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Plastic inclusion with moving boundary.
Application to dislocation cell structures

X. LEMOINE, H.SABAR, M. BERVEILLER (METZ)
and J. MORREALE (FLORANGE)

Basep on THE DETERMINATION of the Helmholtz free energy and the dissipation of
an elastoplastic solid containing moving surfaces of plastic strain discontinuity, a
micromechanical approach is developed to study the formation of dislocation cell
structure and their effects on the mechanical behavior of metals. The results are
applied to an evolutive two-phase microstructure representing the dislocation cell
structure induced during plastic straining. The internal variables are reduced to the
plastic strain of each mechanical phase, the volume fraction and the morphology of
the ellipsoidal inclusion describing the cell structure. We obtain the conjugate forces
according to the formalism of irreversible thermodynamics. Complementary relations
describing the evolution of these internal variables are introduced in order to obtain
the constitutive equation for the grain, the evolution of the microstructure as well as
the hardening of the two phases. Preliminary results are presented and discussed in
the case of a simplified situation.

1. Introduction

THE MODELLING of the elastoplastic behavior of metals and alloys from physical
mechanisms (motion, storage and annihilation of dislocations) and the polycrys-
talline microstructure of the volume element (texture, grain boundaries) consti-
tutes a difficult task requiring the introduction of different scales of description
as well as scale transition methods. Classical meso-macro models (TAYLOR [1],
Sacus [2], Self-consistent [3, 4]) taking into account the granular structure of
the polycrystal, are based on the hypothesis of homogeneous multiple slip at the
intragranular scale and a perfect intergranular interface (no debonding). Thus,
using a self-consistent model formulated for large plastic strains [5, 6], the results
obtained are by many aspects in good agreement with experiments, both for the
overall behavior and the evolution of the internal state corresponding to texture,
internal stresses and stored energy.

This description shows, however, its limits when applied to the description
of the hardening during complex loading, studied experimentaly by Hu and
Teoposiu [7]. It appears clearly that refining of the meso-macro transition has
no sense except the case when the description of the intracrystalline behavior is
improved to take into account the intragranular heterogeneization of the plastic
deformation corresponding to the formation of dislocation cells.

http://rcin.org.pl
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The heterogeneity of the intragranular plastic strain field results from different
mechanisms:

e the subdivision of a grain into zones with homogeneous single or multiple
slip, related mainly to the discrete nature of the neighbouring grains [8]:

e the formation of micro-shear bands corresponds to an intense localized shear
[9, 10];

e the development of dislocation cells results from selforganization of the mi-
crostructure simultaneously due to the long range stress field, junction reactions
between dislocations and mechanisms of annihilation related to the nature of the
dislocations [11, 12].

The essential characteristics of the cellular structure may be summarized as
follows:

e the formation of cells corresponds to a heterogeneous plastic strain field,
weak inside walls and large in the cell interior;

e their topological and morphological aspects depend strongly on the macro-
scopic loading [13, 14];

e high dislocations density leads to a large hardening corresponding to a pro-
nounced nonlocal effect, since plastic strain inside the cells increases the harden-
ing in the walls where the dislocations are stored [15];

o finally, during sequential loading, the partial dissolution of the microstruc-
ture built during the first loading path is accompanied often by the formation of
a new microstructure characteristic of the second loading path.

The current models describing the formation of dislocation cells can be cla
ssified in three groups:

e Using numerical techniques based on cellular automatons [16, 18], discrete
dislocations motion, multiplication and annihilation as well as storage can be
described. Besides the huge memory and important CPU time required, these
models are based on very specific boundary conditions and the dislocations move
individually in a sequential manner so that collective behavior is absent.

e Considering plasticity described by the crystallographic slip mechanisms,
AIFANTIS [19] and other authors have added a second gradient to the constitutive
equation, to introduce a characteristic length and to reproduce the development
of cells. Models using the concept of nonlocal hardening [20, 21| have also been
introduced to describe the formation of cells and the intragranular plastic hetero-
geneization. The concept is indoubtedly correct, nevertheless it remains to ensure
the validity of the introduced differential or integral operator which constitutes
a difficult task.

e The first attempt for the description of dislocation cells, proposed by
MuGHRABI and EssMANN [11] is based on the representation of the cellular struc-
ture by a two-phase mechanical structure where the morphology of cells is a priori
imposed, neglecting the eﬁ'ecthotftth?/ext.undl Ioacimg
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The zim of this paper is to formulate a model for the formation and evolution
of the didocation cells structure in the classical framework of crystal-plasticity
(slip mecianism). In classical micromechanical description of the polycrystal, the
discrete notion, interaction and storage of dislocations at grain boundaries are
describec using the slip rate as an average process variable. Continuity of dis-
placemert, velocity of particles and stress vector are required at grain boundaries.
According to that, only (second order) long-range internal stresses are taken into
account; pile ups at grain boundaries and discrete slip lines are neglected. One
follows tie same scheme of simplification for the intragranular heterogeneization
correspording to the formation of cell structures (Fig. 2). Dislocations are sup-
posed tomove inside the cells and walls and are stored in internal boundaries.
[t is worthwhile to notice that these walls are free surfaces, contrary to the grain
boundaris, so that their morphological characteristics (shape, orientation) be-
come nev variables. Therefore, as in classical micromechanical plasticity, the
plastificaiion is still represented by slip rate inside the cells and the walls which
are assuned to be moving boundaries. In such a way, one loses the precise de-
scription of the microstructure inside the walls but the (third order) long-range
internal :tresses are taken into account. For mobile boundaries, continuity of
displacenent and stress vector are always needed but the motion of the free sur-
face allovs some discontinuity in the particle velocity leading to a more complex
problem.

In orler to reduce the number of parameters describing the microstructure,
one assunes that the cells may be considered as ellipsoidal inclusions with moving
boundaris. This last assumption makes the model different from the previous
one (Mughrabi) which assumes a fixed boundary.

In the second part, we determine the dissipation of an elastoplastic single
crystal cintaining moving surfaces of plastic discontinuity from the evolution of
the Helmmoltz free energy and the power of external load. The results are applied
in part 2to an evolutive two-phase microstructure representing the dislocation
cells stricture inside the grain. In this way, the internal state and process vari-
ables reaice to the plastic strain of each phase, the volume fraction and the
morpholigy of the ellipsoidal inclusion inside the grains of the polycrystal.

Comylementary laws are introduced in order to obtain the constitutive equa-
tion for tie grains, the evolution of the microstructure as well as the hardening
of the tw intragranular phases.

The ransition from the grain level to the polycrystal is achieved by a classical
elastoplatic self-consistent model described in [4, 5, 6].

Prelininary results are presented and discussed in the situation where the
proportim of phases are treated as material parameters [13] and the concept of
“Low Enwrgy Dislocations Structures” (LEDS) (22, 23] is adopted to define the
morpholgy of the microstructure.

http://rcin.org.pl
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2. Thermomechanical approach of mobile surface with plastic
discontinuity

In this part the kinematical and thermodynamical aspects of a solid con-
taining mobile surface discontinuities of plastic strain are developed. From the
Helmholtz free energy, the intrinsic dissipation associated with the progress of
the plastic deformation and the motion of surface discontinuities is given.

2.1. The kinematical description

Let us consider a solid with volume V' bounded by an external surface dV.
The reference configuration is assumed to be stress-free. The current configura-
tion corresponds to V loaded by the displacement u? on the boundary V. We
denote by u(r) the total compatible displacement field of a point r(2, x2, 23)
from the reference configuration to the current one. The total distortion field
B(r) is given from the displacement gradient:

(2.1) Blr)=Veau(r), (Bij=1uw;)-

This total distortion results from:

e an elastic part 3%(r). and

e a plastic part GP(r) with some discontinuity along surfaces S separating
the volumes occupied by the plastic phases so that, in the small perturbation
hypothesis, one obtains:

(2.2) B(r) = Be(r) + B2(r).

Two fundamental tensors are derived from (2.1), the strain tensor being the
symmetrical part of G(r):

(23) e(r) = 5(8(r) + (1)
and, the spin being its antisymmetrical part,
(2.4 w(r) = 3(B(r) = '8(r)).

Combining (2.2), (2.3) and (2.4), the following expressions are obtained:
B(r) = e(r) +w(r),

(2.5) pe(r) = e4(r) + w(r),

Pittom/rcin gl
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When the solid is submitted to homogeneous distortion boundary conditions
uf(r) = Bjjx;, the average B over V of the internal distorsion field 3 is given by

(2.6) B- %!ﬁ(r)dv o %J(ﬁ%r) + BP(r)aV.

For homogeneous elastic behavior, Eq. (2.6) leads to:
(2.7) B=FE+B°,

where B® and BP are, respectively, the macroscopic elastic and plastic parts of
the overall distorsion. They are defined by

A= i e
B* = Vv[ﬁ (r)av,
(2.8)
BP — % J BP(r)dV.

Decomposition (2.5) is also applied to macroscopic quantities:

B =E+Q,
(2.9) Be = Ec+Qe,
BP = EP 4+ QP .

The time evolution of BP is related with an evolution of A7(r) and a motion
of internal surfaces S.

The first step consists in taking the time derivative of (2.8)g where the local
plastic distortion GP(r) is discontinuous across the surface S: S moves with time
because the evolution of 3P(r) is accompanied by a geometrical extension of the
plastic phases. The time derivative of a volume integral containing a discontin-
uous integrand through a moving surface is given for instance in GERMAIN [24],
and leads to

(2.10) BP = d% [% Vf 6p(r)dV] 2 117 vf BP(r)dV — % Sf [B7(r)|wantadS.

In this equation 3% = 93P/t is the plastic distortion rate in all different plastic
phases, [3P(r)] = grt 3P~ denotes the jump of 3P(r) when crossing S, n;
is the unit normal to S taken from the negative to positive side, and w, is the
velocity of S (Fig. 1). 37 is the macroscopic plastic distortion rate, containing

the evolution of the microstrucﬁﬁﬁ._}}riésidniﬂgcrlatrt)? get 37 for any distribution of
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FiGg. 1. Jump of plastic distorsion across a moving surface S.

plastic heterogeneity. To account for the cell dislocation structure, a two-phase
approximation seems to be well adapted.

Case of a two-phase material

In this case, one assumes that the solid V consists of the assembly of two
phases with respective volumes V! and V2. The boundary between phases is
given by mobile surface S. One notes that the unit normal n; to S and the
velocity wq of S are directed into V2,

If one assumes that the intra-phase heterogeneities are weak in comparison
with the interphase one, (2.8)2 becomes, for the two-phase material:

(2.11) BP = B8P + (1 — f)BP2,

where f = V1/V and 1 — f = V2/V are, respectively, the volume fraction of
phases 1 and 2. 8P and #%* are, respectively, the mean plastic distortions in
V1 and V2 defined by:

gra — VLﬂfﬁP(f)dv, (6=1,2).
Va

During the evolution, two conH'{li)Bt_i Péihanol?e %Ttinguished in (2.10):
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e The first one corresponds to the volumic variation of plastic distortion and
is written in this case:

%V/B(r)dv = [ +(1- [)B.

e The second one is the contribution due to the motion of surface S. Assuming
that [3P(r)| is uniform over the surface S and equal to 372 — P and taking into

R | :
account the obvious relation f = ?/ WaNadS, one obtains
s

%/[ﬁp(r)]wanads = [6°)f.
5

With these expressions. (2.10) is reduced to

(2.12) BP = f37 + (1 - f)B7 — [B°)f.

Equations (2.10) and (2.12) indicate the nature of internal variables describing
the inelastic behavior of the solid:

e plastic flow in the two phases,

e the motion of surface between these phases or the evolution of the voluminal
fraction f.
The evolution of these internal variables are deduced from a thermodynamic
analysis giving the thermodynamical forces in the internal variables.

2.2, The thermomechanical deseription

The evolution of a thermodynamical system with irreversible processes is
derived generally from the maximal dissipation principe [25, 26]. In the case
of quasi-static and isothermal approximation, the dissipation is given by the
difference between the external power and the variation of the Helmholtz free
energy.

In the following, one calculates successively the free energy, its time derivative,
the external power and the intrinsic dissipation for a solid containing mobile
discontinuity surfaces.

2.2.1. Helmholtz free energy. In case of isothermal approximation, the Helmholtz
free energy density reduces to elastic energy:

wir) = %a(r) s €°(r).
For a volume V, we have:
(2.13) W = /w(r]d‘/.
http://r€in.org.pl
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The stress tensor o(r) and elastic strain £°(r) are related by the 1sual constitutive
relations:

(2.14) olr) =0 %),
where the homogeneous elastic moduli C exhibit the usual symmetries:
(2.15) Cijkt = Cjirt = Cijik = Chiij-
Using (2.2), (2.3) and (2.5)
(2.16) e(r) = e(r) + €°(r),
the Helmholtz free energy (2.13) is written as
(2.17) W= %]a(r) : (e(r) — 2(r)) aV.
%

2.2.2. Evolution of the Helmholtz free energy. For a load variatibn, the evolution
of the Helmholtz free energy results from the progress of plastic strain £P(r) and
the propagation of discontinuity surface S. The jump of £7(r) across S implies
the discontinuities of (1), o(r) and w(r). By time differentiaton of (2.13), the
evolution of Helmholtz free energy of the system is given by

(2.18) W= f r)dV — /[w(r)]wﬂnadb

Due to the symmetry of C' and using (2.14) and (2.16), the firstintegral is trans-
formed into

(2.19) /w(r YaV = f . (é(r) — &2(r))aV.

Assuming uniform elasticity, [w] is expressed by

(2200 [ul =5 {0t (€50 P () — o) (7 (r) - 2 ()}
or
(2.21) [w] = —{ar )+ o7 (r)}: [e(r) — €P(r)].

From (2.19) and (2.21), (2.18) is given by

(2.22) W = / : (&(r) — &P(r))aV — f{g*(r ) + o (r)}

s e(r) = &(r)|wanadsS -

http://rcin.org.pl
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2.2.3. External power. The power Pey developed by the forces T; = oijn; applied
to the external surface S of volume V associated with the particle velocity
vi(= ;) is defined by

(2.23) Pt = / TiydS™ = f 04V dS™.
ex Sex

Using the divergence theorem, when the volume V' contains a discontinuity sur-
face S, the surface integral (2.23) is transformed to a volume integral:

(2.24) Pext = /(Uijb’i),;‘ dv + /[Uijﬂi‘-’ilds-
v s

The conditions of continuity of the displacement and the interfacial traction
across S yield

(2.25) [ui] = 0
and
(2.26) [O'gji’ljl =0

During the propagation of the surface S, these conditions hold at any time ¢.
Thus the jump in the components of material velocity v; is determined by taking
the time derivative of (2.25). One gets the compatibility equation of HADAMARD

[27]):
(2.27) (1] = —[uij]njwana.

From (2.25) and (2.26) and the equilibrium equation, in the absence of volumic
forces (0ij; = 0), the power Pey becomes:

(2.28) Pab— /G'fjlli‘jdv — /orijnj[ui.klnkwanuds.
v S

The continuity of displacement along the surface S imposes the relation on the
jump of displacement gradient:

(2.29) [us3] = Xany,

where A is an arbitrary vector function of position.
The term oy;n;|u; k|nk is also equal to oy;[u; ;| from compatibility conditions
(2.25) and (2.26) along the surface S, so that

(2.30) i1 [wi klmk = 0ilei -+ ¢ €]
bl i c?ri; Ok
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Using (2.30), the external power is written as

1
(231)  Por= [a):60)aV - 5 [{o*(0) + 071} [0 wanads.

% 5
2.2.4. Analysis of the intrinsic dissipation. During the evolution of the systen,
the intrinsic dissipation is given by

(2.32) D=Pext —W.

Using (2.22) and (2.31), the intrinsic dissipation is finally given by

(2.33) = /a(r)  EP(r)dV — %/{a*‘(r) +o7(r)} : [€°(r)|wanadS.
Vv S

The first term in (2.33) is the volume dissipation due to the evolution of plastic
strain. The second one is due to the propagation of surface between the phases.

Two quantities appear: the energy release rate —% {ot(r) +07(r)} : [P(r)]
which corresponds to the thermodynamic force associated with the normal veloc-
ity wang of the surface S, and the thermodynamic force o associated with the
plastic strain rate £P(r).

For any microstructure, the determination of the intrinsic dissipation is d-
ifficult because the variables describing this internal structure are complex. In
the next section, an application of this approach is developed in the case of a
two-phase material with ellipsoidal microstructure.

3. Two phase model for a crystal with evolution of microstructure

3.1. Representation of the intragranular microstructure

During plastic strain of a metal, dislocation cells are formed leading to high
dislocation density gradients which allows us to describe the cell structure as a
two-phase composite, the cell interiors (zones with a low dislocation density) and
the walls (zones with a high dislocation density) represented, respectively, by
soft (s) and hard (h) phases. This partition of the volume V' of a grain into two
domains V* (s = soft) and V" (h = hard) implies for a macroscopic variable M
described as a voluminal average of the corresponding local variable m in V,

(3.1) M= %‘,[m(r)dv

which can be simplified by

3.2 M = fm® +.(1 — f)mh,
<ol htthelrein.org pl
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where f = V*/V and 1 — f = V#/V are respectively the volume fraction of soft
and hard phases. The average values m* and m” are defined by

(3.3) ms = Vlu' /m(r)dv, (a=h,8).
i','ﬂ

TEM results show that the dislocation cell shape may be approximated by
ellipsoids [13, 28]. This allows us to consider only an averaged description of the
cell structure where the cell shape is an ellipsoid with semi-axes a;(i = 1,2, 3)
and Euler angles a;(i = 1, 2, 3) describing the orientation of the ellipsoid principal
reference frame versus the crystalline lattice. On the other hand, the cell with its
dislocation wall is described as a coated inclusion. Thus, the cell is represented
by two similar and concentric ellipsoids.

The topology of the coated inclusion problem assumes that an inclusion (in-
terior cell) with plastic strain £ and volume V* is surrounded by a thin coating
of the second phase (wall) with plastic strain £”* and volume V%, The coating is
bounded at its outer boundary by a surrounding homogenous material (matrix)
whose plastic strain is EF (Fig. 2). V¢ denotes the volume of the composite
inclusion (inclusion + coating). If N is the number of cells inside V', one has

(3.4) V = Nvt = N(@o" + v*).

EP = fef + (1 — f)eb

F1G. 2. Simplified representation of the microstructure of dislocation cells by a two-phase
material with coated inclusions.

The proportion of the phase h in the grain is supposed to be the same as in the
composite inclusion. Thus, the volume fraction of the two phases are given by

f= Nv® e E ° _11‘3
http¥/rcinlorg.pf ’
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(3.6) l—f=— it

An Eshelby-Kroéner-type a,pproximation is used to account for tie interaction-
s between the coated inclusions. This approximation assumes that each coated
inclusion is embedded in an infinitely extended medium (matrix) raving macro-
scopic plastic strain E¥ equal to volume average of the local plastic strain £?(r)
on V.

This representation implies that there is no creation of new composite inclu-
sion during the evolution of the system: N = 0. Thus, with (3.4) end V' = 0 one
gets

(3.7) ¢ = 0.

Finally, the internal variables describing the microstructure of the grain and the
field eP(r) are:

e the plastic strain £ inside the cells,

e the plastic strain e inside the walls,

e the volume fraction f of cells,

e the morphology of the internal inclusion a, and a, described by a tensor
A(ap, ap) defined by

(3.8) Apzin:=1.

The components A;; can be deduced from the variables a, and a;, (see Appendix
B).

3.2. Calculation of the dissipation

For the simplified representation (Fig. 2) of the microstructure, the dissipa-
tion D resulting from the plastic strain rate £€°(r) and the motion w,n,, of surfaces
S! and S¢ surrounding, respectively, v' and v¢ is calculated. From (2.33). this
dissipation is expressed by

D= / r)dV — —/ cr“(r) +0~ (r)} [€P(r)) ' winldS®

_g.r f {G"H(‘f‘) +07¢(r)} : [EP(r)]°wEnt dS®

Qe
or D = D! + D? + D3 where [¢P(r)]¢ and [P(r)]! are respectively, the jumps of
plastic strain across S¢ and S*. In case of two phases, the plastic strain rate is
given by

er(r) =&k, reve,

"Rt orh ol

(3.10)
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Consequently, it is possible to evaluate the first integral D! in (3.9):
(3.11) D! = No® : 7v° + No''e® ; 8,

where ¢* and ¢® are the mean stress in each phase defined by (3.3).
For the evaluation of the surface integrals in (3.9), an enlargement of the zones
near the surfaces S' and S¢ allows us to determine the interfacial stresses (Fig. 3).

EP

] T s
7 s:'/// A LS

2 /;//‘;/ atsy b £ g ph

. e

I'1G. 3. Definition of stresses near surface S and S€.

In the second surface integral D? in (3.9), the stress ¢~ inside the ellipsoid v'
is uniform and equal to o* . This stress is obtained through the Eshelby-Kréner
formula [30, 31], namely

(3.12) o® =% -1 = )C: [F—8%): AP,

where ¥ is the macroscopic stress given by (3.1), S¥ is the Eshelby tensor for
the inclusion v! (see Appendix B), I is the fourth order unit tensor, and AP =
gPs — gPr_ The stress o” is deduced from (3.3) and given by

(3.13) ot =S+ fC (I -8%): AeP,

Using the interfacial operators [29], the stress ot is linked to the stress o~! by

' +1 _ -1 _ A1, 1
(3.14) “http Tircinorgpl
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with [eP]! = &Pr — gPr = —AgP and the interfacial operator @' is defined in
Appendix A. Due to (3.12) and (3.14), the second surface integral D? in (3.9)
becomes

(3.15) D? = -};io" : Asp/w;n;dsl + %AE” : /Qlwén}zdS] : AeP.
st s

The first surface integral in (3.15) describes the evolution of the volume v" bound-
ed by S!. The solution of the integral J defined by

7= [ Quinids!
51

is given in Appendix A,
(3.16) J=0C:(I-85) +C:(5%: AW,
and (3.15) is reduced to

(3.17) D? = No¥ : AcPi® + %AEP 20 3T ~ §5): AeP®

+%Ae” :C:(S%: A): AePv®

where S2 = SF /QA (see Appendix B).
A similar step for the evaluation of the surface integral D?* in (3.9) leads to

(3.18) D3 = —g/{a"'e(r) +07%(r)} : [P(r)|° winsdS®,
Se

where 01¢ = 0° — Q° : [eP]° and [eP]® = EF — &P* = fAcP.
Since [?]¢ is assumed to be uniform along S¢, D? is given by

N

(3.19) D3=—NfAs”:/a‘Ew§n§dSe+ 5
Se

Ae? : /Q"wf,nf)dse : AP,
S:

Contrary to the relation (3.12), 67¢ is not uniform along S€. A time derivative
of the mean value ¢” over the volume v" allows us to account for the first surface
integral I in (3.19). Indeed, the volume integral defining o™ is

(3.20) vhoh = / o(r)dV.

ph

i

The volume v" is bounded by the surfaces S and S¢ and the stress in v" is equal

to o*! and o, respectively, ?]eﬁib .S}l/r%}% .S(;;g ol
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During the evolution of v”, one has
d
(321) (o) = / &(r)dV + f oe(r)wSnSdS® — / o (r)winlds’.
vh Se st
The first term in (3.21) is

(3.22) é—%(vhah) = vhoh +veh.

From (3.21) and (3.22), the surface integral I in (3.19) is equal to
(3.23) = / oo (rEnedS® =ile" + f o (r)wlnlds.
Se S
According to (3.22), (3.23) and (3.16), I is written as
(3.24) I=0""+C:(I-8%): APv® + C: (S2%: A): AcPv®.
Due to (3.4) to (3.7) and using the expressions (3.12) and (3.13), I reduces to
(3.25) I=C:(8%: A): AcPv®.

The calculation of the second surface integral J? in (3.19) is identical to the
surface integral J2 in (3.15) if S* and v! are replaced, respectively, by S¢ and v°.
In the case of homothetic coated inclusions, the Eshelby tensors corresponding
to the ellipsoids v! and v are equal. Thus, with the condition (3.7), J? is given
by

(3.26) J? - / QeuwEntdse = C: (8% : Ae.
Sc
With these results, (3.19) becomes:

(327) D¥=-NfAe?:C:(5%:4): As”‘u’+%N fPAeP : C(52 : A) : AePr.

Finally, with (3.4) to (3.6) and the solutions of the integrals D', D? and D?, the
dissipation D per unit volume is expressed by

(3.28) g — fo® &P 4 (1= f)ah:éPn %f(l — AP C: (S2: A): Ae?

-|-j{2 : Aahlu = Of AP G T —SP) :Ae”}. '
http://rcin.drg.pl
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Generally the dissipation is expressed in the following manner:

(3.29) g = Fy(%, X)X;

where X; are the internal variables of the thermodynamical system, and F; are
the thermodynamical forces acting on X;. Here, the thermodynamical forces
associated with the internal variables P, P, f and A are given by:

Feps = o",

Fepn = 07,

(3.30) 1 B
By = )::Aep—5(1-2;‘)&5?:():(;'—.5‘ ) : AgP,

By = %f(l _f)AP:C: §%: Ae.

Contrary to the kinematical analysis (Sec. 2.1) where the internal variables are
reduced to £, ePs and f, the analysis of the dissipation shows an additionnal
internal variable corresponding to the morphology (shape and orientation) of the
cell structure described by A.

To complete the study, complementary equations describing the evolution of
these internal variables have to be introduced.

3.3. Complementary relations and global behavior

The analysis developed in Secs. 2 and 3 allows us to relate internal variables
describing possible evolution of the microstructure with the mechanical state. In
the case of reversible processes, the thermodynamical forces have to be taken
equal to zero. This provides additional equations for the internal variables. For
thermodynamical irreversible processes like in the classica plasticity approach.
critical forces FF(X) are introduced. In this case the evclution X; of internal
variables X; is given by

= (S, X) < FE(X),
Sk { VE(S, X);

Fi(Z, X) = FE(X),

(3.31) Xi =0 if { BB, X) £ FE(X);

X; £0 if

i Fy(Z, X) = FE(X),
http:

BRSBIT)



PLASTIC INCLUSION WITH MOVING BOUNDARY 773

Using the consistency rule,
(3.32) Fy(Z, X) = F{(X),
the following system with unknows X;

c
(3.33) (ap OF: OF;

BY(A)_&)& (E,X))X' BE(E X):3
or, formally
(3.34) X=K:%,

gives the evolution of the internal variables as a function of the loading parameter

 f

From
(3.35) ¥ =C:(E - EP)

and

(3.36) EP = fé? 4 (1 — f)ePr + fAEP

or, formally

(3.37) EP=M-X,

we have for a given F:
X=(I+K:C:M):K:C:E

and
EP=M:(I+K:C: M) :K:C:E.

So, the overall behavior of the grain is written as:

(3.38) =L

where L is the instamtaneous elastoplastic modulus of the grain given by
(3.39) L=C:(I-M:(IT+K:C: M)1:K:0).

In the case of crystalline metals, dislocations are restricted to move on the
crystallographic slip systems. As a 7/‘51; approx;mr’ttion, the walls are considered

http://rcin.org.p
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as a crystallographic part of the grain, in spite of their high defect density. Fur-
thermore the slip planes are assumed to remain continuous through the walls.
Thus the plastic glide « is introduced such as

(3.40) de=RLAE,  (a=sh),

where the Schmid tensor Rfj for the system g is given by
1

(3.41) R} = E(mf-n? +min).

n; is the unit normal to the slip plane and mn; is the slip direction. In order to
obtain the tangent moduli (3.39), the critical forces Ff(X) are introduced.

In case of time-independent plasticity, the evolution of these critical forces as
a function of internal variables Xj is generally given by:

(3.42) e = HIX;;
HY = GFF/0X; is the interaction matrix between the different internal variables

X;. According to different types of internal variables, (3.42) is explicitly written
in the form

(F5 ) ((ME MR MG ML ML g4
5 Hiw Hin My o Hia || 4
(3.43) Fg | = MY Ho, 0 HL /
i, M, W Wiy HY HE a;
\ B )\ M wE, wE owE, mE, N &)

ay

Hss Hsh
Hns Hnn
slip 7 of each phase. One finds here the selfhardening, in other words the harden-
ing of a slip system on itself, and the latent hardening defined by the hardening
of a system by an other active slip system. The terms Hg, and Hpe determine
the hardening of a phase by the other ones (non-local hardening). The compo-
nents of this submatrix are obtained from dislocation concepts like creation or
annihilation [11, 32, 33]:

The submatrices correspond to the hardening matrices between

r (L= Db () ! 4Dk h
}fgs o TQ Og L?“‘) T ya'(gﬂ'ah‘qhs 1 Hfh =Y,
h — ek
(3.44) b
h (1— f)bu? Dh ik fa
Hﬁh =iy Og ya(ﬂﬂptﬂ‘z‘g}{ , Hiy = saﬁga(y)h!
Tcgs — Tes

"eh ~ ftp://rcin.org.pl
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where b is the modulus of the Burgers vector, p the elastic shear modulus, L9
the mean free path of dislocations in cell interiors, y a dislocation annihilation
distance, p!, the dislocation density, 799 the initial critical shear stress and Q(g)h
denotes the anisotropy of the dislocation interactions [34].

4. Applications

Despite the fact that interaction matrix H* remains partially unknown, some
first conclusions can be derived from the micromechanical approach developed
in this paper. Numerical applications can be obtained using some additional
assumptions. These assumptions reduce the field of validity of the developed
model but are consistent with the physical aspects considered. In Secs. 2 and
3. the elastoplastic behavior of the grains was established. For the meso-macro
scales transition (from the grains to the polycrystal), a classical elastoplastic self-
consistent scheme is used so that the effects of fixed grain boundaries are taken
into account (interactions of grains with the surrounding homogenous material).
This model is extensively presented and discussed in [3 — 6]. The numerical
application is restricted to a uniaxial tensile test.

4.1. Simplifying hypotheses

The analysis of dislocation in cell structures induced during a monotoneous
path allows us to assume that the volume fraction f remains practically constant
during plastic straining [13]. Therefore one assumes that the volume fraction
of cells is no longer an internal variable but becomes a material parameter, so
that f = 0. The concept of Low Energy Dislocation Structure (LEDS) pop-
ular in physical metallurgy [22 - 23] allows to assume that the microstructure
morphology adapts itselfl instantaneously to the loading. This second simplifying
assumption corresponds to an organisation of cell structure which minimizes the
free energy with respect to the corresponding variables. The consequence of this
hypothesis gives

Fi=0 and F4=0

and by (3.37), the thermodynamical force F4 is equal to zero, so that

(4.1) F,q:%f(l—f)A'yR:C':SZ':RA'y:O.

The time derivative of (4.1) gives the evolution of the parameters of the ellipsoid
and is a function of the slip rates 4.

4.2. Input data used for the calculation

The calculations are performed for a BCC polycrystal without initial texture

(100 grains). Isotropic and h%lﬁjﬁe?ﬁ%ﬁ]egﬁémptr (n = 80 GPa, v = 0.3) and
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slip systems of type {110} < 111 > are assumed. The initial critical shear stress
is assumed to be identical for all the systems of each phase and equal to 65 MPa.
Characteristics of dislocations are: b= 2.5 A, L = 6.4 um, a = 1.5 A, y = 4.7,
ass = 900 (MPa)2, Finally the ellipsoid describing the cell shape in each grain is
initially nearly spherical: a; =1, ag = 1.02, ag = 0.98.

4.3. Numerical results

Figure 4a represents the mechanical response (211, Fq1) in uniaxial tension.
The stress distributions in each phase are described for two macroscopic plastic

3 4
1

(MPa)
1000

5001

600,
E}‘!
400
(MPa)
2004

0 5 L6 -5 20 25
EL %)

F1G. 4. Mechanical states during an uniaxial tensile test. a) — Macroscopic response of
the polycrystal ( —@—), mean stresses and strains over the hard phase (—f¢—) and
soft phase (—#@—), mechanical state (011,&%)) for each grain at: Ef} = 0.1 (o) and
Ef, = 0.2 (o), mechanical state (0y1,€})) for each phase at: Ef, = 0.1 (V, O) and
Ef, =0.2(A,0). b) Same as for Fig. 4 a) but for 02, and €5, components (Ef; = 0.2).
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strains 0.1 and 0.2 by clouds of square (s) and triangle (h) points (the third order
stresses). The mean stresses in each grain are represented by two clouds of circle
points for the same two macroscopic plastic strains. The three curves describe
respectively the overall behavior of the polycrystal (first order stresses) and the
averaged third order stresses. One finds in the Fig. 4b the same description for
the components of the stress tensor. In agreement with experimental measure-
ments by MUGHRABI [35], the cloud of phase (k) is more extented than the cloud
of phase (s), and third order internal stresses (inside the hard phase) are twice
the overall yield stress for the oy component. One observes that the fluctua-
tions of components g2 and o33 are more important than those concerning the
component gypy.

The corresponding evolution of the cell morphology in each grain is given in
Fig. 5 for one grain and Fig. 6 for all the grains. Figure 5 shows the evolution
of the two semi-axes ratios of the ellipsoid (ry = ai1/az, r2 = a1/a3) during
the plastification. After a few percent of plastic strain, a saturation of the cell
shape evolution occurs as it was observed on BCC polycrystals by Scamirt [13].
One can explain this saturation by the stabilisation of the multislip deformation
mode. Figure 6 allows to follow the mean evolution of the highest semi-axis ratio
of the ellipsoid. Starting from a spherical shape in the reference state, the cells
become more and more elongated and reach a stable shape for a few percent of

2'5 i . i 5
23 i n
: 4 2
2 2
£ 1.5 = g &
" i
« —& @ )
g1 Vien i
5 —— e
o3 alc E
0.5 - ¥ ble b §

Number of systems
) L " ; 0
0 5 10 15 20

P (%)
&
F1c. 5. Evolution of semi-axis ratio in one particular grain of the polycrystal during the
p g P g

loading path.
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1

F1G. 6. Evolution of the largest semi-axis ratio in all grains as a function of Ef.

plastic strain. The cloud of points represents the highest semi-axis ratio in each
grain at Ef} = 0.2. These remarks (final shape and saturation) have been con-
firmed experimentally by ScHmITT [13].

In the present applications, the volume fraction f was assumed to be constant
so that the results obtained better apply to the formation of stable dislocation cell
structures. On the contrary, if the volume fraction is allowed to change, an overall
softening is obtained. This softening will be able to produce strain localization
as it was shown in [43] and [44]. Thus even if the model is formulated for small
elastic-plastic strains, it is well adapted to capture strain localization effect; this
is due to the fact that the third order stress fluctuations and the possibility to
have a changing microstructure are taken into account.

This way of modelling is different from those used by PIERCE, AsArRO and
NEEDLEMAN [45] where third order effects are neglected but a large strain formu-
lation is used.

5. Conclusions

Contrary to the grain boundaries, which are stationary with respect to the
material, dislocation walls are considered as free surfaces of plastic strain discon-

tinuities similar to a single (.iislﬁﬁtﬁi_? rgich]é'isgapl]near defect.
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Plasticity can be described at various spatial levels. In the common “micro-
macro” approach, the local constitutive equations are written in the framework
of classical continum mechanics (i. e. with internal variable) and induced dislo-
cation microstructures are not explicity taken into account. The most important
physics related with the dislocation walls are the kinematical and the statical
boundary conditions which are written here assuming uniform plastic strain in-
side the cells and the walls. The field Aluctuations at the level of the dislocations
are lost by the two-phase representation but third order effects (fluctuations at
the length scale of cells) are found.

Like in the framework of classical crystal plasticity, some phenomenological
parameters and relations describing the hardening and the evolution of the in-
ternal state are introduced. Future work has to be done in order to base some
phenomenological aspects of the model on a more precise physical description.
Applied for complex loading paths, a similar model was able to describe correctly
the subsequent, behavior [43].

Appendix A

A.l. Interfacial operators [36]

Consider a surface S between two different phases whose plastic strain is
denoted by P! and £P2, respectively. The stress and strain tensors are discontin-
uous across S. HiLL [36] has explained how their jumps are related together by
interfacial operators. The equilibrum equations:

(A.1) [o3jn] = (0F; — gij)n; =0
and compatibility conditions:

A2 —2 s A
(A.2) [&is] = &5 —Ejj = 5( inj + Ajni),

where A; is a vector determined completely by the condition
(A.3) CijrAsmun; = C,-jkglsﬁln_,- 1
lead to the relation:

(A4) [Eij] = Pijklcﬂmﬂ[egm]'

P is an interfacial operator depending of the unit normal n; to the surface S and
homogeneous elastic tensor C'. The operator P [29] can be written as

1
('5\')) Pz'_';kg = Z(CJF _]n_jnk = C_v;__ln,‘,ﬂ[ -+ C-_;l?’i{nk),

"njm + C;
“Rttp:/frcin-org P 2
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where C~1 denotes the inverse of the Christoffel matrix defined by
(A.G) Cik = C,;jkg’nﬁ?.i.

From (A.3) and (A.4), the stress jump across the surface S is given by

(A.7) 03] = —Qujmlely],
where
(AS) Qtﬂd — ( ijmn — Ciququm.n]Cmnk!-

A.2. Determination of the tensor J (Eq. (3.16))

(A.9) J = || QuanadS:
/

Consider an infinitely extended material with homogeneous elastic tensor C
containing an ellipsoidal inclusion V bounded by the surface S. From classical
results [37 — 39], the relation between the Green tensor G and the interfacial
operator P is given by:

(A.10) fr L CdV. ~ fr r'): CaV’ =Ps@
where

1
(A.11) Lijie = =(Gik st + Gikat);

2

r and r~ € V, rt is an external point to V and near to S.
Using the definition of the Eshelby tensor [30]

(A.12) fr . Cdv,
we have
(A.13) fF(r'*—r'):CdV':P:C—SE.

On the other hand, the time derivative of S¥ (A.12) gives

(A.14) SE = _ f Lir~ —rt) : CwanadsS;
fttp://rcin.org.pl
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S is homogeneous inside the ellipsoidal inclusion [40]. Thus, we have

(A.15) SE = %b{s'f'fdv.

Applying (A.15) to (A.14) and using (A.13) and the property of Green tensor G

(A.16) /F('r' —r')ay = /F('r"' — ')V,
v v
we obtain
(A.17) $Ey = /(SE — P Olwin. 48,
g+
By the definition V = | wanadS, we have the integral
s+
(A.18) / P : CwanadS = SEy — SEV.
S+

Using (A.8), the integral J (A.9) is given by

(A'lg) Jz'jk! = Cijrrm(fmnkl i Srﬁnk{)i} 7+ CijmnsfnrzkfmAmv

with S¥ = §2: A (see Appendix B).

Appendix B. Determination of the tensors S, 5%, and $°

B.1. Characterization of an ellipsoid and its evolution

The Eshelby tensor SE is defined by the volume integral (A.12) and its time
derivative S by the surface integral (A.14). Using the divergence theorem,
(A.14) becomes:

(B.1) SE = ff“,_.,(:r —7'): CwadV' —fF('r -7 Wa,adV' .
v v

The time derivative of S is also given by

http://rcin.org.pl
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ds® _ 3B

(B.2) —

= f [ pa(r =) : CuyugdV’ — / Cpr 1)
: (W gy + Wyt g)dV' — / [y(r — 1) : CutppwredV”’

w/F(r —r): C(Wp,pqWq + Wp pWa,q)dV’ —f!",,,(r — 1)
Crir,dV' — / [(r —1') : CiinypdV' .

The evaluation of these volume integrals requires the knowledge of the velocity
W, and its time and spacial derivatives which can be deduced easily from the
kinematical evolution of the ellipsoid v.

Indeed, an ellipsoid is described by semi-axes a;(i = 1,2, 3) and Euler angles
a;(t = 1,2,3) giving the orientation of the ellipsoid principal reference frame
versus the crystalline lattice. These parameters can be regrouped in the tensor
A(ap, ap) defined by

(83) Ang-‘ij — 1
In the principal axis of the ellipsoid, A takes the following form:
1/af 0 0
(B.4) A = 0 1/a2 O
0 0 1/ad

A standard coordinate transformation by the orthogonal matrix b(q;) gives the
tensor A in the crystalline lattice as

(B.5) Aij(ar, 1) = bim(Qr)bjn(ar) Agpp (ak).

By time derivative of (B.3), we obtain for wg:

: Loasgii
(B.6) Wi =5 = '"iA,-klAHII
and its time and spatial derivatives
; P
Wij = &ij = —5A Ay, wigk =0,
TRE §A:‘A AL Az — A Auz
i = 5 12%k KA Amndn ik YKLEL ¢
i = = {AT A AT Ay — ASLA
Wi, j 5{ mniink ki — i kJ} .

"Rttp://rcin.org.pl
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For the application of the consistency relation, a second derivative of S¥ is also
needed so that we have to determine

(B.8) 5E = S2ipeArg + Sin = ngkipqrsAmA" + SZ ttpgApas

where the new tensors S and S are defined from to S* by

sk, ’ %Sy
(BQ) S?jklpq = aA;q 3 Sijkipqrs E aAmE;A,,

and given by the following expressions:

l /=2 =2 | =]
2 3
Sijk!pq = § (Sij-upq 0 Sijklmfs) 1 Sijklpqrs = § (S?jklpqrs + Sijkipqrs) 1
(B.10)
| (=sE  E
E
Sijht = 3 (Sijkl i Sijkt)
with
=2 1o Iy 8 -1 L a=a)
Sijk!pq : __4“ {I‘ijmntpAtq + Tijmnthtp = 2Tijmnqu }C‘mnkt '
S 1 g o b o
S?jklpqrs o _1_6 {T:"_;i:-nﬂtquaAtplAur an TijmntpusAtq Am"
+T3jmﬂtqur At_pl A;sl + TsjmntpurAt_ql A;’l } Cmnk.!
]. P L L —] . — -1 2 -1 4—1
+§ {Ffjmnts(‘qtpl‘qqu + Atq Aprl + qul Atr ) + Tijﬂmtr(Atp Aqs

FAR A + AGDARY) + T s (AR A + AR AR + AN AR))
F T (A AR + AZ) AZL + AT ALY} G

1
— ot (A 471 + A AGY + AZLAZY),

=B ]
Sijkl = Iijmﬂcmﬂki'

The tensors T, T2 and T are given in the condensed form:

e -D82 G ' ! !
(B.11) T = — 5 _axlfc:zk(r—r)f(r Jav'

hftp://‘rcin.org.pl
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where D denotes a differential operator and f(r’) is a function such that three
choices are possible:

ey Sy =1 Vr' € v then T =T1

o= : f(r') = z; V' € v then T =T2%;

(B.l?) ra axn!’ i n = =
62 .f n" 7 3

s 0EmOT,’ f(r) =, Zq Vrl € wivthen T =1T%.

The tensor 7 (B.11) can be calculated using Fourier’s transformation of the Green
tensor G.

B.2. Numerical method by Fourier transformation
The explicit calculation of the Green tensor GG from the equation
(B.13) CijkiGin,ik(r) + 0md(r) = 0

can be accomplished by Fourier’s transformation. d(r) and g, are respectively
the distribution of Dirac and Kronecker’s symbol. If G(k)represents the Fourier
transformation of G(r), then

(B.14) G(k) f G(r)e™™maV, G(r) = / G(k)eiksrav

so that the transform of (B.13) is
(B.15) Cz‘jkléjkkikk = On.

The vector k may be described with the spherical coordinates k, #, ¢ by

where
(B.17) X1 =sinflcosy, Xz=sinfsiny, Xjz=cosb,

with ke [0, +o0], 6 € [0, 7], ¢ € [0, 27].
Consequently (B.15) becomes

(B.18) K2Gjn(k) = Mj;1(X),

where the matrix M depends on the orientation of the vector k by

(B.19) Mk JrSiotsig B
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Integration with respect to k in (B.14) uses spherical layers S(X) of thickness dk
and mean radius k, and it gives:

(B.20) dVi = k%dkdS(X) with dS(X) = sinfdfdey,

so that with these equations, (B.11) becomes

1 ik Xg(zs—2!) !
e e (X)d:S aTe—TaldkdV".
(B21)  Tyw=-53 8%61 /Mtk X) S‘/f(r / d

z - I
Following FAIVRE [41], only the real part of the integral of e®Xs(¥s=s) gives a
non-zero contribution,

oa +o0
Re / ok Xa(za—2) g1 :% / X a(@a—2,) g
—o0

but in terms of the unidimensional Dirac function 4, we have

+oo
e dk = 278(n).

—00

Finally (B.21) is rewritten as

e e L =1 Daz A%y 5 J 1
(B:2)  Tyu=-5ry bf Mz (X) g o v/ F(r')6(Xo(zs — 2,))dV"dS.

Recalling that function f is zero outside the ellipsoid V, we can extend the
integral [ f(r')6(Xs(zs—25))dV’ over the infinite volume. Then, observing that
equation

X(r-1r)=0

represents a plane P(r’) passing throught point r and with unit normal X, we
obtain the case of the Dirac function concentrated on plane P(r’). Using KEcs
and TEODORESCU [42], we have:

(B.23) If(r) = ff ()Xo — 21 ) AV = —ff(r \da'das

with (o, 7, ) being equal to any permutation of (1,2, 3).
I¢(r) is a classical surface integral that gives for a point r located in the

ellipsoid the following three 'hﬁlpl)tsf/l’cm org.pl
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o first case of (B.12): f(r) =1 then [I;(r)= alazasﬁ

with Z = \/G%XIQ _f_agxg + agxg’ = .—'\;I‘i:
e second case of (B.12): f(r') =z, then Iy(r)=

= a2 Xn ﬂLl“213“""3“(1 — HY)H;

(1-H?

e third case of (B.12): f(r') = 2,2y then Ip(r)=

= a}ad Xn X, 22 (1 - HAH?,

Substituting the three possible choices into (B.22), we obtain by performing the
partial differentiations D, 6— and %

alaga-; X Xi

T:Jkl 5 szk 13 ds2,

3&1&2&3& X;iXiXmX
(B.24) Tiktmn = —Nf M! X)—TM(IQ

3&1&2{13& XXX XX

D iy = /A & (X)) =2 o x40

Let us observe that 7, 72 and T® do not depend on r for r lying inside the
ellipsoid; this result was previously mentioned by Eshelby for 7.

Calculations of these tensors require the knowledge of M. given from (B.21):
in the general case of an ellipsoidal inclusion and anisotropic material, a numerical
method is used. In the next section the case of spherical inclusion and isotropic
material is solved analytically.

B.3. Isotropic elasticity — flattening of a sphere into ellipsoid

From the components M;; (B.19) we obtain for isotropic elasticity with shear

modulus p and Poisson’s ratio v the result:
T 1
B.25 Mz (X) = =0k — =———X:X1).
(B.25) &(X) = 2 (0~ gy XX
Substituting for a sphere a; = ay = az and (B.25) in (B.24), we obtain tensors
T2, T2 and T®:
1

T = m1](( — 100)8ikdj0 — (0;;08 + Gaadjx))

ttp://rcin.org.pl
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" 1 , ey A
Iif_),l‘k{mn = m ((13 — 141))0-5;;(6_1'(6”1“ kL 2A1£mn} = f)ijéklomn

—010;k0mn — 20i; B kimn — 20618 jmn — 204D jlmn — 20im D jnkl
_25£nEij) .

e P

ijklmnpg = 315(1 — v)p
+‘26ij1]?’!!’! + 200 jipg + SZj:mnm) — (03j0k10mndpg + 0:10kOmndpq
+20: 0618 mnpq + 20ii0mnDkipg + 20:0pq Dimn + 20k10mnDijpg

+20k10pq Bijmn + 20it0mnDS jkpg + 20ipOmn S jqkt + 28ig0mn L jpki

+2§i16mzjkmn o 25im6 A Jrkl a1 2ézn¢pqajmu 1 25;!631:Amnpq

T3 ((17 — 180) ik (0t0mnbpq + 20,1 Bmnpq

+80;; Akimnpq + 80k1Dijmnpg + 80D jkmnpg + lﬁvijmnupq

+16V; jpqkimn + 4B jmnDipg + 4E£quzkfmn)) ;

with
Dijig = %(5&5;‘: + 0udjk ),
Ku’ktrﬂn = %(dikzjlmn + 0B jkmn + Oim D jnkt + Gin D jmkt )
%i jklmnpq = ‘;‘(6ikzjtmnpq + 61D jkmnpa)-
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