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The dependence of dynamic phase transitions 
on parameters 

K. PIECHOR (WARSZAWA) 

WE CONSIDF~R phase changes described by a second order ordinary differential equ-
ation. The equation depends parametrically on the stat es of rest and the speed of the 
wave. We prove that, under some addit ional conditions, the solution is differentia-
ble with respect to any of these parameters. As an application of the general theory 
we discuss the case when the data are close to the Maxwell line and obtain results 
generalising t hose of the previous authors. 

1. Introduction 

WE TREAT the phase boundary as a one-dimensional travelling wave connecting 
two different states of rest. The speed of the wave cannot be arbitrary but it is 
an unknown, determined totally by the value of just one of the states of rest. In 
other words, the question of existence of phase boundaries is a sor t of nonlinear 
eigenvalue problem. For a very limited number of cases we know exactly the 
structure of the phase boundary and its speed [1, 2]. In the general case, it is only 
proved that once one state of rest is given, there is a unique value of speed and 
uniquely determined other state of rest such that the travelling wave connecting 
them exists and moves at this speed [3 - 8]. 

The aim of this paper is to formulate sufficient conditions ensuring differen-
tiability of the phase boundary structure, the speed of the wave and t he other 
state of rest as functions of one of the two states of rest. 

The paper is organised as follows. In the next section we present the equation 
of the phase boundary deduced from the capillarity equations which we have 
derived from a model kinetic theory of van der Waals fluids [9]. In Sec. 3 we 
generalise this problem and prove a theorem on the differentiability of its solution 
with respect to a group of parameters treated as "independent". In the final Sec. 4, 
we apply t his theory to our model equation of phase boundaries as well as to the 
case of isothermal phase transitions. We confine our interest to the case when 
the data are close to the so-called Maxwell line, in order to avoid complicated 
formulae. In the lat ter case our results not only agree with the previous authors' 
results but also generalise them. Moreover , we show that our model theory agrees 
qualitatively wi th the isothermal one. 



http://rcin.org.pl

812 K. Pmcrr6n. 

2. The model equations of capillarity a n d the travelling wave 
problem 

T he model equations of capillari ty we are going to consider consist of the 
following system of two partial differeutial equations [9]: 

(2 .1) 

(2.2) 

2 EJ [ 5 ( EJ ) 2 2 EJ2 l + a:c EJx w6 EJx w - ws EJx2 w . 

In Eqs. (2.1) , (2 .2), the variable t > 0 is the t ime, x E R 1 is the Lagrangian 
coordinate, u is the velocity, w is the specific volwne, p is t he pressure, and ef t 
is the coefficient of viscosity. 

T he pressure formula reads 

(2.3) 
1 - tt2 a 

p - p(w,u) = 2('w- b)- w 2 ' 

where a and b are positive cons tants; a is the ratio of the mean value of the 
potential of the at t ractive intermolecular forces to t he mean kinet ic energy of 
molecules, and b characterises close packing. In the adopted dimensionless units 
b is equal to unity. 

Next , c > 0 characterises the order of magni tude of t he viscosity effect , aud 
J-L = J-L(w ,u) is given by [ 9] 

w2 ( I - u2 ) 1 2b2 p2(w) 
J-t(w, u) - 8w3p(w) ' (2.4) w 

p(w) ｾ ＭＭ ｢Ｎ＠
w -

Finally, a:c2 , with a: = const > 0, characterises the intensity of the capillari ty 
effects which are represented by the space derivative of the term in the square 
brackets [ ]. 

We consider Eqs. (2.1), (2.2) in the domain 'D defined by [10] 

(2 .5) 'D = { (w ,u) : w > b, u2 < 1 - ; b' ;b < 1} . 

For (w,u ) E 'D, the mass density 1/w does not exceed the close-packi ng density 
1/ b, and the pressure p and the viscosity J-L are positive. 

A t ravelling wave solut ion to (2.1), (2.2) is a solution of the form 

(2.6) (w, u)(x, t) = (w, ｵＩＨｾＩＬ＠ c x - st R ' .., = -c- E ' 
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such t hat 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

lim (w, ｵＩＨｾＩ＠ = (wt , tLt ), 
ｾ ＭＭ］＠

lim (w,u)(O = (wr ,Ur), 
ｾＭ Ｍ ｬ Ｍ ＰＰ＠

lim (w 1,u1
) = (0, 0), 

ｾＭﾱ ｯｯ＠

lim (w" ,u") = (0 , 0) , 
ｾ Ｍ ﾱｯｯ＠

1 cl 
where s = const is the wave speed, and () = -l (). 

( ｾ＠

The following procedure is routine. We subst itute (2.6) into Eqs. (2.1 ), (2.2) , 
perform one integration with respect to ｾＬ＠ aml use the limit conditions (2 . 7)-
(2.10). Having done that , we find that the left and right limit states are related 
by 

(2.11) SWr + Ur = SW£ + Ut, 

T hese relations are called the Rankine-Hugouiot couditions and were in detail 
analysed in [10]. 

Next, we find the velocity u . It is given by 

(2.12) u = Ut - s(w - Wt), 

where w = w(O is a solution of the following limit value problem: 

(2.13) 

where 

(2. 14) 

(2.15) 

[ 2 11 5 12] ( ) I 1· ( ) 0: W5W - W6W + ｓ ｾ ｌ＠ W,S,Wt W -1- W,S,Wt = 0, 

ｾ ＨｷＬ＠ s, Wt) = ｾ ＨｷＬ＠ Ut - s (w- w1) ) > 0, 

f(w, s , wt) = p (w, Ut- s(w- Wt)) - p(wt, ut) + s2 (w- Wt) , 

subject to the conditions 

(2. 16) lirn w(O = Wt, 
ｾＭＭ ］＠

(2.17) lim ｷＨｾ Ｉ＠ = Wr, 
ｾ Ｍ Ｍ Ｑ Ｍ ｯｯ＠

(2. 18) li m w1 
ＨｾＩ＠ = 0, lim w" Ｈ ｾＩ＠ = 0. 

ｾ ｾﾱｯｯ＠ ｾｾﾱｯｯ＠
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These conditions must be supplemeut,ed by Eqs.(2.11) which we write in the form 

(2.10) f (wt, s, wt) = 0, f (wn s, Wt ) -- 0. 
In this paper we assume that 

(2.20) 
Our problem contains a uumLer of parameters like W r , s, w1, ul , etc. These 

parameters are not independent , siuce some of them are related Ly the Rankiue-
Hugoniot conditions (2.11 ). However, our problem, under assumptions (2.10), 
(2.20) , has a solution if and only if the parameters satisfy an additional relation, 
unknown in advance. The total number of relations, including the implicit one, is 
less thar1 the total number of parameters. Therefore, we can split them into two 
groups: dependent and independent ones. Of course, this spli Lting is not dictaLed 
by the limit value problem itself, it is rather a result of our current interest . Also, 
it is not obligatory to consider the dependence of solutions on all parameters; 
simply, we can treat some of them as fixed. 

Altogether, there is a great variety of specific problems we can be interested 
in. Therefore, in order to avoid repeating similar arguments, each time we ask 
a question concerning the character of dependence of the solution on certain 
parameters we choose, we formulate an "aLstract" problem of dependence of the 
solution on the parameters and prove its solvability. In Sec. 4 we show how to 
reduce our specific problem to the "absLract" one. 

Let us explain that we cannot answer the posed question Lasing on the well 
known theorem on continuous dependence of solutions of ordinary differential 
equations ou the parameters, Lecause it is not clear in advance whether the 
implicit, unknown relation between the parameters is a differentiable function or 
not. 

3. The abstract problem 

The problem we consider consists in determining a function and a set of 
functions ｹＨｾ Ｌ＠ ..\) : R1 x 11 ｾ＠ Y C R1 , and a set of functions r,(..\) = 
(r,I(A) , r,2(A), ... , r,k(A)) : J1 ｾ＠ K, where 11 is an open subset of R1, ]( is au 
open subset of Rk , wd the range Y of ｹＨｾＬ＠ A) contains the closed interval [0,1]. 
The functions ｹＨｾ Ｌ＠ A) and r,(..\) are such that: 

i) y( ｾ Ｌ＠ A) satisfies the differential equation 

(3.1) y" = g(y, y', r, , ..\) , 

and the limit conditions: for any A E 11 

(3.2) li m ｹＨｾＬ＠ A) = 0, 
( ...... - 00 

lim ｹＨｾ Ｌ＠ A) = 1, 
( ...... +eo 
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(3.3) 

(3 .4) 

lim Ｈｹ Ｇ Ｈｾ Ｌ ａ ＩＬ ｹＢＨｾ Ｌ ａＩＩ＠ = (0, 0) , 
ｾｾＭｯｯ＠

li m Ｈｹ Ｇ Ｈｾ Ｌ ａＩＬｹ Ｂ ＨｾＬａＩＩ＠ = (0, 0), 
f: ->+oo 

where the dash denotes different iation with respect to ｾＭ
ii ) T he functions K:i (A) , i = J, 2, ... , k - 1, satisfy a system of k - l algebraic 

equations of the form 

(3.5) i - 1,2, .. . , k - 1. 

We take the following assumptions concerning the functions g and C (K:, A) = 
( G 1 (K., A) , G2 ("",A) , ... , G k- 1 (K:, A) ): 

Hl. g(y, z, K, A) E cm 1-T (Y X 11 X ]( X 11) for some integer m, > 0, T > 0. 
H2. For any (K, .-\) E J( X 11 

(3.6) 
(3.7) 
(3 .8) 
(3.9) 

Co:vr:vrENTS 

g(O, 0, '"• .-\) = 0, 
g( l ,O,"",A) = 0, 
ｧｾＨ ｏ Ｌ＠ 0, K, A) > 0, 
ｧ ｾＨｬ Ｌ＠ 0, K, A) > 0. 

i = l,2, ... , k - 1. 

i) Conditions (3 .6), (3.7) make Eq. (3 .1 ) and t he limit values (3.2)- (3.4) com-
patible. 

ii) Conditions (3.8) , (3.9) are crucial for our considerations. They mean that 
the rest p oints (0,0) and (1,0) in the (y , y') - plane are saddle points. 

Equation (3.1) is autonomous, i.e. if y(O is its solution so is ｹ Ｈｾ＠ + c), for any 
constant c. To get rid of this ambiguity we impose an additional condition: 

(3.10) 
1 1 

y(O , A) = "2[y( - oo, A) + y( l-oo , A)] = 2. 

Our aim is to prove that, roughly speaking, if y0(0, Ko E Rk , Ao E R1 is a solution 
to (3.1 )- (3.5) then, under some additional conditions to be specified, the problem 
has also a solution in a vicinity of /\ 0 . T he Implicit Function T heorem seems to be 
the proper tool to perform this task, but some difficulty arises from the fact that 
t he number of unknowns is greater than that of the equations. Elimination of this 
difficulty is possible owing to the fact that we are looking for special solutions, 
namely those which satisfy (3.2) , (3.3) for any A. It means that we have to be 
cautious and choose suitable functional spaces. 

Since our course of action follows the Implicit Function Theorem we star t, for 
t he reader's convenience, from its presentation (cf. [12]) 
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IMPLICIT FUNCTION THEOREM [12j. Let 
(i) X , Y, Z be rwrmed affine spaces and X , 11 , Z the corresponding vector· 

spaces; 
(ii) 'D(11 , Z,) be the set of lin ear continuous mappings of the space 11 onto Z ; 
(iii) W be an open subset of X x Y, and (xo, yo) E W, .l"o E X , Yo E Y; 
(iv) F : W-+ Z be a continuous mapping of W onto Z and F(xo, Yo) - zo, 

Zo E Z. 
If 
i) for every fixed x E X and ( x, y) E W, the mapping F has the F'rechet 

derivative Fy E £(11, Z ); 
ii) Fy : W -+ £(11, Z) is a linear continuous mapping of W onto £(11 , Z ); 
iii) the linear mapping Fy(Xo, yo) : 11 -+ Z has continuous inverse linear 

mapping. 
Then there are subsets U c X, V c Y open in X, Y, respectively, .l"o E U, 

Yo E V, such that for every x E U there is a unique element y E V, denoted by 
y = f( x ), satisfying f(x) E V, F(x, f(x)) = Zo, f (xo) = Yo; J(x) is a continuous 
mapping of U onto V . 

If additionally, the F'rechet der·ivative Fx(Xo, yo) exists and is a linear continu-
ous mapping of X onto Z, then the mapping f is differentiable at the point xo and 
its F'rechet derivative is given by the formula 

f' (xo) - - Fy- 1 (xo, Yo) o Fx(xo, Yo), 

or implicitly 
Fx(xo, Yo) + l"Y(xo, Yo) o f'(xo) = 0 . 

• 
Now we define the spaces suitable for our problem. 

DEFINITION 1. The space X is defined as the Euclidean space R1 with elements 
denoted by). E A C R , the affine space X = A(R1), where A(Rn) denotes the 
affine space associated with Rn. • 
The definitions of the other spaces are more complicated. 

DEFINITION 2. The set of functions ｹＨｾＩ＠ E Ci(R1 ), for i = 0, 1, 2, vanishing 
exponentially together with their first i derivatives as ＱｾＱ＠ -+ oo we denote by 'Bi; 
the norms are taken in the form 

llvlli = sup, ＨｬｶＨｾＩｬ＠ + ... -1 lv(i)(OI). 
ｾｅｒ＠

The subspace of 'Bi consisting of functions such that 
1 

y(O) = 2 [y( -oo) + y(+oo)l = 0 

is denoted by 'B?. • 
Of course, 'Bi and 'B? are Banach spaces. 
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D EFINIT ION 3. The affine space Bg associated with the normed vector space 
:sg is defined as the set of functions ｹ ＨｾＩ＠ E C2 (R 1) satisfying exponentially (3.2) 
and such that lim ｹ Ｈ ｩ ＩＨ ｾＩ＠ = 0, i = 1, 2, also exponentially. • 

IEI-oo 
D EPINITION 4. The norm ed vector space }J is defined by the equality Zf = 

:sg x Rk with the usual product norm; the affine space Y associated with }J is 
defined by Y = ｂｾ＠ x J\ (Rk). • 

DEFINITION 5. The normed vector space Z is defined by the equali ty Z = 
13a x Rk- l with the usual product norm ; the affin e space Z associated with Z is 
defined by Z = B0 x J\(Rk-l) . • 

As to the mapping F mentioned in the Implicit Function Theorem, we take 
the pair F = (A(y, K, >.), G(K, ,\)) :X x Y ｾ＠ Z, where A(y) is defined by 

A(y,K,A) = y" - g(y,y',K, A). 

Let Ｈ ｹ ｯＨ ｾＩ Ｌ＠ Ko, >-o ) be a solution to (3.1)-(3 .5) wi th Yo(O E :sg. T he Ftechet 
derivative of F with respect to (y, K) evaluated at this solution is equal to 

where h E :sg, 6.K E Rk, and the operator L[y0, Ko , >.0] is the Ftechet derivative 
of A(y, K , >.). Explicitly, 

Ｍ ｧｾＨｹｯＬ＠ yb, l'i{J , >-o) h - V ._g(yo, yb, Ko, >-a) · 6.K: Zf ｾ＠ Z. 

Let Lhom[Yo, l'i{J, >-o]h denote the "homogeneous part" of L[yo, l'i{J, >-a], i.e. 

(3.11) 

Ｍｧ ｾ Ｈｹｯ Ｌ＠ Yb, Ko, >-o)h : :sg ｾ＠ 13a. 
The adjoint operator LhomlYo , Ko, >.a] : :sg ｾ＠ 13a is defined by: 

+oo +oo 
j g(O(Lhom[Yo, l'i{J , ａｯ ｝ ｨ ＩＨｾＩ､ ｾ＠ = j (LhomlYo, l'i{J, ＾Ｍｯ ｝ ｧＩＨｾ Ｉ ｨ Ｈ ｾＩ､ｾ＠

- 00 -00 

for any two functions g and h from :sg or , explicitly, 

(3.12) 
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We have 
Pn.oPOSTT TON 1. [11] The equation 

(3.13) 

has two linearly independent solutions of the class C2 : 

(3.14) 

where 

(3.15) 

with 

(3.16) q(l;) ｾ＠ q(i; , <, >.) ｾ＠ exp [ -l g; (yo( (), ｹｾ＠ ((), <, >.)d(() ] · 

P rtOPOSTTTON 2. In t he class C2, t he equation Li,orn [Yo]h = 0 has two linearly 
independent solut ions which are 

(3 .17) ｨｩＨ ｾＩ＠ = ｨｩ Ｈ ｾＩｱ Ｈ ｾＩ Ｌ＠ i = 1, 2, 

where hi(O are given by (3.14) , with h7 E '138. 
P r o o f. This result can be verified by a direct check. 
Pn.oPOSTT ION 3. T he rauge of LJ.orn [Yo , Ko, >-o] as an operator from :Bg into 

'Bo is 

:B.} ｾ＠ {hE :Bo 'I ｹｾＨＨＩｱＨＨＩｨＨＨＩ､ Ｈ＠ ｾ＠ 0}. 
P r o o f. The result follows immediately from the definition of the adjoiut 

operator Li,om [yo, KQ , >-o ] and P roposit ion 2. T he proof is complete. 
P n.o POSTT ION 4. T he equat ion 

(3.18) Lho m [yo, fi".o, Ao] h = f 

has a solution in Bg if and only if f E B{ The solution is unique and given by 
t oo 

(3.19) ｨ Ｈ ｾＩ＠ = J ｽＨ ＨｾＬ＠ () f (()d( , 
-00 

where 
ｽＨ Ｈ ｾ Ｌ＠ () = q(() { [II ( - () Ｍ ＱＱ Ｈｾ Ｍ ＨＩ ｝ＧＡＹＨＨＩｹ｢ Ｈ ｾＩ＠

+ ｾ｛ ｈ Ｈ ｾＭ () - if ((- ｾＩ｝ ﾷ ｏ Ｈｾ Ｉｙ ｾ ｊＨ ＨＩｽ Ｌ＠
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1 f ( 1..') is the Heaviside step function 

JJ (:1..') { 
1 for x > 0, 
0 for 1..' < 0. 

P roof. The first part of the statemcut follows from Propositiou 3, whereas 
the second one is the result of the theory of linear differential equations [11 J. 

THEOREM 1. Let the functions r;(v , z, ｴ ｾＬ＠ ;\) and ｇＨｾＬ＠ ;\) satisfy Hypotheses I-11-
I-13 , and let ｙｯＨｾＩ＠ E 132, t>{) E TI/', >-o E R1 be a solution to (3.1)- (3.5). If the 
deter·minant of the matrix 

(3.20) 

wher·e 
+oo 

V ,.;.G ｉＨｾ＾ Ｎ Ｌ［｜Ｉ＠

V" G 2 ( ｾ＾ Ｎ Ｌ＠ ;\) 

V "Gk-1 ＨｾＬ＠ ;\) 
ｑＬＮ［ＮＨｾＬＬ＠ ;\) 

Q,.;.(t.:, ;\) = J ｹＧＨＨＬ［｜ＩｱＨＨＬｴ＾ Ｎ ＬａＩｖＬＮ［Ｎｲ［ＨｹＨＨ Ｌ ［｜ＩＬｹＧＨＨＬ［｜ＩＬｾ Ｌ ［｜Ｉ､Ｈ Ｌ＠
-oo 

evaluated at ｹＨｾＬ＠ ;\) = ｹｯＨｾＩＬ＠ ｾ＠ = ｾ＾ｯ Ｌ＠ ;\ - ｾ ｜ｯ Ｌ＠ is different from zero, then 
1. Pmblem (3.1)- (3.5) has a tmiqtte solut·ion y = ｹＨｾ Ｌ＠ ;\) , ｾ＠ K.(;\) f or· 

ｾ＠ E R1 and ;\ contained in a vicinity of Ao, such that for any fixed value of /\ 

ｹＨｾＬ［｜ Ｉ＠ E ＱＳ ｾ Ｎ＠

2. These functions satisfy the eqttahlies 

ｹＨｾＬ＠ >-o) - ｙｯＨｾＩ Ｌ＠

3. T hese functions are continuously differentiable m times with respect to ;\, 
and the gmdients V ^ＮＮｙＨｾ Ｌ＠ ［｜ＩＬｖ＾ＮＮｾ Ｈ［｜Ｉ＠ ar·e given by (3.22) and (3.23) , (3.24), respec-
tively. 

Out li ne of the pr oof 
According to t he Inverse Function Theorem it is sufficient to prove that 

the Frechet derivative D(y,K)F(y0 , K.o, >.0 ) has an inverse. Indeed, let us ta-
ke (J, cp) E 130 x Rk-l. We are looking for (h, ＶｾＩ＠ E ＱＳ ｾ＠ x n_k such that 
D(y,,.;.)F(yo, ｾｯＬ＠ >-o)(h, ｄＮｾＩ＠ = (f, cp). Explicitly, this equation is equivalent to the 
fo llowing system of linear equations: 

(3.21) 
L[yo, ｾｯＬ＠ >-o J(h, 6K.) = }', 

V "G(K{J, >-a) · Ｖｾ＠ = cp. 
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T he first equat ion is equivalent to 

Lt.om[Vo, t>o,>-olh \i',_g(yo,K.o,>-o) · f:> t"-1- f. 

According to Proposition 4, this equation has a unique solutiou in 138 if aud 
only if 

00 J ｹｾＨ ＨＩｱ Ｈ Ｈ Ｌ＠ K.o , >-o)\7 ,_g(vo((), ｶ ｾ ＨＨＩＬ＠ /'l,o, >-o)rl (. i:>K. 
- <Xl 

<Xl 

= - j vb(()q((, K.o, >-o)f(()d(. 
-00 

T his equation together wi th (3.21)2 constitute a system of k linear algebraic equ-
ations for k unknowns i:> K. . It has a unique solution if and only if the determinant 
of the matrix (3.20) is different from zero. 

From the Implicit Function T heorem we obtaiu t he following expressions for 
the deriva tives \7 ^Ｎ ｙＨｾＬ＠ ,\) and \7 ""·(.-\): 

+oo 

(3 .22) ｜Ｑ ＢｹＨｾＬ ＮＭ｜Ｉ Ｍ j ｦＨ ＨｾＬＨＩ｜ｩＧＬ｟ｧＨｹＨＨＬ ＮＭ｜ ＩＬ ｹＧ ＨＨＬＮＭ｜ＩＬｩｩＨＮＭ｜ＩＬＯ｜Ｉ､Ｈ＠ · \7,\ii(.-\) 

and 

(3.23) 

(3.24) 

-oo 

t oo 

j J<: Ｈ ｾ ＬＨＩｖ＠ ［ｾＮ ｧ ＨｹＨＨＬ＠ >-), v' ( (, >- ), "'(>-), >-)d(, 
-00 

\7 ,.G(t1.(.-\) , .-\) · \7 >."·(.-\) = - v\G(K.(.-\), .-\), 

Q,_(K.(.-\), /\) · \7 ""'(.-\) = Ｍｑ ［ｾＮ ＨｋＮＨＮＭ｜ＩＬ＠ .-\). 

T he proof is complete. • 

4. Applications to phase cha nge problems 

We consider the following limi t value problem : 
fi nd a function w = ｷＨＨＩＬｾ＠ E R 1

, satisfying the differential equation 

(4 .1) 
1 

A(w)w" + Ｒ ａｾ ＨｷＩｷ Ｇ Ｒ＠ 1- SJt(w, s,w1)w' + f (w,s,wt) - 0 

and the conditions (2.16)- (2.18). 
Here, A(w) is assumed to be a strict ly p ositive and con tinuously differentiable 

function defined for all w > b, and f-L(w, s, wt), J (w, s, w1) are defined by (2.14), 
(2.15), respectively. Also s, Wr, W t , etc. are the same as in Sec. 2. 
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We introduce the transformation 
IU 

J {A(()d( 
(4.2) ( ) w, 

w---+ V w,w,.,W[ = _.:.W_r __ _ 

J {A(()d( 

Since 11(() > 0, then ｶｾ ＬＨｷＬ＠ w,., wL) > 0 for 1t'L :S w :S Wn or ｶｾＨｷＬ＠ Wn Wt) < 0 for 
'Wr :::; w:::; Wt. Hence, this transformation has the inverse V ---+ vV(v,w,.,wL) such 
that 
(4.3) W(O,wnwt) = Wt, \V(l ,w,. ,wt) = w,.. 

By applying transformation (4.2) to Eq. (4.1) we obtain for van equation of the 
type (3 .1) with 

(4.4) ( 1 ) _ _ Sf.t.( \ V(y, 111r·, v•L), s, 'lilt) 1 

g v,v ,s,w,.,Wt - A(W((v,w,.,wt)) V 

f(W(v, w,., 7t'L), w, 71'1) 
1llr 

j,...-;A'"'(\,=V-;-(v-, w-,.-, w-t""")) j {A(()ct( 

We check easily that g(y, y1
, s, w,., Wt) as defined by (4.4) satisfies Hypotheses H1, 

H2 formulated in the previous section. Let us also notice that ( 4.2) transforms 
the limiL conditions (2.16)- (2.18) into (3.2)-(3.4), and (3.10) is a counterpart of 

(4.5) ｷＨｾ＠
] 

0) = 2(11',. t- 1L't). 

We take Wt as the independent parameter A of Sec. 3, and as the dependent 
parameters r. we take (s,w,.); the funcLi ou G(K.,A) is assumed in the form: 

T hen the equa tion G(s, W7., Wt) - 0 expresses the llankine-Hugoniot condition 
(2.19). T he other parameters such as Ut, a, bare assumed to be fixed . 

We can apply now the theory developed in the previous section to the present 
case of g given by (4.4) , G defined by (4.6) , and k = 2, l = 1, assuming of 
course that we know a solution ｷ Ｐ ＨｾＩＬ＠ s0 , ｷｾＬ＠ wP of (4.1) and (2.16)-(2.19), 
or equivalently, ｶｯＨｾＩＬ＠ so, ｷｾＬ＠ wP of (3. 1)- (3 .5). Having done that we have to 
retransforrn the condition D;;. I= 0 back to w = W(v, w,., wt). However, we resign 
of doing that because we would obtain very complicated formulae. That is why 
we limit ourselves to the simpler but physically the most important case when 
the parameters s, w,., Wt are near the Maxwell line. This is a particular phase 
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T he first equat ion is equivalent to 

Lhou, [Yo, Ko, .\o]h - \1 "g(yo, l'l{J , .\o) · 6.11, +f. 
According to P roposition 4, this equation has a unique solution in 138 if and 
only if 

00 

j ｹｾＨＨＩｱ Ｈ Ｈ Ｌ＠ Ko , .\o)\l ,.g(yo((), ｹｾ Ｑ Ｈ ＨＩ Ｌ＠ Ko , .\o)d( · 6. 11, 
-00 

00 

= - j vb( ()q( (, "·o, .\o)f( ()cl( . 
- oo 

T his equation together with (3.21)2 const itute a sys tem of k linear algebraic equ-
ations for k unknowns 6.11,. It has a unique solut ion if and only if the determinant 
of the mat rix (3. 20) is different from 7.ero. 

From t he Implicit FUnction Theorem we obtain the followiug expressions for 
the derivatives \1 ^ＮｙＨｾ Ｌ＠ .\) and \1,\ 11.(.\) : 

+oo 

(3.22) ｜ｬ＾ＮｹＨｾ Ｌ Ｎ｜Ｉ＠ = j ｋ ＨｾＬＨＩ ｜ｬＢ ｧＨｹＨＨＬ Ｎ｜Ｉ Ｌ ｹ Ｇ ＨＨＬ Ｎ｜ ＩＬ ＱＱＬＨ Ｎ｜ＩＬ Ｎ｜ Ｉ ､ Ｈ＠ · \1>.11,(.\) 

and 

(3.23) 

(3.24) 

-oo 

-1 00 

+ J ＡＨ ＨｾＬ＠ () \1 >.g(y((, .\), y'((, .\), 11.(.\), .\)d(, 
- oo 

\1 " G(1.:(.\), .\) · \1 >.n.(.\ ) - - \1 >.G(11,(.\), .\), 

Q" (K( A), .\) · \1 >. t>.(.\) = - Q>. (K(A), .\). 

The proof is complete. • 

4. Applications to phase change problems 

We consider the following limit value problem: 
fi nd a /tmction w = ｷＨｾＩＬｾ＠ E R 1

, satisfying the differ·ential equation 

(4.1) 
1 

A(w)w" + Ｒ ａｾ ＨｷＩ ｷＧ Ｒ＠ + SJt(w, s, w1)w' + f (w, s, wt) ;:_ 0 

and the condi tions (2 .16)- (2. 18). 
Here, A(w) is assumed to be a strictly positive and continuously differentiable 

function defined for all w > b, and Jt(w, s, wt) , J (w , s, Wt) are defined by (2. 14), 
(2 .15) , respectively. Also s, Wr , Wt , etc. are the same as in Sec. 2. 
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We introduce the trausformation 
w 

j V A(()d( 

(4.2) ( ) 
WL W -t y W, Wr, Wt = ..,:.w,--r ___ _ 

J {A(0d( 

Since A(( ) > 0, then v:V(w, Wr, wt) > 0 for Wt :s: tu :s: Wr, or ｙｾｵＨ ｷＬ＠ Wr, 'U.'t) < 0 for 
Wr :S: w :S: Wt. Hence, this transformation has the inverse y -+ W (y, Wr, Wt) such 
that 
(4.3) W(O,Wr ,wt) = Wt, \V(l ,Wr,Wt) = Wr· 

By applying t ransformation (4.2) to Eq. (4. 1) we obtain for y an equation of the 
type (3.1) with 

(4.4) ( 1 Ｉ Ｍ Ｍｳｾｴ Ｎ Ｈ ｜ ｖＨｹＬｷｲＬｷｴＩ Ｌ ｳＬｷｴＩ＠ 1 
g y, Y, S, Wr, Wt - A(\·V( ( )) Y y,wr,Wt 

J(W (y, w,., 11•t), 11•, 11't) 
'ltJr 

J A(W(y, Wr , Wt)) J {A(0d( 
WL 

We check easily t hat g(y , y1
, s, Wr, Wt) as defined by ( 4.4) satisfies Hypotheses H1, 

I-12 formulated in the previous section. Let us also no tice that (4.2) transforms 
the limit conditions (2.16)-(2.18) into (3.2)-(3.4), and (3. 10) is a counterpart of 

(4 .G) I 
W ( ｾ＠ = 0) = 2 (V 'r + 1L't) · 

We Lake 'Wt as the independent pararneLer ,\ of Sec. 3, and as the dependent 
parameters K. we take (s , Wr ); t he function C(K., ,\) is assumed in the form: 

T hen the equation G(s, Wr, wt) = 0 expresses the Rankine-Hugoniot condition 
(2.19). T he other parameters such as U t, a, bare assumed to be flxed. 

We can apply now the t heory developed in the previous section to t he present 
case of g given by (4.4), G defined by (4.6), and k = 2, l = 1, assuming of 
course t hat we know a solution w0 (0, s0 , ｷｾＬ＠ w? of (4.1) and (2 .16)-(2.19), 
or equivalently, ｹｯＨ ｾ Ｉ Ｌ＠ so, ｷ ｾ Ｌ＠ w? of (3.1)-(3.5) . Having done that we have to 
retra.11sform the condition DK f= 0 back tow = W(y, Wr , Wt). However, we resign 
of doing that because we would obtain very complicated formulae. That is why 
we limit ourselves to the simpler but physically the most impor tant case when 
t he paramet ers s, Wr, Wt are near the Maxwell line. T his is a particular phase 
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It is reasonable due to the physical reasons to introduce the characteristic 
speeds C±(W, -u) being an extension of the notion of the sound speed to general 
hyperbolic systems. In our case they are defined as the real solutions (if they do 
exist) of the quadratic equation [ 10 J 

We have 
(4.20) 

c2
- ｣ｰｾＨｷＬ＠ -u) -1 ーｾＨｷ Ｌ＠ -u) = 0. 

ｰｾＨｷ Ｌ＠ -u) = c_ (w, -u)c.1. (w, -u). 

Using (4.17) and (4.20) in (4 .15), (4.16) we obtain 
i) if Wt = Wm: 

(4.21)1 

(4.22)1 

and 
ii) if Wt = WAJ, 

(4.21)2 ｛ｚｾＨＨＬｵｩＩ＠

(4.22)2 

( 

ＭａｾＨＩ＠ J ｦＨｾＬ＠ 0, ｗｭＩ､ｾ｣ｬＨ＠
1Um 

( 

, ds -J ((- Wm)pJ(, -ut)d( -
1
-

'UJM l 
Wm 

c_ ( w m , Ut )c+ ( w," ut) . 
c_ ( w M , 'Ut) c+ ( w M , Ut) ' 

('Wt 
Wt = W ·m. 

ＭａｾＨＩ＠ J ｦＨｾＬ＠ 0, ｗｭＩ｣ｬｾ､Ｈ＠
lUnL 

-TwM ＭｯｲｾＨｃｵｌＩ､Ｈｬ＠ ｾｾｾ＠ ｷＬ ｾ ｷｍ＠
= -(WM-Wm)c_ (wM, -ut) c.,.(wM , ut), 

ds / (wAr- Ww) -d . 
. 1/Jt Wt = W,n 



http://rcin.org.pl

Trm DEPENDENCE OF DYNAMI C PHASE TRANSIT IONS ON PARAM!';T!';JlS 825 

Let us notice that, in general, the coefficient of rls j dwt in (4.21) can vanish for 
some value u; of Ut· Unfortunately it is d ifficu lt to determine all such critical 
values of this parameter due to the complexity of tl1e equation rcsultiug from 
equatiug this coefficie nt to zero. T hat is why we lilllit ourselves to two particular, 
but important, cases for which we eau explain this problem. 

EXAMPLE 1. In many papers ([1 - 4, 6]), so-called isothermal phase transitions 
were discussed . In this case 
( 4.23) ｰｾＨｷＬ＠ u) = 0. 

Due to that the problem of the critical values of Ut does not exist and we obtain 
from (4.21) 

ds I 
dwt wt= wm ｗｾ｜Ｑ＠J Jl((, Ut) 

Wm 

(!1.25)1 dwr I 
d'Wt Wt= W,n 

or 

(!1.2·1)2 

(!1 .25)2 

( ·) J - !1(() ｊＨｾＬ＠ 0, ｗ ＱＱＱ Ｉ､ｾ､Ｈ＠
11J,n 

c2 (·w"') 
c2(wAI)' 

2 ( 
- Jl(() j ｦＨｾＬ＠ 0, ｷＬＬＬＩ､ｦ［Ｌ､ｾ＠

WM 

c2
(Wt.I) 

c2 (wm) · 

Here, we made use of the fact that in the isothermal case 

c+(w, u) = c(w) = -c_(w, u), 

where 
c(w) = J ＭｰｾＨｷＩＮ＠

Formulae ( 4.24) , ( 4.25) generalise the corresponding expressions obtained by 
TRUSI<I NOVSI<Y [2], who assumed additionally tha t A(w) = const and p,(w, u) = 
const. 
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E XAMPLE 2. The model equations of hydrodynamics [10, 11]. In this case 
p(w, u) is given by Eq. (2.3). We have 

WJ /I.f I WJ /1£ ( - 11!m 
- ( ( - W111 )Pu ((, ut)d( - Ut ( _ b d(, 

W m W m 

We see that in both cases the coefficient of dsj dwt is p ositive for Ut 2: 0. Hen-
ce, it remains posit ive for negative (but sufficiently close to zero) values of this 
parameter. Unfortunately, we are unable to say whether t he discussed coefficient 
can vanish for some negative Ut. Consequently, we can claim onl y tha t , at least 
for small values of lud and for Wt close to Wm = wm(ut) or W/lf(1Lt ) (we re-
mind that the solutions of ( 4. 7) , ( 4.8) depend on Ut), the solution to the problem 
(2.13)- (2.19) exists, is unique and is differentiable with respect to Wt. 

Of course, we can take the right sta te of equilibrium Wr or the speed s as 
the indep endent parameter and (s,wt) or, respectively, (Wt,Wr) as t he dep endent 
ones and obtain a similar theorem . But from our theory we can deduce m ore. 

Namely, we have ids I > 0 and dds I < 0, at least in the considered 
CWt W t = W m Wt Wt= W/I.f 

examples. Also we can use the Taylor formula , as we have proved the existence 
of a ll the necessary derivatives , to obtain 

ds I (Wt - Wm) -
1
- I 0 ((wt - Wm)2), 

( Wt Wt=- W m 

(4.26) s(wt) = 

ds I (wt - W Ar) d 
Wt W£- WM 

This is the so-called "normal growth" approximation [2] introduced intuitively on 
physical grounds. 

In this way we obtain the following conclusions: 
The speed of the phase boundary is positi ve if either Wt < Wm. and Wt is close 

to Wm {condensation), or Wt > W!lf and Wt is close to WM {evaporation). 
The speed of the phase boundar·y is negative if either Wt > Wm and Wt is close 

to Wm {evaporation), or Wt < Wfl1 and Wt is close to wu {condensation). 
The above results constitute an extension of a theorem proved by SHEARER l6J . 
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