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FIFTY YEARS OF THE ARCHIVES OF MECHANICS

On symmetric tensor-valued isotropic functions
of a symmetric tensor and a skewsymmetric tensor
and related transversely isotropic functions

H. XIAO, O.T. BRUHNS and A.MEYERS (BOCHUM)

A NEW GENERATING set consisting of seven polynomial tensor generators is presented
for symmetric second order tensor-valued isotropic functions of a symmetric second
order tensor and a skewsymmetric second order tensor. It is smaller than the existing
corresponding generating set consisting of eight tensor generators and shown to be
minimal in all possible generating sets consisting of homogeneous polynomial tensor
generators. This result indicates that the well-known results for isotropic functions
may be sharpened. In addition, from the presented result a minimal generating set
consisting of six tensor generators is derived for the symmetric second order tensor-
valued transversely isotropic functions of a symmetric second order tensor relative to
the transverse isotropy group Ceon consisting of all rotations about a fixed axis.

1. Introduction

IN CONTINUUM MECHANICS, symmetric second order tensor-valued isotropic func-
tions of vectors and second order tensors serve to formulate constitutive relations
of isotropic materials, such as stress-deformation relations etc. The isotropy
places restrictions on the tensor function forms of constitutive relations. It is
important to determine general reduced forms, i.e., representations of the latter
under such restrictions. Now general results for isotropic functions of vectors and
second order tensors, in the sense of polynomial or nonpolynomial representation,
are available and well known (see, e.g., [1 - 7]), and in [1] and [8 — 9] these results
are given for use in convenient tabular forms.

To arrive at concise and efficient formulation of complicated material be-
haviours, representations for constitutive equations of materials should be made
as compact as possible. Although the above-mentioned representations for
isotropic functions have been proved to be irreducible in the sense of polyno-
mial or nonpolynomial representation, until now it has not been known whether
or not each of them is minimal in a suitable sense. Further development re-
quires examining and sharpening the existing results and finally, arriving at min-
imal representations in a suitable sense. In this paper, we are mainly concerned
with symmetric second order tensor-valued isotropic functions of a second order
symmetric tensor and a skewsymmetric second order tensor. For such tensor
functions, earlier TELEGA [10] made an attempt to find a generating set that is
smaller than the existing one (see the end of this section for detail). Although
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later this early attempt was shown to be unsuccessful in [5], in this paper we
shall show that the expected goal may indeed be arrived at. Specifically, we shall
provide a new generating set consisting of seven polynomial tensor generators for
the isotropic functions at issue, which is smaller than the existing generating set
consisting of eight generators, and furthermore we shall prove that the presented
set is a minimal one in all possible generating sets consisting of homogeneous
polynomial tensor generators.

It shoud be pointed out that the tensor functions at issue include symmet-
ric second order tensor-valued isotropic functions of an asymmetric second order
tensor, since each asymmetric second order tensor has a unique additive decompo-
sition into a symmetric tensor and a skewsymmetric tensor. Moreover, the tensor
functions at issue also include symmetric second order tensor-valued transversely
isotropic functions of a symmetric second order tensor relative to the transverse
isotropy group Coop, as will be shown in Sec. 3. Accordingly, minimal generating
sets for the two types of tensor functions just mentioned can be derived from the
presented minimal generating set for the tensor functions at issue. In so doing,
by virtue of (1.2) given later, the derivation is direct for the former type of tensor
functions. However, the derivation is not so direct for the latter type of tensor
functions and will be discussed at the end of Sec. 3.

To facilitate the subsequent account, in what follows we outline some related
facts.

A symmetric second order tensor-valued function #(A.W) of a symmetric
second order tensor A and a skewsymmetric second order tensor W is wsotropic if

(1.1) $(QAQT.QWQ) = Qy(A.W)Q".

for each orthogonal tensor Q. Henceforth, tensor means second order tensor if no
confusion arises. Throughout, the superscript T is used to signify the transpose
of a tensor.

As mentioned before, each symmetric tensor-valued isotropic function of an
asymmetric tensor B is equivalent to a symmetric tensor-valued isotropic function
of a symmetric tensor A and a skewsymmetric tensor W. Indeed, this can be done
just by the replacement

A= %(B +BL)
(1.2)
W = %(B BT

A finite number of symmetric tensor-valued isotropic functions, (A, W),
-+, (A, W), of a symmetric tensor A and a skewsymmetric tensor W form a
generating set for the symmetﬁc tensor-valued isotropic functions of A and W
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if every symmetric tensor-valued isotropic function (A, W) is expressible as a
linear combination of these tensor functions with invariant coefficients, i.e.

(1.3) VA, W) = et (A, W) + - + ¢ (A, W),

where each coefficient ¢; = ¢(A, W) is an isotropic invariant of the tensors A
and W, and each 9;(A,W) is called a tensor generator. A generating set is said
to be irreducible if it contains no redundant tensor generators, i.e. none of its
proper subsets is again a generating set.

The following generating set for the isotropic tensor functions at issue is well-
known [2 - 3]:

(1.4) {I, W2, A, A2, AW — WA, A’W — WA2 WAW, W2AW — WAW?}

Here and hereafter, I is used to denote the identity tensor. Earlier, it was thought
[10] that the generator WAW could be removed from the above set and hence
that a smaller generating set was available. Later, the irreducibility of the above
set wes proved in [5]. Although the attempt in [10] was unsuccessful, we shall
show that we can find a new generating set which is indeed smaller than the
above set.

2. A criterion for generating sets

W shall use the following criterion [11] to judge whether a given set of tensor
genersztors is a generating set or not.

Let (A, W), -, (A, W) be r given symmetric tensor-valued isotropic
Junctions of the symmetric tensor A and the skewsymmetric tensor W. Then
they form a generating set for the symmetric tensor-valued isotropic functions of
the teasors A and W if and only if

(2‘1) l'a*"k{%i’l(Aw W) ety wr‘(Af W)} s dim S}’m(Q{A» W])

for any symmetric tensor A and any skewsymmetric tensor W.

Here and hereafter, the notations rank S and dim L are used to designate
the number of the linearly independent elements in any given set S of tensors
and the dimension of any given tensor subspace L, respectively. Moreover, for
any given symmetric tensor A and any given skewsymmetric tensor W, the no-
tation g(A, W) is used to denote the symmetry group of the tensors A and W,
which includes all orthogonal tensors preserving both A and W, and for any
given orthogonal subgroup g, the notation Sym(g) is used to represent the ten-
sor stbspace that is composed of all tensors invariant under the subgroup g.
Specifcally,

. o o | L
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(2.3) Sym(g) = {B € Sym | QBQ" = B,VQ € g},

where Orth and Sym are the full orthogonal group and the space of symmetric
tensors, respectively.

To apply the above criterion, it is required to evaluate the dimension
dim Sym(g(A, W)) for any symmetric tensor A and any skewsymmetric ten-
sor W. For W+#£0 and A€ Sym, we have

2 for A=2l+yw@w,
(2.4) dimSym(g(A,W)) << 4 for wx Aw =0,
6 for any A and W.

Here and hereafter, for each skewsymmetric tensor W we use the following ex-

pression
(2.5) W = Ew,

where w is an axial vector associated with W, determined by
(2.6) w=E: W, i.e. w; = e Wik.

Here E is the third-order Livi - Civita tensor and e;j; the permutation symbol.
The proof for (2.4) is as follows. It is evident that (2.4)sz holds, since

Sym(g(A, W)) is a subspace of the symmetric tensor space Sym for any giv-

en tensors A and W, and moreover dim Sym= 6. In what follows we prove

that (2.4)1.2 hold. Henceforth, R% is used to denote the right-handed rotation

through the angle @ about an axis in the direction of the vector w # 0.
Suppose that A = 21 + yw @ w. Then we have

Q(EW)Q" =Ew, QAQT=A
for any Q = :i:Rfv. Hence
(2.7) Coon(W) = {£RY, | 0 € R} C g(A,Ew).
From the latter and
(2.8) Sym(Coon(w)) = span{I,w @ w},
as well as the fact that for two orthogonal subgroups g1, g2 C Orth,
(2.9) 91 C g2 = Sym(g2) C Sym(g1),

we infer that (2.4); holds.

Suppose that w x Aw = 0. Then w # 0 is an eigenvector of the symmet-
ric tensor A. Let (w,e;,es) be three mutually orthogonal eigenvectors of the
symmetric tensor A. Then we have

A=wewtidntinbigpl Ve
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and
R:w =W, Riel = —81, R:EQ = —e9

Hence, we derive
‘2(“") = {Is R:'} = Q(Al EW)
From the latter and

S_YITI(CQ(W)] = spa,n{w Rw,e;@e,es@ez, e @es e ®e1}

as well as (2.9), we deduce that (2.4)2 holds. Q. E. D

3. Smaller generating sets

The main result of this paper is as follows.
THEOREM 1. The set Go(A, Ew) = {Gq, -+, Gz} given by

Gl =1, Gy=w@w, G3:A) G-l:A?!
G; = A(Ew) — (Ew)A,Gg = (W X Aw) @ (W X Aw),
G7 = (Wwx Aw) @ (W X (W X Aw)) + (W X (W X Aw)) @ (W X Aw),

is a generaling set for the symmetric tensor-valued isotropic functions of a sym-
metric tensor A and a skewsymmetric tensor W = Ew, and this set s a manimal
one in all possible generating sets consisting of homogeneous polynomial genera-
tors.

In the following, we prove that the set Go(A, Ew) given above is a generating
set for the isotropic tensor functions at issue. The proof for the minimality of
this set will be postponed until the next section.

It can be readily shown that each presented tensor generator G; is isotropic
with respect to A and W = Ew by means of the facts

E: (QWQT) = 2(det Q)Qw,
(Qe) x (Qe') = (det Q)Q(e x €'),

for any skewsymmetric tensor W, any orthogonal tensor Q and any vectors
e and €. Note that here w is the axial vector determined by (2.6). Hence,
we need only to prove that the presented set Gg(A, Ew) obeys the criterion
(2.1), i.e.

(3.1) rank Go(A, Ew) = rank {Gy, -+, G7} > dim Sym(g(A, Ew))

for any symmetric tensor A and any vector w. Towards this end, four cases will
be discussed.
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CASE 1. One of the tensor arguments A and Ew vanishes

Each tensor generator G; for i = 5, 6, 7 vanishes. Since the sets {I, w@w} and
{I, A, A%} provide a generating set for a symmetric tensor A and a generating
set for a skewsymmetric tensor W = Ew respectively, the condition (3.1) are
satisfied for the case in question.

CASE 2. w X Aw # 0

Henceforth, for any two vectors e and €’ the notation e Ve’ is used to signify
the symmetric tensor defined by

evVe =e@e +e @e.
Let
e; = w X Aw, e = W X ej.

Then (w, e, ep) is an orthogonal system of vectors. Without loss of generality,
we assume that both the vectors w and Aw are normalized ones, i.e. |w| =
|Aw| = 1, and therefore that the mentioned system of vectors is an orthonormal
one. In terms of this system, the symmetric tensors I and A are expressible as

(3.2) I=w@w+te @e e Desy,
(3.3) A = aq1e; @e; fases @ey +azw @D W

+ase1 Ve tazswV e +agwVes.
The condition that w x Aw # 0 requires
(a5)® + (ag)? # 0.
Hence
(3.4) A(Ew) — (Ew)A = (a1 —az)e; Vey —ay(e; @e; —ex @ey)
+agw Ve; — asw V eg.
In deriving the above, the identity
(Ee)e' =e x €
for any two vectors e and e’ is used.
Applying the expressions (3.2) - (3.4), we infer
rankGo(A,Ew) > rank{Gi, Gz, G3, Gs, Gg, G7}
= rank{w @ w,e; @e;,e; Ves, I, A, A(Ew) — (Ew)A}
= rank{w@w,e; Qe;,e; Vey e ey,
asw V ey + agw V ey, agw Ve — asw Vea}

= rank{w@w,e; Qej,e; Vey,e; ez, wVe,wVes}

= 62 Synfglfy B org.pl
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[n the last step, (2.4)3 is used.

CASE 3. wx Aw = 0 and A(Ew) # (Ew)A

Let (w,ej,ez) be an orthonormal system of vectors, where e; may be any
unit vector in the w-plane and e; = w x e;. Then the expressions (3.2) - (3.3)
remain true. The condition that wx Aw = 0 implies that w # 0 is an eigenvector
of the symmetric tensor A. Hence, in (3.3) we have

as=ag=0.
Moreover, the condition that A(Ew) # (Ew)A yields (cf. (3.4))
(a1 —az)? + (as)® #0.
Thus, we deduce

rankGo(A,Ew) > rank{Gi, Gz, G3, G5}
rank{w @ w,e; @e; + e; @eg,a1e; @ e + azes D e
+ase; V ey, (a1 —az)e; Vey —as(e; @e) —ex @ey)}
= rank{w @ w,e; @ e;,e; @ey, e Vey}
= 4> Sym(g(A,Ew)) .

In the last step, (2.4)2 is used. Moreover, we mention that the determinant of
the coefficient matrix of the last three tensors in the second equality with respect
to the three independent tensors e} @ e, e2 @ ez and e; V ey is given by

1 1 0
A=| 41 ap ay = —(a1 —a2)* — 2(as)® # 0,
—a4 Q4 Q1 —ag

and therefore, that the two sets of three tensors just mentioned are equivalent.
CASE4. w x Aw =0 and A(Ew) = (Ew)A, ie. A=l +yw@w
From (2.4)4, it is evident that

rankGgo(A, Ew) > rank{I, w @ w} = 2 > dim Sym(g(A, Ew)).

Finally, combining the above four cases, we conclude that the presented set
Go(A,Ew) obeys (3.1) for any tensors A and W = Ew, and hence it is a gen-
erating set for the symmetric tensor-valued isotropic functions of the symmetric
tensor A and the antisymmetric tensor W = Ew. Q. E. B;

From the proof given above, it can be seen that the tensor generator G4 = A?

comes into play only when W = O, i.e. w = 0. This fact leads to the following
result.
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COROLLARY 1. The set
(3.5) G4+ (A,w) = {G1, Gg, Ga, G5, G, G7}

is a generating set for the symmetric tensor-valued isotropic functiors of the
symmetric tensor A and the nonvanishing antisymmetric tensor W = Ew # O,
and this set is a minimal one in all possible generating sets for the isotropic tensor
functions at issue.

According to [12], a generating set for the symmetric tensor-valued isotropic
functions of the symmetric tensor A and the antisymmetric tensor En, where
n is a fixed unit vector, furnishes a generating set for the symmetric tensor-
valued transversely isotropic functions of the symmetric tensor A relative to the
transverse isotropy group Ceop(n) (cf. (2.7)). Thus, by assuming the vector w as
a fixed unit vector n in (3.5), from the above corollary we derive a generating set
for the symmetric tensor-valued transversely isotropic functions of the symmetric
tensor A relative to the transverse isotropy group Cup(n) as follows:

(3.6) Go(A) ={I,n@n, A, A(En) - (En)A,

(n X An) @ (n x An),(nx An)V (n x (n x An))}.
This generating set, which is composed of six tensor generators only, is smaller
than the existing corresponding generating sets (cf. [13, 14]), each of the latter
being composed of eight generators. Furthermore, the generating set given by
(3.6) is the smallest possible (cf. Theorem 4 given in [15]). In fact, it is equivalent
to the corresponding minimal generating set given in [15].

4. The minimality of the generating set Gy(A, Ew)

In forming the generating sets, homogeneous polynomial generators are com-
monly used (see, e.g., [l — 9]). Each such generator except the constant vectors
and constant tensors is of the property: it vanishes when one of its variables
vanishes. Thus, for the tensor functions concerned, each generating sets is of the
form
(4.1) G(A,Ew) = GoUG'(A)UG'(Ew) UG'(A, Ew),

where Gg is a set consisting of constant tensors, G’(A) and G'(Ew) are two
sets consisting of tensor generators depending on a single variable A or Ew
respectively, and G’(A, Ew) is a set consisting of tensor generators depending on
the two tensor variables A and Ew. Each set given above is assumed to fulfil the
properties:

(4.2) $(0) = O, Vio(B) € G'(A) UG'(Ew),

¥(A,0) = (O, il 770 Yy Bp¥) € G'(A Ew) .

I
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The main objective of this section is to verify that the generating set
Go(A, W) given in the last section is minimal in all possible generating sets
of the form just stated. To this end, we prove that each generating set of the
above-mentioned form must include at least seven tensor generators.

First, by (4.2) we infer that any given generating set G(A, Ew) in question
has the property

G(A,0) = GoUG'(A)U{O}, G(O,Ew)=GoUG'(Ew)U{O} .

These indicate that the set GoUG'(A) (resp. GoUG(Ew)) must be a generating
set for the symmetric tensor-valued isotropic functions of a symmetric (resp.
skewsymmetric) tensor A (resp. Ew). According to Theorem 4 given in [15],
the set GgU G'(A) must include at least three generators. Moreover, it is easily
understood that the set Gg U G'(Ew) must include at least two generators, such
as I and w @ w etc. Finally, the set Gy must include at least one nonvanishing
constant tensor, such as I etc., or else the criterion (2.1) will be violated when
A =W = 0. Thus, by combining these facts we know that the set GoUG'(A)U
G'(Ew) must include at least four generators.
Next, let

Ag=(n+e)@(n+te),
where e and n are two orthonormal vectors, i.e.
n-e=0 ee=nn=1.
Then we have
Q(n+e)# +(n+e)
for each Q = +R?, 0 # 2kw. Hence we infer
Q=+R? and 0 #2kr = QA,QT # Aq.
From the latter and the fact (cf. [12])
Q(En)Q" = En < Q = +RY € Con(n) ,

we deduce that
9(Ag,En) = {£I} .

Hence,
(4.3) dim Sym(g(Ag, En)) = dim Sym =6 .

On the other hand, since
Cocn(n +€) C g(Ag,0), Cwon(n) = g(0,En),

we have (cf. (2.7) - (2.9)) .
http://rcin.org.pl
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Sym(g(Ag, O)) C span{l, Ag}, Sym(g(0O,En)) = span{Il,.n@n} .

From the latter and the following fact (cf. (1.1) and (2.2) - (2.3): see also Theorem
2.2 given in [11]):

¥o(B) € Sym(A, 0) USym(0,Ew), Viin(B) € GoUG'(A)UG'(Ew),
we derive
(4.4) rank(Go U G'(Ag) U G'(En)) < dim(Sym(g(Ag, O))

+Sym(g(0, En))) = 3.
Finally, applying the criterion (2.1) with the tensors (Ag, En) given and using
(4.3) - (4.4), for each generating set G(A, Ew) in question we deduce

dim Sym(g(Ag,En)) =6 < rankG(Ag, En)
< rank(Go U G'(Ag) UG'(En)) + rankG’(Ag, En),

rankG’(Ag, En) > 6 — rank(Go U G'(Ag) U G'(En)) = 3.

The latter shows that in each generating set G(A, Ew) (cf. (4.1)) with the pro-
perty (4.2), the set G’(A, Ew) consisting of generators depending on the two
variables A and En must include at least three generators.

Finally, from the fact just-proved and the fact proved before we conclude that
each generating set G(A,Ew) at issue (cf. (4.2) — (4.3)) must include at least
seven generators.

Thus, the presented generating set Gg(A, Ew), which is exactly composed of
seven tensor generators, is a minimal one in all possible generating sets G(A, Ew)
with the properties (4.1) and (4.2). Q. E. D.

5. Conclusions

Although the well-known general results for isotropic functions have been
proved to be irreducible, the results given in the previous sections show that
some of them could be sharpened. The same is true for the results for transversely
isotropic functions and orthotropic functions ete. (cf. Theorem 5 in [15] for the
latter). Further considerations require examining the existing results, sharpening
some of them and finally arriving at general results that are minimal in a suitable
sense. The results will be reported elsewhere [16 - 17].
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