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Receding contact between an orthotropic layer
and an orthotropic half-space

P. K. CHAUDHURI and SUBHANKAR RAY (CALCUTTA)

Tue proBLEM of smooth receding contact between an orthotropic layer and an or-
thotropic half-space has been considered in this papaer. The paper includes a gen-
eralization of the results of the paper by L. M. Keer, J. Dunpurs, K. C. Tsa1 [4]
concerning receding contact between an isotropic layer and an isotropic half-space.
It is observed that the task of finding the extent of contact in the loaded configu-
ration can be reduced to an eigenvalue problem of a homogenous Fredholn integral
equation. The kernel of the Fredholm integral equation is found to be dependent on
the elastic constants of the layer but is independent of the elastic constants of the
half-space below, which is in contrast to the study for the isotropic materials, where
the kernel is independent of the elastic constants. Finally some numerical results have
heen presented in graphs in order to compare the results of interest for isotropic and
orthotropic materials.

1. Introduction

WHEN TWO ELASTIC media are in contact, the determination of the state of stress
in the media has been the subject of study in literature for many years, and the
problems are usually termed as contact problems. Usually the contact problems
are of two types:

(a) the bodies in contact are bonded together and consequently, the con-
tact regions are known a prior:, and the main task is to determine the stress
distribution in the media;

(b) the bodies are in contact without bond so that the region of contact is
not known. In such class of problems determination of the contact region (which
depends upon geometric features of the bodies as well as upon the load distri-
bution on the system) becomes an additional task barring the stress distribution
in the system. In 1970, (DUNDURS and STIPPES [2]|) observed the role of elas-
tic constants in unbonded frictionless contact of two elastically isotropic bodies.
They classified the contact between two bodies into three categories, viz. (i)
receding contact, (ii) stationary contact, (iii) advancing contact. Clearly, in a
contact problem of two unbonded media, the initial region of contact does not
always remain the same when deformation occurs in the body. If R’ represents
the contact region which was initially R, then the contact is receding if R’ C R,
stationary if R’ = R and advancing if R’ D R. It has been observed that in linear
elastostatics, the problems of reCEdi;lF contact have several simplifying features
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compared to the advancing contacts. The most important fact is that the extent
of receding contact is independent of the level of loading, which implies, in turn,
that if uplift is to occur, the change from initial contact to the contact in the
loaded configuration takes place discontinuously. Among the studies of reced-
ing contact between two bodies recorded in literature, mention may be made of
the works of WEITSMAN [8], Pu and HussaIN [7], WiLsoN and GoRreE [9], KEER,
DunpuRs and Tsat [4] and more recently of L1 and DEmMPSEY [6]. In all the above
papers the discussion is limited to isotropic media only.

The aim of the present paper is to study the properties of smooth receding
contact when an orthotropic layer is resting unbonded on an orthotropic half-
space and to provide information regarding the extent of the contact region. As
in [4], it is observed that the task of finding the extent of contact in the loaded
configuration can be reduced to an eigenvalue problem of a homogeneous Fred-
holm integral equation which may be solved numerically to any desired degree of
accuracy, when loading intervals are not very large in comparison to the thickness
of the layer.

One notable feature in the present study is that the kernel of the Fredholm
integral equations is dependent on the elastic constants of the layer but is inde-
pendent of the elastic constants of the half-space below, whereas in the isotropic
media the kernel is totally independent of the elastic constants. Finally, all the
results for the isotropic media can be obtained from the corresponding results of
our discussion by assigning limiting values to the elastic parameters.

2. The basic equations

For an orthotropic elastic medium, we choose the Cartesian coordinate axes
to coincide with the principal material axes and define the plane strain state by

(2.1) Uy = w(2,2), Uy =0, u.=w(z2),

where gz, Uy, u, are the displacements along 2,y and z directions, respectively.
The stress-displacement relations are
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Ozz = Ana—; + Az
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where A;; are anisotropic constants of the orthotropic material. In terms of the
displacement components the equations of equilibrium are

*u, 0%u, O*u,
A 572 1 Ass 922 (A13 + A55)33:62: =0,
(2.3)
9%u, 0%u, 0%u,
Ass oz + Anpg + (Ass+ A) 5 = 0.

At this stage we decide to represent the solution uz, u, of Egs. (2.3) in
terms of potential functions. Obviously, the usual potential representation of
displacement components in isotropic medium will not be suitable here. However,
we can employ the method discussed in LEKHNITSKII [5] to represent ug, u. in
terms of potential functions as follows:

Let us seek a solution of Eqs. (2.3) in the form

¢ _ O¢g _,0do
(‘2'4) u: = ax ] uz = A 82 1
where A is a constant and ¢g = ¢o(z, z). Equations (2.3) are satisfied if
(2.5) Ass + AM(A1a + Ass) AAz; g
' A AAss + A1z + Ass '

where 42 is another constant.
From the relation (2.5) we get two quadratic equations, one in A and the
other in §2. If Ay, Ay and 6%, 62 are the roots of the quadratic equations

(26)  X*Ass(Ag + Ass) + A [A1g + Ass)? + A5 — Aui Ags
+Ass (A1z + Ass) = 0,
(2.7) 6 A1y Ass + 02 [(Ala + Aps)® — A% — AuAaa} + AazAss =0,

respectively, then we have two potential functions ¢(z, z) and ¥(z, z) satisfying
the differential equations

¢ 0%

51:'2_ + "3;;2 — 01
(2.8)

6%[! 82‘4[1

527 toZ ¥
where
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Hence the displacements and stresses can be expressed in terms of ¢ and ¢ as

= 8z Oz’
(2.10)
b M08 N0
1 51 (921 52 822‘
Gez _ 1+ MO0 1+00%
A55 s 012 81‘2 (‘J-g aJ.'?’
6‘2¢ Py
2.11 Tas, o

O 14\ 0% 14X 0%

A55 I 51 333821 4 (52 83.'322'

3. Formulation and solution of the problem

We consider the plane elastostatic problem in which an unbonded layer of
thickness h is in smooth contact with a semi-infinite base. The coordinate system
used in relation to the two bodies is shown in Fig. 1. The layer is pressed against
the base by normal tractions distributed over the segment —a < x < a on the top
surface of the layer, while the rest of the surface is free from tractions. The layer
is in contact with the base below over the segment —¢ < 2 < ¢ in the deformed
state while separation takes place outside this interval.

For simplicity, we consider only the case where the applied normal tractions
are symmetric with respect to the centre of the loaded segment. Integral solutions
of Eq. (2.8) which will be appropriate for the present problem can be written in
the following forms:

o0
3.1) ¢ = f [A@)sh {&(z + 0)/61} + Ble)ch {&(z + h)/6{"}] coséx e,

0

(32 »®= /E [c(esh {€(z + m)/5{"} + D(€)ch {€(z + R)/55"}]

-coséz d, -h<2<50,

and

(3.3) ¢ — / E(&)e=¢/% costa de
0
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F1G. 1. Layer pressed against a half space.

(3.4) (2 = f}?({)é-—le—fz,fﬁg) coséx dE, z >0,
0

where A(€), B(&), C(&), D(€), E(€) and F(£) are arbitrary functions, to be
determined from the boundary conditions.
The boundary conditions for the problem are

(3.5) ol (z, —h) = 0, <2l <00 ;
(3.6) oD (z. —hy = { -p(z) = —gf(_r), 0<|z|<a,
0, a < |z| < oo
(3.7) ol (2, 0) = 0, 0 < 2] < oo
(3.8) o? (2, 0) = 0, 0<|z| < o0
(3.9) o (z, 0) = o&(z, 0) <0, 0 < |z| < o0
(3.10) o (2, 0) = ¢ < |z| < oo
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Buf,,”(a:,[)) = Bu?)(;r,O)

(3.11) e = o 0<|z| <e,

where the uknown length of contact between the layer and the base is 2¢. The
superscripts 1 and 2 in Egs. (3.1) - (3.11) refer to the layer and base, respectively.
As the normal displacements in the contact region are continuous, we write the
boundary condition (3.11) in the form of a derivative to avoid involvement of
rigid body displacements.

From boundary conditions (3.5) — (3.9) and using (2.11), (3.1) - (3.4), we get

(312) €A 1+ MY/ = —c(e) @+ AN/,

(313)  £BO) (1 +AP) + D) (1+ M) = ——5(6),
Az

(3.14)  {&(+A{")/01"} [A() ch(gn/a) + B(€) sh(eh/o{V)]
=—{a+" /35" } [C(g ) ch(¢h/85") + D(€) sh(¢h/o") } )
(315)  EEEQ+ AP/ = -F(©) (1+2D)/6
(316) [+ ] {A) shgn/o") + B(e) chign/of"))
=1+ APVE©)] = -1+ 25") {C(€) sh(gn/af”)

+D(€) ch(eh/d5") } +¢(1+ AP (E),

where '

(3.17) #6) = (2/m) / p(x) coséz da,
0

(3.18) = AR /AL .

Equation (3.17) is the Fourier cosine transform of the normal tractions acting on
the top surface of the layer. Using Eqs. (3.12), (3.13), (3,15) we get from (3.14)
and (3.16)

(319)  A© = {o{"/L: (&)} [{p() shien/of")}
/{eAG 51+ 3} + BO)La(€)]

(320)  B(£) = (1 + AP)E(€)L1(E) + ﬁ(é)Lq(E)]

1
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where
(3.21) L1(€) = ch(gh/o{") — ch(gn/oV),
(3.22) = (1/68")sh(eh/o8V) — (1/6M)sh(en/o(M),
(3.23) L3(€) = 2 — 2ch(eh/6{")ch(eh/o")

+(01" /85" + 85 /(" )sh(gh/o{)sh(gh/ /i),
(3.24) La(€) = ch(&h/8{")ch(gh/85")

— (05" /85")sh(&h/0{)sh(gn/of) — 1,

(3.25) m=1-(857/6).

From boundary condition (3.10) and Eq. (3.15), we obtain

(3.26) /§2E(§}cos§x d=0, ec<|z|<.
0

Using the result [3]

<t <z,

(3.27) /Jo(ii cos £z d€ = { 1/\/32 —22, 0<z<t

Eq. (3.26) is identically satisfied if we take
(3.28) B(©) = - [ M(Jo(et) dt
0

where M (1) is an unknown function which will be determined so as to satisfy the
last boundary condition (3.11). Using Egs. (3.12), (3.13), (3.15), (3.19), (3.20)
and (3.28), the boundary condition (3.11) reduces, after some calculations, to

(3.29) / M(t) / T1(€)Jol€t) sinéz de dt = o ] Ta(€) H(€) sin €z de ,
0 (4] 0

where (Ag“/éil)) h! [{Am(l +A(1))}/{5{1)(1 -I—A(]))}]

(2) /5(2) (2) (2) 5(2) (2)
) 1+ (14 Ag
(A7/61) — J{A8)0 4 Béﬁa i

(3.30) ne =
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L Smme(1 4+ AP 50 /5 (1)
(3.31) Ty(€) =1+ m [( D/68") sh (éh/a 1 )

ch (gh/o(") — sh(eh/oi) h(gh/o“’] ‘
(332) T8 = {o{"La@} / {AR) (142" La®)} -

We observe that the integrals in Eq. (3.29) have singularities at £ = 0 which poses
the convergence problem for the integrals. This difficulty can be eliminated by
taking advantage of the fact that the load applied over the interval |z| < ¢ on the
top surface of the layer is balanced by the contact pressure acting over |z| < ¢
on the bottom surface. So from Eq. (2.11) and using (3.28), we get

) c g
(3.33) &’-%i =-m (1+1{) /M('&J/Jg(ét) cos &z de dt .
A55 0 0

Using (3.27), Eq. (3.33) reduced to

(2)
ozz (z, 0) (2) ﬂ’f( )
— = ==m(1+2A

From Eq. (3.34) it is clear that if ﬁf(t) is finite in [0, ¢|, the contact pressure
vanishes as £ — c.
The condition of equilibrium is given by

(3.34) dt D<z<e.

c

(3-35) /ffﬁ’(r. 0)da = ~/p(:r) da = —%P .
0 0
Substituting Eq. (3.34) into (3.35) we get

€ 2 a
(3.36) mAD (1+22) / M(t)dt = = / p(z) dr
0 0

Rewrite Eq. (3.29) in the form

¢ oo (2)
(3.37) (1+ 7?3?74)/ﬂ’f(5)_/-f0(§¢) sin §x d€ dt d§ + CT!IE?l? 51;1;\)1 )
0

- f M) ] [{Ls(€)/La(€)} — ma] Jo(&t) x sin €z dE di

“ffijz (€)p(§) sinéz dx d§ = 0,
http://rcin.org.pl
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where

(3.38) m = {1- (60/60)}

(3.39) m = ¢mm (1+27) / (1+40"),

(3.40) Ls(€) = (o17/857) sh (en/a5") ch (en/o(")

—sh (gn/o‘{“) ch (gh/o‘g”) :

Using Eq. (3.36) and the result [3]

o0 1
(3.41) /Jo(et) sinewdez{ T L sy
0 0, O<ca<t

the integral equation (3.37) reduces to

M Cnn 1+A ¥
(342)  (1+msma) f ®) ‘“+ i B f f
0

(1)
1—{—/\ 5

- [{Ls5(&) — msLa(&)} Jo(&t) — 31" L2(€) f(€)] sin &z dE dt =0

Although the second integral in Eq. (3.42) is an unknown function of z,
considering Eq. (3.42) as an Abel’s integral equation and solving for M(t),
we get a homogeneous Fredholm integral equation of the second kind of the
form

a Ac r — _2
(3.43) Df Us,t) M(t) dt = T—M(s)
where
ST .
(3.44) Uist)= 2 Df [ La6) Fee)

—{Ls(§) — n3Ls(€)} Jo(&)] £ Jo(&s) dE,

(3.45) a=(Q2-Q1)/(Q2+ Ql
http //rcm org.pl
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(3.46) Qi = ADAY (AD +AD) (1+2P) (1+23) (52 +52),

(347) Qa2 = ANAR (A +AR)) (1+27) (1 +257) (61" + 63").

It is evident from Egs. (3.45), (3.46), (3.47) that the parameter a depends on the
elastic constants of both the media. For a given combination of materials, a is
known and hence Eq. (3.43) determines the extent of contact between the bodies.
But it would be more convenient from the mathematical point of view to consider
Eq. (3.43) as an eigenvalue problem for the eigenfunction M(t). This may be
done by considering ¢ as specified and determining the eigenvalue 2/(1 + a) of
the homogeneous integral equation (3.43) for which the extent of contact ¢ is
realized. Eigenvalues are determined by considering physically possible values of
a, and then the corresponding eigenfunction M(¢) determines the pressure in the
contact zone from Eq. (3.34).

From Eq. (3.43) it is observed that in contrast to isotropic materials, the
contact region and contact pressure are not functions of a single parameter de-
pending on the elastic constants of the two media, and even if the layer and
the half-space are of the same orthotropic material, the contact region and the
contact pressure are not completely independent of the elastic parameters, which
was predicted by the general results for isotropic medium in [2], and was verified
later in [4].

4. Numerical results

To determine the eigenfunction M(f) corresponding to the eigenvalue
2/(1 + a) of Eq. (3.43), we discretise the integral to get a system of linear ho-
mogeneous equations in M(t;). For a specified value of ¢, the determination of
M (t,) demands nonvanishing of the coefficient determinant. This in turn requires
choosing appropriate values of a such that the coefficient determinant should be
nonzero and the value of a should be acceptable on physical grounds. It may be
observed that on physical grounds, a should satisfy the inequality —1 < a < 1.
Moreover, it is necessary that the corresponding eigenvector M(t;) should yield
purely compressive tractions in the zone of contact. In all cases the components
of the eigenvector associated with an admissible value of a are of the same sign.
In this problem, the results have been computed for the concentrated force for
which f(€) = 1. During the numerical computations for orthotropic materials

we have used the values 2.862 and 0.047 for 65”2 and r‘ié”z , respectively, for
boron-epoxy composite material as given in [1]. The curves of ¢/h versus a for
orthotropic and isotropic materials are shown in Fig. 2. The contact tractions
may be calculated from Eq. (3.43) and are shown in Fig. 3 and Fig. 4 for
orthotropic and isotropic cases, respectively.

http://rcin.org.pl
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F1G. 2. Extent of contact for loading by a concentrated force in plane problem.
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F1Gc. 3. Contact pressure for loading by a concentrated force in plane problem for
orthotropic medium.
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Fic. 4. Contact pressure for loading by a concentrated force in plane problem for

isotropic medium.
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