(?JO,%’ROJ\G) = %gé(yo,yé,ﬁoa/\o) h.
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818 K. Piecuonr

We have

PropPosITION 1. [11] The equation
(3.13) Lom[0, K0, Aolh = 0
has two linearly independent solutions of the class C'?:
(3.14) h(€) =yp(§) € By and  ha(€) = 9(6),
where

S

(3.15) 0(€) = (€) J e,
with

S
(B16)  a() = a&mN) —exp |~ [ dLwo(Q),1h(C),m N(Q)
0

PROPOSITION 2. In the class C?, the equation L] [yo]h = 0 has two linearly
independent solutions which are

(3.17) hi(§) = hi(€)g(€),  i=1,2,

where h; () are given by (3.14), with /] € Bj.
P roof. This result can be verified by a direct check.

PROPOSITION 3. The range of Lyom|[yo, Ko, o] as an operator from B into
B() is

_l_m
Bt = {h € By / Uo(C)a(QR(C)dC = o}.

—00
P roof The result follows immediately from the definition of the adjoint
operator Ly |y, Ko, Ao] and Proposition 2. The proof is complete.
ProrosiTioN 4. The equation

(318) Lhum[y()a"_'ﬂa)\(]“z = f

has a solution in BY if and only if f € Bi. The solution is unique and given by

{00
(3.19) Mo = [ K&,

where

K(&,¢) = q<<>{w<—c) 1€~ QICUE)

+ 5lHE = O~ 1 - e |
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THE DEPENDENCE OF DYNAMIC PHASE TRANSITIONS ON PARAMETERS 819

I1(x) is the Heaviside step function

1 for >0,
”(l)_{u for z < 0.

P roof. The first part of the statement follows from Proposition 3, whereas
the second one is the result of the theory of linear differential equations [11].

TuroreMm 1. Let the functions g(y, z, k, A) and G(k, A) satisfy Hypotheses H1-
H3, and let yo(€) € Bo, kg € R¥ \g € R! be a solution to (3.1)~(3.5). If the
determinant of the matriz

V r‘](h z\)
VGa(k, A)
(3.20) D s, X)) = ,
V,,.(',‘k_.l(n,,\)
Qu(K,,A)
where .
Qu(k,A) = f?/'(Cu\)fi(Csf-‘-sf\)Vu!/(?/(Caf\),y’(C,)\),h‘r,)\)dC,

evaluated at y(&, ) = yo(§), k = Ko, A = \o, is different from zero, then
1. Problem (3.1)-(3.5) has a unique solution y T(IPIN K(A) for
¢ € R! and A contained in a vicinity of Ao, such that for any fired value of \
(é!/\) B()

2. These functions satisfy the equalities

y(&; o) = yol&), k(Xo) = Ko.

3. These functions are continuously differentiable m times with respect to A,
and the gradients V y(&, A), Vak(A) are given by (3.22) and (3.23), (3.24), respec-
tively.

Qutline of the proof

According to the Inverse Function Theorem it is sufficient to prove that
the Fréchet derivative Dy .)F'(yo, k0, A0) has an inverse. Indeed, let us ta-
e (f,¢) € By x R¥1. We are looking for (h,Ax) € BY x R* such that
Dy ) I (yo, Ko, Ao)(h, Ak) = (f,¢). Explicitly, this equation is equivalent to the
following system of linear equations:

Llyo, ko, Mo|(h, Ak) = [,

(3.21)
Vi G(ko, Mo) - Ak = .
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820 K. Pizcnor

The first equation is equivalent to

Lyom|Y0, 50, Aolb = Veg(yo, Ko, Ao) - AK + [.

According to Proposition 4, this equation has a unique solution in Bj if and
only if

j Yo(Q)a(¢, Koy M) Vg (0(€), ¥6(<), Koy Aa)dG - Ak

. / U(O)a(C Koy Ao) F(Q)dC.

This equation together with (3.21); constitute a system of i linear algebraic equ-
ations for & unknowns Ax. It has a unique solution if and only if the determinant
of the matrix (3.20) is different from zero.

From the Implicit Function Theorein we obtain the following expressions for
the derivatives V y(&, A) and Vyk(A):

+o0
(3:22)  Vayl&A) = f K(& OVrgw(G, A), ' (G, A), K(A), N)dC - Vak(A)

)

b KEQTag(E N1 (G N, ),
and
(3.23) V. G(k(N), \) - Var(d) = =VaG(k(A), A),
(3.24) Q(K(A),A) - Vas(A) = —@a(k(A), A).

The proof is complete. &

4. Applications to phase change problems

We consider the following limit value problem:
find a function w = w(¢), ¢ € R, satisfying the differential equation

1
(4.1) A(w)w” + §A‘Li(w)r,u'2 + sp(w, s, w))w' + f(w, 8,w;) =0

and the conditions (2.16)-(2.18).

Here, A(w) is assumed to be a strictly positive and continuously differentiable
function defined for all w > b, and p(w, s,wy), f(w,s,w;) are defined by (2.14),
(2.15), respectively. Also s, w,, wy, etc. are the same as in Sec. 2.
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We introduce the transformation

w

[V

wy

(4.2) w = ylw, wr, W) = o———

Wy

VA©d

Since A(C) > 0, then y.,(w, w,,w;) > 0 for w; < w < wy, or Y, (w, w,,w;) < 0 for
w, < w < w;. Hence, this transformation has the inverse y — W (y, w,,w;) such
that

(4.3) W (0, wy, w;) = wy, W (l, wy,w;) = Wy.

By applying transformation (4.2) to Eq. (4.1) we obtain for y an equation of the
type (3.1) with

sp(Wiy, wr,uy), s,wy)
— 1

‘1 .‘1 £ T ) =
WA oot ) = = vt )

fW (y, we, wy), w, wy)

W

AW, wrywD) f JAQ)dC

wy

We check easily that ¢(y,y/, s, w,, w;) as defined by (4.4) satisfies Hypotheses H1,
H2 formulated in the previous section. Let us also notice that (4.2) transforms
the limit conditions (2.16)—(2.18) into (3.2)-(3.4), and (3.10) is a counterpart of

1
(4.5) w(§ = 0) = 5 (wr +uy).
We take w; as the independent parameter A\ of Sec. 3, and as the dependent
parameters £ we take (s,w;); the function (7(x, ) is assumed in the form:

(4.6) G(8, wr,wy) = plwr, wyg — s(wy, —wy)) — plwy, ) + 82 (w, — wy).

Then the equation G(s,w,,w;) = 0 expresses the Rankine-Hugoniot condition
(2.19). The other parameters such as u;,a, b are assumed to be fixed.

We can apply now the theory developed in the previous section to the present
case of g given by (4.4), G defined by (4.6), and k = 2, | = 1, assuming of
course that we know a solution wg(€), sg, wy, wf of (4.1) and (2.16)-(2.19),
or equivalently, yo(€), so, Y, w) of (3.1)~(3.5). Having done that we have to
retransform the condition D, # 0 back to w = W (y,w,,w;). However, we resign
of doing that because we would obtain very complicated formulae. That is why
we limit ourselves to the simpler but physically the most important case when

the parameters s, w,,w; are near the Maxwell line. This is a particular phase
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The first equation is equivalent to
Lhomif/(]; KQ, f\()lh = Vg(yo, ko, Aa) * Ak + [.

According to Proposition 4, this equation has a unique solution in BY if and
only if

/ 10(€)a(¢, Ko, M) Vg (0(C), 46(C), Ko, Ma)dC - Ak

oo}

== [ 56 o M) (.
—00
This equation together with (3.21), constitute a system of A linear algebraic equ-
ations for & unknowns Ax. It has a unique solution if and only if the determinant
of the matrix (3.20) is different from zero.
From the Implicit Function Theorem we obtain the following expressions for
the derivatives Vy(&, ) and Vyk(A):

+00
(322 Vae N = [ K(&EOVaglulG )/ (6 N, m 0, MG - Dar()
+o0
+ [ KEQTagWIE ALY (6N, KO, N,
and
(3.23) VG5, N) - Vak(A) = =VaG(k(N\), ),
(3.24) Qu(k(N), ) - Van(A) = —Qa(K(A), A).

The proof is complete. ®

4. Applications to phase change problems

We consider the following limit value problem:
find a function w = w(€),€ € R', satisfying the differential equation

(4.1) A(w)w” + %A;(u;)w"z + sp(w, s, w)w’ + f(w,s,w;) =0

and the conditions (2.16)—(2.18).

Here, A(w) is assumed to be a strictly positive and continuously differentiable
function defined for all w > b, and p(w, s, wy), f(w,s,w;) are defined by (2.14),
(2.15), respectively. Also s, w,, w;, etc. are the same as in Sec. 2.
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We introduce the transformation

[ VA

wy

(4'2) w— 'U(wa Wr, “~"l) =%

Wr

JREGLS

wly

Since A(¢) > 0, then v, (w, wy, w;) > 0 for w; < w < wy, or Y, (w, w,, wy) < 0 for
w, < w < w;. Hence, this transformation has the inverse y — W (y, w,, w;) such
that
(4.3) W0, wy,wy) = wy, Wl wr,wp) = we
By applying transformation (4.2) to Eq. (4.1) we obtain for y an equation of the
type (3.1) with
sp(W (y, wr,wy), 5, W) ./
AW ((y, wr, wy))
FW (y, wy, wy),w, wy)

W

VAT Gwrw) [ /A

wy

(44) (1'('.(/1 "JI,S,wr,UM) —

We check easily that g(y,v’, s, w,, w;) as defined by (4.4) satisfies Hypotheses H1,
H2 formulated in the previous section. Let us also notice that (4.2) transforms
the limit conditions (2.16)—(2.18) into (3.2)-(3.4), and (3.10) is a counterpart of

(4.5) w( =0)= %('u'r + wy).

We take w; as the independent parameter \ of Sec. 3, and as the dependent
parameters x we take (s,w,); the function (G(x, ) is assumed in the form:

(4.6) G (8, wpy wr) = plwy, up — s(wr —wy)) — plwy, w) + 8 (wr — wy).

Then the equation G(s,w,,w;) = 0 expresses the Rankine-Hugoniot condition
(2.19). The other parameters such as 1, a, b are assumed to be fixed.

We can apply now the theory developed in the previous section to the present
case of g given by (4.4), G defined by (4.6), and k = 2, [ = 1, assuming of
course that we know a solution w(€), so, w?, w of (4.1) and (2.16)—(2.19),
or equivalently, yo(€), so, w2, w) of (3.1)~(3.5). Having done that we have to
retransform the condition D, # 0 back to w = W (y, w,, w;). However, we resign
of doing that because we would obtain very complicated formulae. That is why
we limit ourselves to the simpler but physically the most important case when

the parameters s,w,,w; are near the Maxwell line. This is a particular phase
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It is reasonable due to the physical reasons to introduce the characteristic
speeds c4(w,u) being an extension of the notion of the sound speed to general
hyperbolic systems. In our case they are defined as the real solutions (if they do
exist) of the quadratic equation [10]

¢ — epl,(w,u) + pl,(w,u) = 0.

We have
(4.20) Pl (w,u) = e (w,u)ey (w,u).

Using (4.17) and (4.20) in (4.15), (4.16) we obtain
i) if W = W -«

WAr C
2
(4.21) w{ 1(¢,w) —X(?,;,/ (€, 0, wp, )dEdC

WAL
ds
. f(C wm)pu(g:ul)dC] {
dwy
Win Wp—Wm

= (wﬂl - U,',“)C_(u‘,,“ 'U,[)C-i ('(!'rrzu U‘[)a

dw,
dwy

e (W, W)y (W y 1)

(4.22), -~ :
w=wm  C—(War, w)cy (war, uy)

and
ii) if Wy = Wh,

war &
2
4.21 / U, -———/ , 0, w, )dEd
42| [ w6, g | 60 umdede
WAL
ds
&= f (war —C)Pu(C,Ut)dC}
W W=W py
= —(wpm — wm)e—(war, w)e (war, wy),
dw, c—(wpr, wp)ep (war, uy) ( 1 1 )
4.22 e +
( )2 dwl wy=wpy C— (?Unuul)c-l—(wm,:ul) C—(wi\faul) CL('UJ}\],U[)
s
(War — Wip) (h_vl _—y
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Let us notice that, in general, the coefficient of ds/dw; in (4.21) can vanish for
some value u} of ;. Unfortunately it is difficult to determine all such critical
values of this parameter due to the complexity of the equation resulting from
equating this coefficient to zero. That is why we limit ourselves to two particular,
but important, cases for which we can explain this problem.

ExAMPLE 1. In many papers ([1 - 4, 6]), so-called isothermal phase transitions
were discussed. In this case

(4.23) pl(w,u) = 0.

Due to that the problem of the critical values of 1u; does not exist and we obtain
from (4.21)

(1 ')1) (18 ('“11\‘, - “'rr:)CQ(wm)
4,24)4 el — 4
(l‘U,‘[ W =wm war 5 ¢
16, wy —;_/ , 0wy, )dedC
wfmc i | e 0
(4.25) dw, A (w,,)
= = 3
: d'wl Wy=1Wim c” (’wﬂf )
or
(4.24), L.} . (war = Wi ) (war)
d’l‘“l Wy=wWp[ war 9 ¢ !
HC, W) | sy f JU&, 0, W JdEdE
| g J 1
Wy wpr
(4.25)y gt - ¢(war)
B0 ey E R0 )

Here, we made use of the fact that in the isothermal case

cr(w,u) = c(w) = —c—(w,u),

c(w) =/ =p,(w)-

Formulae (4.24), (4.25) generalise the corresponding expressions obtained by
TRUSKINOVSKY [2], who assumed additionally that A(w) = const and ju(w,u) =
const.

where
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ExXAMPLE 2. The model equations of hydrodynamics [10, 11]. In this case
p(w,u) is given by Eq. (2.3). We have
WAS

= ](C—- U'm)[):l(C#ul)dg =W / C——“{;”

Whf WA
War —
= /('wm — Q)P (G m)d¢ = w = bC dg.
Wm Wm

We see that in both cases the coeflicient of ds/dw; is positive for u; > 0. Hen-
ce, it remains positive for negative (but sufficiently close to zero) values of this
parameter. Unfortunately, we are unable to say whether the discussed coefficient
can vanish for some negative u;. Consequently, we can claim only that, at least
for small values of |u;| and for w; close to w,, = w,,(w) or war(u) (we re-
mind that the solutions of (4.7), (4.8) depend on w;), the solution to the problem
(2.13)—(2.19) exzists, 1s unique and is differentiable with respect to wy.

Of course, we can take the right state of equilibrium w, or the speed s as
the independent parameter and (s, w;) or, respectively, (w;, w,) as the dependent
ones and obtain a similar theorem. But from our theory we can deduce more.

ds ds
Namely, we have — >0and —

dw Wi |y =w,, dul wy=wr )
examples. Also we can use the Taylor formula, as we have proved the existence

of all the necessary derivatives, to obtain

< 0, at least in the considered

ds 5
= W) — @] U — Wm)®)
(w; — W) e F O ((wy — wm)*®)
(4.26) s(wy) =
ds 5
(wp — war) — O ((w — war)?) -
dul wy=wpg

This is the so-called “normal growth” approximation [2] introduced intuitively on
physical grounds.

In this way we obtain the following conclusions:

The speed of the phase boundary is positive if either w; < w,, and w; is close
to wy, (condensation), or w; > war and wy 1s close to wys (evaporation).

The speed of the phase boundary is negative if either w; > w,, and w; is close
to Wy, (evaporation), or w; < wyy and w; is close to wyy (condensation).
The above results constitute an extension of a theorem proved by SHEARER [6].
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