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Magnetohydrodynamic stability of streaming liquid

cylinder with doubly perturbed interfaces having
a streaming fluid mantle jet

AHMED E. RADWAN  (CAIRO)

Tue macNETORYDRODYNAMIC (MHD) stability of streaming liquid cylinder with dou-
bly perturbed interfaces coaxial with a streaming fluid mantle jet has been developed.
A general dispersion relation is derived, discussed and some reported works are de-
scribed. The analytical results are confirmed numerically and interpreted physically.
The streaming is purely destabilizing while the capillary force is such as for small ax-
isymmetric perturbations only. The magnetic field has a strong stabilizing influence
and it gives a measure of rigidity in the fluids. The radii (liquid-fluid) ratic plays an
essential role in increasing the MHD stabilizing domains. The densities (liquid-fluid)
ratio have a very small stabilizing effect. If the magnetic field strength is so strong
that the Alfvén wave velocity is much greater than the streaming speed, the capillary
and streaming destabilizing character is completely suppressed and stability sets in.
The present results are in good agreement with the experimental results of Kendall
(1986) since we neglect here both the magnetic field influence and the inertia force of
the interior fluid jet.

1. Introduction

THE CAPILLARY instability of a full liquid jet in a vacuum has received a consid-
erable attention since a long time ago for its important applications in several
domains of science. See PLATEAU [1], RAYLEIGH [2] and CHANDRASEKHAR [3].
The last author [3], Nobel prize winner (1986), summarized the previous re-
ported works and made several extensions for studying the stability of different
models. The effect of non-linearities on the capillary instability of a liquid jet
has been examined by YUEN [4], WANG [5], NAYFEH [6], NAYFEH and HassaAN [T7],
and the complete analysis has been carried out by KAKUTANI et al. [8].

In the present era (especially in the last decade), the scientific province has
turned out for investigating more applicable models than the naive one of a
full liquid jet in vacuum. KENDALL [9] made very interesting experiments with
modern equipment for different amplitudes and various wavelengths in studying
the capillary instability of a fluid jet surrounding a gas cylinder (of negligible
inertia), i.e. the annular gas jet. The inertia force of the fluid is considered to
be greater than that of the gas mantle jet. KENDALL [9] explained clearly the
importance and possible applications of the annular jet in astronomy. Moreover,
he [9] did attract our attention to the analytical investigation of stability of such
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a model. Indeed, the principle and basic physics of the new type of liquid-in-air
jet are due to HERTZ and HERMANRUD [10]. The stability of a liquid column
with a thin shell endowed with surface tension was studied by PETRYANOV and
SHuTov [11] and SHuTOV [12]. The hydrodynamic and MHD stability of a gas
jet (of negligible inertia) immersed in an infinite fluid, i.e. hollow jet, has been
elaborated by RADWAN [13]. CHENG [14] has investigated the capillary instability
of a streaming gas jet embedded in an infinite liquid, taking into account the
inertia forces of both the gas and the liquid media. However, one has to mention
here that the results given by CHENG [9], in Egs. (4) and (5) there, are incorrect
in the third term. In fact, the quantity (1 — s% —k2a?) must be in the numerator.
as it is clear from Eq. (3) derived there. See also Eqgs. (3.1) - (3.13) in the
present work and Chandrasekhar’s results [3], pages 538 — 540 (Egs. (147) and
(155)).

The object of the present work is to study the MHD stability of streaming
liquid cylinder with doubly perturbed interfaces having a streaming fluid mantle
jet. This instability has been regarded to be important for the origin of the
breaking-up of the fluid layers resulting in the appearance of condensation within
astronomical objects. Also such a phenomenon of coaxial differently perturbed
fluids may be of interest during geological drillings in the crust of the earth, in the
case in which we have a fluid column surrounded by a dense gas jet. The present
results reduce to those of Refs. [9, 13, 14] under appropriate simplifications.

2. Formulation and eigenvalue relation

We shall consider a fluid cylinder of radius R* concentric and coaxial with an
exterior liquid cylinder of radius R® with R® > R*. The fluid and liquid media are
assumed to be inviscid, incompressible and perfectly conducting, and the coaxial
cylinders are surrounded by vacuum. The model is acting upon the combined
effect of inertia, pressure gradient, capillary and electromagnetic forces. The
capillary force along the fluid-liquid interface is assumed to be greater than that
along the liquid-vacuum interface, and so we shall neglect the latter temporarily
in our study here. Both the fluid and liquid are assumed to be streaming with
velocity

(2.1) up =(0, 0, Uy) .

The interior fluid and exterior liquid are subjected to the magnetic fields
Hj = (0, 0, o, Hp), a> 1,

(2.2)
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while the vacuum surrounding the coaxial cylinders is assumed to be penetrated
by

(2.2) Hy™ = (0, 0, Hp) .

The components of ug, Hjj, and H}*® are written in cylindrical polar coordinates
(r, ¢, 2) with the z-axis coinciding with the axis of the coaxial cylinders.

The fundamental MHD equations are derived by combining the ordinary hy-
drodynamic equations and electrodynamic Maxwell’s equations. For the problem
at hand, the basic equations in the fluid and liquid media could be written in the
form

(2.3) p"Ed:E = —VUp"® + uhe(V A H") AH |
(2.4) V- ubt =0,
(2.5) V-H*=0,

gH" ¢

(2.6) =V A(uAH)"

ot

and along the fluid-liquid interface
(2.7) ps =T(V-1,),

where the superscipts 7 and e are pertaining the interior fluid and exterior liquid.
Here p*, u* and p* are the fluid mass density, velocity vector and kinetic pressure,
p* is the magnetic field permeability coefficient, H is the magnetic field intensity;
and similarly for the liquid variables with superscript e. ps is the surface pressure
due to the capillary force, T is the surface tension coefficient, and fi, (parallel to
the coordinate r) is a unit outward normal vector to the fluid-liquid interface.

In the vacuum (medium of negligible inertia) surrounding the coaxial cylin-
ders, the basic equations are

(2.8) VAH™ =0
(2.9) V-H™ = 0.

The initial unperturbed state is studied. The balance of the (surface, magnetic
and kinetic) pressure across the fluid-liquid interface at r = R?, yields

(2.10) po = v+ (T/R') + (Hg /2) (' — u°p) .

Her= the unperturbed quantities are those with index 0, and later on the per-
turbed quantities will be with index 1. It is found more appropriate to take @ = /3
from now on, so the jump ofl-ﬁ will be zero at thf fluid-liquid interface.
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Linearization of Eqs. (2.3) - (2.9) is accomplished by substituting the expan-
sion

(2.11) Q™ = Qg° +¢()Qi*

and retaining only the first order terms, in the small fluctuating variable @;. The
variable Q stands for u, p, H, ng and for the perturbed radii of the fluid and
liquid cylinders. £(t) is the amplitude of perturbation, given by

(2.12) g(t) = egexp(at) ,

where gg(= £ at t = 0) is the initial amplitude and o is the growth rate. If
o = iw, i = (—1)*/2 is imaginary then w/27 is the wave oscillation frequency.
By considering a simple sinusoidal disturbance waves in z and ¢, the radii of the
fluid and liquid cylinders due to perturbation are

(2.13) r' = R +¢(t)n*
(2.14) r® = R +e(t)n® -
Here : )

(2.15) n' = R'exp (i(kz + m¢)),
(2.16) n® = Rf%xp (i(kz + m¢))

are the elevations of the perturbed surfaces wave measured from the initial posi-
tion, where m (an integer) is the azimuthal wavenumber and k (a real number)
is the longitudinal wavenumber. In view of the expansion (2.11), the linearized
perturbation equations of the fluid media are given by:

d
(2.17) pl(at+U0;) = —Vp] + 1/ (VAH]) AH,
(218) AV ul -
(2.19) V- -H = 01

oM} i AT i A
(2.20) W=VA(u1AH0)+VA(uO/\H,),
with j =1, e.

Along the fluid-liquid interface, at r = R?,
T 6‘2 . 282

22 = 't
and in the region surrounding the coaxial cylinders
(2.22) VAHP = 0,
(2.23) e =
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By taking the divergence of Eq. (2.17), we get

(224)  (Hj-V)(V-H)) ~pi(%+ugaa) (v-ul) =v2m,

where I, is the total MHD pressure which is the sum of magnetic and fluid
kinetic pressures given by

(2.25) Iy = (p/2)(H- H) + p;.
Equation (2.24), upon using Eqs. (2.18) and (2.19), yields
(2.26) v =o0.

Equation (2.22) means that the perturbed magnetic field H**® in the vacuum
region could be derived from a scalar magnetic potential ¥,

(2.27) HP =V .
By combining Eqgs. (2.23) and (2.27) we get
(2.28) Vi, =0,

Following the surfaces deformation (2.13) — (2.16). as usual for the stability
problems of cylindrical models whether with a single perturbed interface or not,
and basing on the linear perturbation technique, we assume that any perturbed
quantity can be expressed as e(t)exp i(kz + mg) times an amplitude function of
r. Henceforth, the non-singular solutions of the relevant perturbation equations
(2.17) - (2.23) are given by

(2.29) I} = Ae(t)ln(kr)exp (i(kz +mo)) ,
o a —(o + ikUp) .

(2.30) Ll PETAL D Vif
i . ikf{o i

&81) s (o +ikUg) '

(2.32) p1s = —e(t)(T/R)(1 — m? — k2R" )exp (i(kz + mo)) ,

(2.33) 1§ = e(t){BLn(kr) + CKn(kr)}exp (i(kz + mo)) ,
i —(o + ikUp) g

2 e L‘\Hﬂ ~
(230] Hl - _(J+ikUﬂ}ul H

(2.36) HP = Ee(t)v{ﬁﬁbk:w% kz+f(m§
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Here A, B, C' and E are constants of integration to be determined while I, and
K. are, respectively, the modified first and second kind Bessel functions of order
m, {2 and §2§ are the Alfvén wave frequencies of the fluid and liquid cylinders:

(2.37) % = (o) "
(G700 138%) "

The solution of the perturbation Egs. (2.17) - (2.32) given by (2.29) - (2.38)
must satisfy apropriate conditions valid at the perturbed interfaces of the fluid-
liquid and liquid-vacuum interfaces. Under the present circumstances and for the
problem under considerations, these boundary conditions are the folowing.

. The normal component of the velocity vector of the fluid jet must be
compatible with the velocity of the fluid-liquid interface (2.13) at r = R*.

[I. The normal component of the velocity n-u® of the (outer) liquid jet must be
compatible with the velocity of the free liquid interface (2.14) and simultaneously
must comply with the normal component of the velocity n - u* of the fluid at
=

I11. The normal component of the magnetic fields n - H® and n - H* must be
balanced across the perturbed interface of the fluid-liquid regions described by
(2.13), at r= R°.

IV. The normal component of the magnetic fields n - H™¢ and n - H®* must
be continuous across the perturbed free surface of the liquid jet (2.14) at r = R*.

By applying the foregoing boundary conditions across the perturbed inter-
faces (2.13) at r = R* and (2.14) at r = R®, we get

Il

(2.38) o

(2.39) A = —eR" ((o +ikUo)? + !2"2) (zI(x))?,
(2.40) B = (Y/Mu) (R YK (y) - uc;,,(z)),
(2.41) C = (Y/Mun)(R2I'\(z) — R yIL(y)) ,
(2.42) E = —ikHo (MnK},(1) ™ (BIL(y) + CK},(y)
(2.43) Y = ((o+ikUo)?+ 925
(2.44) M = 2y (L () Kn(@) — I (2) K7 ()
where z (= kR') and y(= kR®) are the dimensionless longitudinal wave-
numbers.

Finally, we have to apply the compatibility boundary condition which states
that the normal component of the stresses (due to the liquid and fluid pressure
gradients and the electromagnetic forces acting on the model) must be discon-

tinuous, its jump being equal to the capillary force stresses at r = R'. This
condition, at r = R, is
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(245)  pra=pf (b + (u/2)(H - H)}) — p° (05 + (u°/2)(H - H)S)
+s(t)n"p"§; (pb + (4/2)(Ho - Ho)') — e(0)n'*

S (56 + (1°/2) (Ho - Ho)).

Substituting from (2.29) - (2.44) into (2.45) we obtain the following relation:

(2.46) (o + ikUp)? = (:*;l) N M Il (2)(1 — m2 — 22)
ﬂ:f'{l) ”'EHQ 27/ m
i Win@NmMu) = 2 (p2® L) (R? = YL Non)

with

R=RYR , p=p°/p
(2.47) Ly = (In(y) Km(z) = Im(x) Kn(y)) »
Z(Np) ™! = {Im(z) My + p2(R — yL") Iy (2)}-

3. Discussions of the results

Equation (2.46) is the eigenvalue relation of MHD doubly perturbed liquid
cylindrical stream having a fluid mantle jet, accounting for the inertia forces of
both the liquid and the fluid regions. By means of this relation, the character-
istics of the present model can be determined: one can identify the domains of
instakility (in particular their critical wavenumbers, maximum growth rate values
and the corresponding wavenumbers) and these of stability as well.

The eigenvalue relation (2.46) relates the growth rate o (or rather the os-

cillation frequency w) with the value of (ET/,O"R"S) 3 (,u.i Hg/pimz) as well as
(p"Hf/peH"g) as a unit of time, the radii ratio R, the densities ratio p and the

densities p¢ and p', the radii of the cylinders R* and R®, the surface tension co-
efficieit 7', the modified Bessel functions and their combinations N,,, M, and
L7, aad with the magnetic field Hp. The marginal or neutral stability could be
obtaired from (2.46) at ¢ = 0, the unstable states are those when ¢ is real while
the stability states are those when ¢ is imaginary. The eigenvalue relation (2.46)
is in rmality a simple linear combination of the eigenvalue relations of concentric-
coaxid doubly perturbed liquid-fluid cylinders endowed with surface tension only
and tlose with electromagnetic forces only.

Siice this problem is somewhat more general, one can obtain other disper-
sion elations as limiting cases from the present relation (2.46) under suitable

assunptions. http://rcin.org.pl



722 A. E. RADWAN

If we assume Up =0, Hg =0, p® = 0 and y — o0, Eq. (2.46) gives
44
pH(R)?
The relation (3.1) was established by CHANDRASEKHAR [3], see also reference [2]

asm = 0.
If we set Uy = 0, p® = 0 and, at the same time, y — oo, Eq. (2.46) reduces

(3.1) o2 = (2. (2)/In(z))(1 — m? — 2?) .

to
(32) o=

' ipg2
1_T. gl.(z) (1_ 2_1.2)_'_ ,uH02 T ‘
PHR)S In(z) PR I (2) K7, ()
Equation (3.2) is the MHD eigenvalue of a full liquid jet in vacuum acted on
by the electromagnetic Lorentz force and endowed with surface tension. It was
CHANDRASEKHAR [3] who derived the simple case of Eq. (3.2) at m = 0 of ax-
isymmetric perturbation (Eq. (165), page 545) by means of the energy principle.
If we assume that p* = 0, Hg = 0 and y — oo, the relation (2.46) degenerates
to

(3.3) (o 4 ikUp)? = —

!
T. L AL, (] —m?— .1'2) :
pe(R)? Kom(2)

This is the eigenvalue relation of a hollow jet (i.e a gas jet of negligible inertia
immersed in a streaming liquid which extends radially to infinity), endowed with
surface tension. Equation (3.3) coincides with our dispersion relation of the recent
result in references [13] as Uy = 0 here and neglecting the viscosity effect there.
One has to mention here that for Uy = 0 the relation (2.46) leads to that given
by DrAzIN and REID [15]. Also Eq. (2.46) with m = 0 and Uy = 0 reduced to
that reported by CHANDRASEKHAR [3] (page 540).

If we assume Hy = 0 and y — oo, Eq. (2.46) reduces to

T z(1-m?—-22)I (2)Kmn(z)
PR3 (Im(2) K[o(X) = pI},(2) Kin(z)

This relation might be identical with the relation obtained by CHENG [14] in in-
vestigating the instability of a streaming gas jet through an infinite liquid region,
under the influence of the capillary force and pressure gradient forces, in addition
to the inertia forces of both the gas and the liquid.

Other limiting cases may be obtained from the relation (2.46) with other
simplifying assumptions:

1) Ho #0, T =0, Ug7#0;

2) H #0, T =0, y — o0, Ug #0, and

3) Hy=0,T#0, Ug #0.

In order to clarify the hydrodynamic, magnetodynamic and MHD (in-)sta-
bility states of the present problem, we have to remember the behaviour of the

modified Bessel functions and Hﬁir_ 'gélluﬁztaifcglr d1fferer1t arguments.

(3.4) (o +ikUp)? =
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Consider now the recurrence relations (see ABRAMOWITZ and STEGUN [16])

(3.5) '2{:“(.'1‘) = Im—1(2) + Lnya(z)
(36} 'ZK:R(I') — "'Km-l(:r) — Km-l-l(x] .

It is known that I,,,(z) is always positive and monotonically increasing function,
and that K,,(x) is monotonically decreasing but never negative for each non-
zero real value of z; hence one can observe that I/ (z) is positive while K],(z) is
always negative. On the basis of these arguments, we may prove that for 2 # 0
and y # 0

(3.7) Im(y) > Im(z) ,

(3.8) Kn(y) < Km(2) ,

and that the function

(3.9) Ly >0

is positive definite and never changes sing. We may also prove that
(3.10) (I (2) Kn(2)) < (I1n(y) Kin(2))

and consequently, for all 2 # 0 and y # 0 we have

(3.11) My = 2y {~ (@) [Kin(@)| + (@) |Kln(w)[} > 0.

In a similar manner, on utilizing the inequalities (3.7) — (3.10), we can show that
(3.12) N, >0

is positive definite and never changing sign for all values of R > 1, p # 0, z # 0,
y #0and m > 0.

3.1. Hydrodynamic stability

In this case we neglect the influence of the electromagnetic forces in each of
the fluid, liquid and vacuum regions. The eigenvalue relation of the present case
is obtained from the general relation (2.46) as Hy = 0, by

T
99« -1, 2 2 bl (I
(3.13) (0 + ikUo)* = — s (1 - m? - 22) I}y(2) My Nir -
With the aid of the relations (3.5) and (3.6) together with the inequalities
(3.7) = (3.12), the relation (3.13) is investigated and we deduce the following.
The stationary coaxial-concentric cylinders of doubly perturbed interfaces
are capillary stable in the non-axisymmetric modes of perturbation m > 1 for all

short and long wavelengths \(= 27 /x, .2 # 0). In the axisymmetric (sausage
& aths AL BTt org ! ¥ et
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mode m = 0 of the perturbation, the model is capillary unstable in the domain
0 < 2 < 1 while it is stable in the neighbouring domains 1 < < oo where the
equality corresponds to the marginal stability state. This means that present
non-streaming model is unstable only in the axisymmetric mode m = 0 if the
perturbed wavelength A; is longer than the circumference of the fluid cylinder
21 R, while it is stable in all the remaining states. The streaming has a destabi-
lizing influence and this influence is independent of the kind of the perturbation
(m = 0 or/and m # 0) and the perturbed wavelengths. Therefore, the streaming
has the property of increasing the capillary unstable domain (m =0, 0 <z <1)
and, at the same time, it decreases the stable domains (m = 0,1 < z < o0)
and (m > 0, 0 < z < o0). Thus, the streaming liquid cylinder with doubly
perturbed interfaces having a fluid cylinder mantle is capillary unstable in ax-
isymmetric mode m = 0 and non-axisymmetric modes m # 0 for all short and
long wavelengths.

3.2. Magnetodynamic stability

If the effect of the electromagnetic forces acting in the fluid, liquid and vacuum
regions is predominant over that of the capillary forces acting along the fluid-
liquid and liquid-vacuum interfaces, the general relation (2.46) degenerates to

(3.14) (0 +ikUo)* = (u°H3)/ (°R") {21}, (2) Ny, (vzp - RE)}

> (#ng) / (Piﬁiz) {ylm(r)ﬂ’mem} )
where p, R, N, and M, are defined by (2.47) and (2.44).

The influence of the magnetic field in the fluid region is represented by the
term associated with the natural quantity p*Hg/ (p*(R')?). By the use of the
inequalities (3.7) — (3.12), we can show that the magnetic field acting in the inte-
rior of the fluid cylinder is stabilizing. That stabilizing effect is valid for all short
and long wavelengths, not only in the m = 0 mode but also in m # 0 modes.
The influence of the magnetic field acting in the liquid cylinder of doubly per-
turbed interfaces is represented by the terms associated with the quantity ucH?2/
(p°(R*)?). In view of the inequalities (3.7) - (3.12) it is clear that pa?I/,(z) N,y is
positive definite for all non-zero values of p, z,y and m < 0. Therefore the mag-
netic field in the liquid region is stabilizing in all modes m > 0 of perturbation if
the condition

(3.15) R%/y> LT

is satisfied. On the other hand, if that condition is not satisfied then the electro-
magnetic force acting in the liquid region is purely destabilizing and moreover, it
has no influence at all if R = yLj}. Therefore, the non-streaming coaxial cylin-
ders are magnetodynamically stable in the m = 0 or/and m # 0 modes according
to restrictions (cf. (3.15)).

http://rcin.org.pl
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The streaming has a destabilizing influence. That influence is independent
of the kind of perturbation (axisymmetric or non-axisymmetric) and short or
long wavelengths. Consequently, the streaming has the property of decreasing
the magnetodynamic stable domains and at the same time, it increases those of
instability.

We conclude that the streaming coaxial fluid-liquid cylinders are magneto-
dynamically unstable not only in the axisymmetric mode m = 0 but also in the
non-axisymmetric modes m # 0 of perturbation.

3.3. Magnetohydrodynamic stability

In this general case the present model of a liquid cylinder with doubly per-
turbed interfaces having a fluid jet mantle is acted upon by combined effects of
the pressure gradient inertial, capillary and electromagnetic forces. The disper-
sion relation of this case is given by the relation (2.46) in its general form. With
the aid of the discussions and results of the two different cases given above in
Subsecs. 3.1 and 3.2, the present general case could be discussed.

As we have seen, streaming has a purely destabilizing influence while the
capillary forces have a destabilizing influence only in the axisymmetric mode
m = 0. The electromagnetic forces have a strong stabilizing influence for all
modes m > 0 of perturbation. The latter plays an important role in stabilizing
the present model. When the intensity of the magnetic field is so strong that the
Alfven wave velocity is greater than the fluid streaming velocity, the capillary
instability is suppressed and stability sets in. See the numerical example later on.

The stabilizing influence of the electromagnetic force could be interpreted
physically as follows.

Indeed, the stabilizing effects of the magnetic fields in the liquid and fuid
regions are due to the presence of the magnetodynamic force u(V A H) A H in
the MHD equations of motion (2.3) and (2.17). This force may be interpreted as
following from the action on the fluid of the Maxwell stresses: tension u(H-H)/2
per unit area along the magnetic lines of force and an equal pressure acting in all
directions in the conducting fluid. Note that the latter is not perpendicular to
the magnetic lines of force and acting in all directions since the diffusion terms
are neglected in the evolution equation of the magnetic field (2.6). Due to these
stresses, the lines of force are able to endow the liquid with a sort of rigidity.

Another important physical explanation may be given here for the stabilizing
effects of both magnetic fields in the fluid, liquid and vacuum regions as follows.
The magnetic field exerts a strong influence not only on the axisymmetric mode
that causes only the bending of the magnetic lines of force, but also on non-
axisymmetric modes that leads also to twisting of the lines of force. This is
physically plausible since the magnetic fields are conserved (cf. (2.5)) and, in

addition, they are uniform, Se?]ﬁ%q:/}]?(“,‘l a(r)lig!g pf)’
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In order to clarify the electromagnetic force effect and its influence on the
capillary force, it is found more convenient to write down the eigenvalue relation
(2.46) in the dimensionless form

(3.16) %ﬁ’—jf = {(1 —m? — 52) My, — (Ho/HY)’ (n.;m_v;;i(;))

— (Ho/HE)? (p1‘2 (R2 n yL;;"*))} I’ (2) Ny,

where

. . a2
(3.17) Hy = (T/up) "
(3.18) HE = (@Y e,

The relation (3.16) has been analyzed by the computer for the most dangerous
mode m = 0 and assuming that u® is infinitesimally small and tends to zero.
The calculations have been carried out for different values of (Hg/Hs), (p*/p°)
and (R®/R"). For every group of values of the last magnitude, several values
of U(= —ikUa/(T/p'(R')*)*/?) are given. The numerical data are classified into
two types. The results of the instability states are tabulated and presented for
the values of o/(T/p'(R*)%)1/2 against z while those associated with stability
states are illustrated for the values of w/(T/p'(R*)*)'/? against x. These states
are analyzed in various categories as follows.

CATEGORY (i). For (Ho/Hy, p°/p*) = (0.3, 0.3)

As (R¢/R') = 1.3, corresponding to U = 0, 0.2, 0.5, 0.7 and 1.0, it is found
that the unstable domains are 0 < z < 0.718, 0 <2 < 0.844, 0 < z < 1.0911,
0 <2 < 1.2447 and 0 < z < 1.453, while those of stability neighbouring the
unstable domains are x > 0.718, z > 0.844, z > 1.0911, x > 1.2447 and
x 2> 1.453, see Fig. 1.

As (R®/R*) = 1.7, corresponding to U = 0, 0.2, 0.5, 0.7 and 1.0, it is
found that the unstable domains are 0 < z < 0.8165, 0 < z < 0.9101,
0 < 2z < 1.1061, 0 < 2 < 1.2426 and 0 < 2 < 1.4356 while those of
stability are such that z > 0.8165, 2 > 0.9101, z > 1.1061, z > 1.243 and
x > 1.436. See Fig 2.

As (R¢/R") = 3.0, corresponding to U = 0, 0.2, 0.5,07 and 1.0, it is found
that the unstable domains are 0 < x < 0.8768, 0 < z < 0.936, 0 < & < 1.111,
0<x<1.242and 0 < x < 1.431 while those of stability are such that # > 0.877.
7 >0.936, z.>1.1111, 2>1.242 and 2 > 1.431.

CATEGORY (ii). For (Ho/Hs, p°/p*) = (0.5, 0.3)

As (R°/R') = 1.3, corresponding to U = 0.2, 0.5, 0.7 and 1.0, it is found
that the unstable domains are 0 < z < 0.489, 0 < z < 0.863. 0 < z < 1.047 and
0 < z < 1.2823 while those of stability are z > 0.489, » > 0.862, z > 1.047 and
x > 1.282. Note that there is no unstable domain as U = 0. See Fig. 2.
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As (R¢/R') = 1.7, corresponding to U = 0, 0.2, 0.5, 0.7 and 1.0, it is found
that the unstable domains are 0 < z < 0.469, 0 < 2 < 0.6477, 0 < x < 0.934,
0 < x < 1.0812 and 0 < x < 1.3045, while those of stability are such that
x> 0469, x> 0.6477, x > 0.934, x > 1.0812 and x > 1.3045.

As (R°/R") = 3.0, corresponding to U = 0, 0.2, 0.5, 0.7 and 1.0, it is found
that the unstable domains are 0 < z < 0.5976, 0 < 2 < 0.7198, 0 < z < 0.962,
0 < 2 < 1.1093 and 0 < 2 < 1.3112, while those of stability are such that
z 2 0.5976, x > 0.7198, z > 0.962, z > 1.1093 and 2 > 1.3112.

CATEGORY (iii). For (Hg/Hy, p¢/p') = (0.3,1.0)

As (R¢/R') = 1.3, corresponding to U = 0, 0.2, 0.5, 0.7 and 1.0, it is found
that the unstable domains are 0 < z < 0.7179, 0 < 2 < 0.892, 0 < z < 1.202,
0<ax<1.384and 0 < z < 1.628 while those of stability are such that z > 0.7179,
x>0.892, x >1.202, x> 1.384 and z > 1.628.

As (R¢/R*) = 1.7, corresponding to U = 0, 0.2, 0.5, 0.7 and 1.0, it is found
that the unstable domains are 0 < z < 0.8165, 0 < x < 0.927, 0 <z < 1.1616,
0 < < 13176 and 0 < x < 1.537, while those of stability are such that
x> 0.8165, z>0.927, x> 1.162, z > 1.3176 and z > 1.537.

As (R¢/R') = 3.0, corresponding to U = 0, 0.2, 0.5, 0.7 and 1.0, it is found
that the unstable domains are 0 <z < 0.8769, 0 <z < 0.9417, 0 < z < 1.1472,
0 <2 < 1.2959 and 0 < & < 1.5113, while those of stability are such that
x> 0.8769, z > 0.9417, > 1.1472, x > 1.2959 and x > 1.5113.

CATEGORY (iv). For (Ho/H,, p°/p') = (0.5,1.0)

Similar discussions may be presented for the cases with (R¢/R') = 1.3, 1.7
and 3.0 for U = 0, 0.2, 0.5, 0.7 and 1.0. See Fig. 3, and similarly for the cases
(Ho/Hs, p¢/p*') = (1.0, 1.0), (3.0, 3.0), (5, 3) and (1, 3), and for different values
of (R°/RY) and U.

4. Conclusions

From the foregoing discussions we conclude the following results.

For the same values of Ho/H,, p¢/p* and R¢/R', it is found that the unstable
domains are increasing and simultaneously those of instability are decreasing with
increasing values of /. This means that streaming has a destabilizing influence
and this confirms the analytical discussions.

For the same values of (p¢/p'), (R¢/R?) and U, the stable domains are rapidly
increasing with increasing Hy/H, values, i.e. the magnetic fields have strong
stabilizing effects.

For the same values of Hy/H,, U and p°/p*, the stable domains are mono-
tonically increasing with increasing R/R'. This means that the liquid-fluid radii
ratio plays an important role in stabilizing the annular fluid jet with doubly
perturbed interfaces.
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For the same values of (Hg/H,), R°/R* and U(> 0), the unstable domains are
rapidly decreasing with increasing p®/p* values. This means that the liquid-fluid
densities ratio is stabilizing.

As p* = 0,R — oo and Hy = 0, it is found that the present results are in
good agreement with the experimental results of Kendall (1986) that the temporal
amplification in the hollow jet is much higher than that appearing in a full liquid
jet embedded in a vacuum.
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