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Existence and uniqueness result for Stokes flows
in a half-plane

M. KOHR (CLUJ-NAPOCA)

Tuis parer is concerned with the study of the two-dimensional Stokes flow past a
smooth obstacle near a plane wall. Using the boundary integral formulation, the flow
is represented in terms of a combined distribution of a single-layer and a double-layer
potentials of Green's functions over the boundary of the obstacle. The problem is
formulated as a set of Fredholm integral equations of the second kind for the density
of the potentials. The existence and uniqueness results of the solution are obtained.
Numerical results are presented in the case of a rigid circular obstacle moving parallel
or normal to the plane wall.

1. Introduction

THE MOTION of a body of simple shape, near a plane wall, with small Reynolds
number, has a long record in fluid dynamics research. For example, the motion
of a rigid sphere parallel to a plane wall was treated by H. FAXEN (see [5]).
The author used the method of reflections and determined a scheme of successive
iterations, which solved the associated boundary value problem. The problem of a
sphere moving perpendicular to a plane rigid wall was solved by H. BRENNER (see
[1]). He used the general bipolar coordinate solution. By applying the method
of reflections, S. J. WaKIYA (see [8]) determined the motion of a sphere toward
a plane wall. H. Powgr, G. MIRANDA and R. GONzALES (see [15]) obtained
an exact formulation for the slow viscous flow due to the arbitrary motion of
a particle of arbitrary shape near a plane wall. This formulation is given in
terms of a system of Fredholm integral equations of the first kind. The authors
used the Green's function, which is equal to zero on the rigid wall. R. Hsu
and P. GANTOS (see [9]) determined an integral equation method, based on the
Green'’s integral representation formulae, instead of only a single-layer potential.
This method solved the problem of the motion of a rigid body in a viscous fluid
bounded by a plane wall. Using the method of second kind integral equations,
S. J. KARRILA and S. KiM (see [10]) deduced an elegant solution for the problem
of multiple particles in the unbounded flow with an exterior container as the
boundary. Karrila and Kim’s method was called the Completed Double-Layer
Boundary Integral Equation Method, because, it uses the idea of completing the
deficient range of the double-layer operator. Also, this method is a deflation
procedure needed to give an integral operator with a spectral radius strictly less
than one. The author shows Lha.t_})'\is,method iF the most efficient one when
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the mobility problem is numerically solved. In such a problem the force and the
torque acting on each particle are given and the unknown motion of the particle
is determined.

A second kind of integral equation formulation was applied by H. POWER
and B. F. POWER (see [16]), for the slow motion of an arbitrary particle near a
plane wall and in a viscous fluid. Also, Y. TAKAISI (see [8]) gave an analytical
solution for the motion of a rigid cylindrical obstacle, parallel to a rigid wall, in
the limiting case of large values of the distance between the wall and the center
of obstacle.

The goal of this paper is to present an integral formulation based on the theory
of double-layer and single-layer potentials, for the slow motion of a cylindrical
obstacle near a plane wall.

2. Mathematical model

We consider the problem of the slow motion of a cylindrical rigid obstacle
of arbitrary shape, near a plane wall, in a viscous fluid. The cross-section of
the obstacle, in the Ozz2 plane, is denoted by 2!, having the boundary C' of
Lyapunov type. We assume that the rigid wall, denoted by L, is given by the
equation ry = 0.

The velocity and pressure fields of the undisturbed fluid flow are denoted
by Use(Uiso; Uas) and pao. The functions Uy and ps satisfy the continuity
equation and the Stokes equations in the half-plane zp > 0. Additionally, the
velocity Uy satisfies the following nonslip boundary condition:

(2.1) Uwlz)=0, for z5=0.

Furthermore, we suppose that the rigid particle 2! has the velocity U(U;, Us).
Under this condition, the velocity field u and the pressure field p of the resulting
flow, obtained by the superposition of the undisturbed flow and the presence of
the rigid obstacle 2!, satisfy, in the first approximation, the following system of
equations:

~ Op(a)

Zalga’r;\ B 5'3.‘,' i P 91

(2.2)

B e Zo
Z(’)’u,(:t} =), @€, 2
= O

Here, (2 is the domain above the wall, exterior to the particle and having €' and L
as boundaries. Also, we suppoF]e tha,;/the dynamic \'leOSlty coefficient of the flow
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EXISTENCE AND UNIQUENESS RESULT FOR STOKES FLOWS IN A HALF-PLANE 793

is equal to 1. because the general case can be reduced to this one by a coordinate
transformation.
The flow satisfies the nonslip boundary condition on the wall L:

(2.3) tlz) =0, for z €L,
the following condition on the boundary C"

(2.4) w(x) =05 (%), for ze€C,
and the conditions at infinity:

(25)  |ui(2) = Uio(2)| = 0, |p(2) = Poo(®)| =0, as  [z]— oo

3. The Green function of the flow

Let G(Gyj) and q(g;) be the Green’s function and the pressure vector, as-
sociated with the Stokes equations in the half-plane 2o > 0. These functions
correspond to the velocity and pressure fields of a Stokes flow, produced by
source point or a pole placed at the point y of the above specified half-plane.

Hence, G and q are solutions for the following equations and conditions (see
[12, 18]):

(3.1) Z $Cij(@,y) _ 9ai(z,y)

—A4ndii6(x —y), for x>0,

Ox 0z dz;
2 2
(3.2) ; 8—(%(::—@ ~ 0, for 23>0,
(3.3) Gij(z,y) =0, for za=0,
(31) Gij(:r: y) = Dr qj(rv U) .- 01 as |Ij — 00,

where y(y1,y2) is the pole or the source point of the Green’s function and § is
the two-dimensional Dirac’s distribution.
The function G is given by (see [17]):

(35)  Gla,y) =GT(a-y) - G (z —y™) + 23 GP(a — y™
-2y G5P(z — y™™),
where 4 (31, —yo) is the image of the pole with respect to the wall, G5T is the

two-dimensional Stokeslet, having the following components:

€I -T}

(3.6) Gl (z) = =6 In 2| + z € R2.
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The matrices G? and G5P contain potential dipoles and Stokesle: doublets,
respectively, and are given by (see [18]):
e T T s — Ot
(37) GR(2) =+ ( % g I — G
|z| |z] |2
with the plus sign for the z; direction and the minus sign for the z;direction.
The associated pressure vector q is given by (see [17]):

), 5P (z) = 22G(z) %

(3.8) q(2,9) = T (z - y) — &7 (z — y'™) - 202q°P (2 — y'™),
where

4] P,
(3.9) G’£ST(1') = 2|$|‘2: QSD(I] | I; (22122, 2% — Ié)

The stress tensor T, associated with the Green’s function G, has the following
components (see [12, 18]):

9Gi;(z,y) BGk;’(I, y)

(3.10)  Tijk(z,y) = —qi(z,y)0u + e v for a > 0.
The relations (3.5) — (3.9) lead to (see [17]):
(3.11) T(z,y) = T = T (2 - y"™) + 25 T°(x - y™)

—ZyQTSl' (,1'; e yim)!

where

4T T Pl it e 5GD(1) i(.'.)
s_;k('r) = |.’E|4 3 Tijk(l o 8{1,1 a,rl_ '
(3.12)
8GSP(x) . aGP ()
6.I‘k @Ig '

The Green’s function G vanishes over the wall L. When the pde y tends
to a point z of L, G has a singular behaviour and must vanish, becaise x € L.
Then, we obtain the following properties:

TSP (z) = —¢5P(z)dij +

(3.13) Gi;(2:y) = g(2,9) = Tinlz,y) =0, for yel.

Also, it is easily seen that the Green’s function G satisfies the symmetry
property given below:

(3.14) Gij(z,y) = Gji(y, x).
http://rcin.org.pl
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4. Integral representation of solution

The velocity field of the Stokes flow is represented in the following form:

(4.1) ui(z) = Uieo(x) + /Tjik(y: x)nk(y)ei(y)ds,
b

+ [ Gij(,y)e;y)dsy , TEQ,
J

where the unknown density ¢ is assumed to be a continuous function on C, and
the unit normal vector n is directed outside of Q1.

In the following we denote by P(y, z) the pressure field at the point y, asso-
ciated with the flow q(z,y) . Indeed, the pressure term q(z,y) is a solution to
the equations of the Stokes flow given by a singularity with the pole at the point
r (see [12, 18]). Furthermore, the pressure tensor P(z,y), associated with the
stress tensor T(y, 2), has the following components (for more details, see [18]):

A . o .. aqe'(xay) 30;(1‘19‘}
(4.2) Tii(z,y) = =P(x,y)ds; + B + =

By applying the above properties, we use the following integral representation
for the pressure field p of the flow:

(4.3) p(x) = poolz) + /Tu(r, y)ni(y)ei(y)dsy
C

+/qj(3:,y)w(y)dsy, z € .
C!

By a simple computation, it can be shown that the functions u and p satisfy
Eqgs. (2.2) of the Stokes flow. Also, from (3.3) and (3.13), we deduce that the
boundary condition (2.3) is satisfied.

From the following conditions (see also, [12, 18]):

[44) T;Jk(yt I) =* U, ‘Tij(mv y) = D: Gij{:r) y) = 0: Qj(:rt 3}) 5 Or
as |x| — oo,

we deduce that the conditions at infinity (2.5) hold.
The double-layer potential of the integral representation (4.1) has the follow-
ing jump properties(see [12, 18]):

(4.5  lim [ Ty, )na(y)es(y)dsy = +2mpi(e)

(&;

PV
T / Tiin(y, z)nu(y)ej(y)dsy
a
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where the plus sign applies to the external side of C, in the direction of the
normal vector n, and the minus sign to the internal side. The symbol PV means
that the double-layer integral is evaluated in the principal value sense (i.e. the
value of the improper but convergent double-layer integral, when z € C).
By using the boundary conditions (2.4) and the above jump properties, we
obtain the following integral equations:
PV

(4.6) 2rpi(x) + / Tii(y, z)ni(y)p;(y)dsy
&

% / Gij (2, y)¢;(y)dsy = Ui(z)~Uiso()-
c

In what follows, let us suppose that U is a continuous function on C'. Because
the contour C is a Lyapunov curve, it follows that the kernel of the single-layer
operator V!, defined by:

(4.7) [Vie], @) = [Gu@uesw)ds,, zeC,
4

is weakly singular (i.e. its singularity has the type 1/(|z — y|*), where 0 < A < 1)
(see, for example [13]). Thus, the single-layer operator is a compact operator on
the space of continuous functions on C (see also, [13]).

With similar arguments we conclude that the double-layer operator V2, de-

fined by:
PV

(4.8) V2], @) = [ T omweswlds,  xeC,
C

has the kernel with a weak singularity. Then the double-layer operator is compact
in the space of continuous function in C, having the values in the same Banach
space (see also, [13]).

These properties show that the integral equations (4.6) determine a Fredholm
integral system of the second kind. By using the Fredholm’s result (see [13]), we
deduce that this system has a unique continuous solution if and only if it can be
proved that the associated homogeneous system has only the null solution, in the
space of continuous functions on C.

Consider the following homogeneous system:

PV

4.9)  2meQ@) + f Tyie(y, 2)ne(y)e0(y)ds,
J

+-/G,-j(1',y}gp?(y)dsy =0, zet
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By using a continuous solution % of the above system (4.9), we can define

the velocity field u®(u{,u9) and the pressure field p°, given below:

W(z) = f Tjoe(y, 2)ne(y)(y)dsy + ] Gii(@, 1) (y)dsy,
c &4

3 € NU R,
(4.10)

P’(x) :fTsj(J:,y)n;(y)fp?(desy+fij(I,y)sO?(y)d8ys
e c

re U

Taking into account the fact that the functions (G, q) and (T, P) are solu-
tions of the equations of the Stokes flow, we conclude that the fields u® and p°
determine a Stokes flow in 2 (and 2!, respectively), with the zero velocity on the
wall L and at infinity. Because the function ¢ is a solution of the system (4.9),
we deduce that the velocity field u® becomes zero on the boundary C'. By using
the uniqueness result of the Stokes flow in 2, we obtain the following equalities:

(4.11) wW@z)=0, px)=0, forall zen.

On the other hand, the continuity property of the single-layer potential across
the boundary C and the jump formulas (4.5) of the double-layer potential, imply:

(4.12) Wz) -l (z) =4nl(x), =z€C,
where
ot oy ¥ [) 7 2 [_}_ o . D H
e (%) = =Ilﬁlr:r:;C w; (') and ui () xsl—i.Béc u(z)
z'en el

From (4.11) and (4.12), we obtain:

(4.13) W (z) = —4nd(z), =ze€C,

; I _Orass o 0ul)  0l@") B
(4.14) B (e)= z{q‘l;néc [ p(x)0ik + 3z, + oz nr(m) = 0,

where FO' denotes the limiting value on C of the stress field FO, evaluated from
the external side of C' and corresponding to the flow field u®. Also, we denote by
FO the limiting value of F? evaluated from the internal side of C.

By an easy computation, it follows that the stress tensor S', given by the
single-layer potential V1¢?, has the following components:

(4.15) S@ = [Tunan)eu)ds, aeua
¢ http://rcin.org.pl
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The associated stress field F1 of 8! exhibits the following discontinuities across
its distribution domain C' (see, for example [12, 18]):

F'(z)= lim_Sk(z')nx(z) = -2m¢(a)
z'en

PV
+ [ Tonta pmu(a)edu)ds,
J

4.16 L
g EY (2) = Jim Sh(z" )y (z) = 2md(2)
“ent
PV
+ [ T, uyon(a)eSw)dsy.
C
Therefore, we have:
(4.17) F(z) - F} (z) = —4nl(z), =z€C.

From properties (4.11) and (4.16), we deduce that the following limiting value
on C' exists and is finite:

' —zxeC
'en

PV
lim  F?* () = 2ma(@) = [ Ton(a, p)mal@)(w)dsy
c
where F? is the stress field associated with the double-layer potentials V%°.
By a Lyapunov result (see [13]), it follows that there exists an analogous
limiting value from the domain ' on C, of the stress field F2. Additionally,
these limiting values are equal (see [12, 18]).
Thus, we obtain the following equalities:

(4.18) im F2' (z') = Jim FF (), =zecC.
z'en z'enl

By using the properties (4.17) and (4.18), we obtain the following jump of
the stress field FO across C'

(4.19) F0+(.I,‘) ~F% (2) = —4n%(x), reC.

From (4.14) and (4.19), we deduce:

& grif ety 0 .
Hel ¥ Witp!fctilorg B ©
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Green’s formula, applied in the bounded domain 2! for the flow (u°p?%),
implies the following equality:

(4.21) f W0 (@) FY (2)ds, = 2 f &9, (2)€% (z)dx ,
" m
1 [ oud 2
where €% = — o, 5= Outy represents the rate of the deformation tensor.
2\0zxy Ou;
If we use the relations (4.13), (4.20) and (4.21), we obtain:
(4.22) [ @e@riz = ~8x* [ i(a)ed(z)ds:
Bp C

Since the above integrals are real and non-negative, we deduce that all integrals
in (4.22) become zero. Hence, (2) =0, for z € C.

Thus, we can formulate the following result.

THEOREM. The Fredholm integral system (4.6) has a unique continuous solu-
tion . The integral representations (4.1), (4.3), with the density @, provide the
Stokes flow due to the slow motion of the rigid obstacle 2*, in the presence of
the wall L.

It is easy to see that if there exists the limiting value on C of the stress field
associated with the double-layer potential V?p, then its total force and torque
on (' are zero. By using the jump formulas (4.16) of the surface force due to a
single-layer potential, we can easily prove that the total force and torque, exerted
on C' by the flow (u, p), are given by the following equalities:

G _/F‘-(:r)dsz = —47r_/=.05($)d8x ,
5 's)

(4.23)

M = ]x x F(x)ds = —4‘:rk_/x X p(x)dsz.
C %,
In the above equalities we have used the notation:
Fi(zx) = [-:0($)5ik * 6;;(:) T &gfj
Also x is the position vector of the point 2 with respect to the orthogonal frame
Ozj22 and k is the unit vector of the Ox3 axis, which is orthogonal to the plane
of the flow.

] n(z), z€C.

5. Numerical results

If we use properties (3.1), (3.2) of the functions G and q, we obtain the
following property of the stress tensor T (see, for example [12, 18]):

http://rcin.org.pl



800 M. KoHR

PV
(5.1) / Tyie(y, 2)ne(y)ds, = 206, 2 €C,
c

where the unit normal vector n is directed outwards of C'. Considering this
property, the integral system (4.6) can be written in the following manner:

(5.2) f Tk (> 2) () (25 (9) — 03(2))dsy + / Gij(2,y)05(y)ds,

= Ui(z) — Vio(2), z€C.

The double-layer integrals of (5.2) are non-singular (i.e. they are regular
integrals), hence the singularities of double-layer potential of system (4.6) are
removed by means of the above procedure. In order to remove the singularities of
single-layer potentials of system (4.6), it is sufficient to isolate these singularities
and also, to integrate the singularities over the corresponding boundary element.

In the following, the numerical results are given for the case of a circular rigid
obstacle with radius a, moving parallel or normal to the wall L. We solve the
integral system (5.2) by means of a standard boundary element method. To this
end, we consider a polygonal contour consisting of the segments C';, j =1,...,n,
and we suppose that on each segment Cj, the functions ¢;, i = 1,2, are constant
and equal to their valueg at the middle point z7(z7;, 23;) of this segment. These
values are denoted by 7, i = 1,2, j = 1,..,n. Now, if we require the discretized
form of (5.2) to be satisfied at each point z},, m = 1, ..., n, we obtain the algebraic
linear system given below:

(5.3) Z(ap” o7) f Tk (Y, Ty ) (y)dsy + D &5 / Gij(Th, y)dsy
r=1 o

= Ui(a7,) — Ui (27,)-
If p = m, then we have (% — @) [ Tjix(y, 23,)n(y)dsy = 0.
c

P
In the case when p = m, we use the following decomposition for single-layer
potential:

/Ga(:v:mdesy - /(Gij(r;,y) — G (b, y))dsy + /Gﬁ""(l‘:my}dsy.
C, C, &

In the above equality the first integral is regular and can be numerically deter-
mined by a Gaussian quadrature formula. The second integral can be evaluated
accurately.

If p # m, then the double layer integrals and the single layer integrals of the
system (5.3) are computed by means of the Gaussian quadrature formula.
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Furthemore, after discretization, the total force and torque on C' become:

T
—4r ) o / ds

m=1 s

Il

Fi

M

m=1

n
—4rk Y w?/ylds—wi“/yads
Cm

Cm

In the sequel we denote by Yy the ratio of the distance d, between the center
of the circular obstacle and the rigid wall, to the radius a.

Figure 1 illustrates the dependence between the dimensionless drag force F
and Yy, in the case of the circular rigid obstacle moving perpendicular to the
rigid wall L (i.e. Uy = 0 and |U| = 1).

3 , -

0.5¢

0

0 2 4 6 8 10
Fig. 1. Dependence of F' vs. Yy : perpendicular motion.

Note that I' = F /4xU and F is the modulus of the total force F on C'

Figure 2 presents the dependence between the dimensionless drag force F and
Yy, in the case of the circular obstacle moving parallel to the wall L (i.e. Uy =0
and U = (1,0)).

Both these results show that F increases when the ratio Yy decreases.

The maximum value of N was assumed to be equal to 60.

In the limiting case of large values of Yp, it follows that the presented numer-
ical results can be compared with the analogous results obtained by Y. TAKAISI
(see [8]), where the analytical expression of the dimensionless drag force Fp was
equal to
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1.6
q
14¢
1271

1t
08¢
06¢

04/ 866 l
0.2

2 4 6 8 10
F1G. 2. Dependence of F' vs. Yy : parallel motion.

N 1
ArplU  log(2Yo)'
the viscosity coefficient o and the translational velocity U of circular obstacle in
the direction of the wall being equal to 1. Note that F7 is the modulus of the
total force acting on on C' and corresponding to Takaisi’s method.

For example, we have:

Fr

Yo = 6.0 = Fp = 0.4024296043, F=1410312;
Yo = 65 = Fpr = 0.3808712452, F = 0.39012,
Yo = 70 = Fr = 0.3789231816, F = 0.37901,
Yo =75 = Fr = 0.3692693730, F = 0.37002,
Yo = 8.0 = Fr = 0.3606737602, F = 0.36107,
Yo = 85 = Fr = 0.3529561238, T —0:3H301,
Yo = 90 = Fr = 0.3459762562, F = 0.34599,
Yo = 95 = Fr = 0.3396232718, F = 0.33969,
Yo =10 = Fp = 0.3338082006, F — 0.33381.
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