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FIFTY YEARS OF THE ARCHIVES OF MECHANICS

Coupling in thermo-mechanical wave propagation
in NaF at low temperature

K. FRISCHMUTH (ROSTOCK) and V. A.CIMMELLI (POTENZA)

IN THE PRESENT PAPER we consider a linearly elastic heat conductor for which the
semi-empirical heat transfer model [7] is assumed. Material functions are defined in
accordance with measured parameters for NaF at 15 K. At that temperature, first and
second sound waves have been observed in experiments. Both waves are reproduced
by our coupled thermo-mechanical model.

1. Introduction

IN RECENT YEARS there has been considerable interest in hyperbolic models of
heat conduction. The motivation for this comes from experimental observations
of heat pulses, [1, 16, 22| at very low temperatures. The temperature is measured
at one end of a specimen which is exposed to a (nearly) rectangular heat impulse
at the other end. In those experiments an input pulse results in (at least) two
impulses at the far end of the specimen, usually the first and the smaller one can
be associated with a longitudinal mechanical wave, and the slower but greater
one is a thermal wave called second sound.

We represent the state of the specimen by the following Fig. 1; all slices are
assumed to have the same thickness in the initial state, gray level corresponds to
the stress.

Fic. 1. Cut through deformed specimen.

Until now most models (which were developed to a level allowing numerical
evaluation) concentrated on the second sound peak, disregarding the mechanical

wave. There exist models for l‘rﬁfbh?frtcﬁﬂng?aoﬁ in the framework of materials
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with memory [15], of rate-type materials [24], and of materials with internal state
variables [18]. The quantitative differences between those models are minor, in
fact for the constant coefficient case (small pulses at a constant and homogeneous
background state) all they reduce to the classical Maxwell/Cattaneo/Vernotte
equation

7¢+q = —kV0.

Since the second sound speed depends strongly on the background temperature.
more realistic models include variable coefficients, what requires a careful ther-
modynamical analysis, cf. [17, 13].

Classical heat conduction theory is often criticised for the infinite wave speed
it predicts [3] (Cattaneo’s paradox), cf. [11] for a discussion. Here we reject the
parabolic heat equation just for the simple reason that it totally failes to model
the phenomenon described above. The flat curve in Fig. 2 of Sec. 4 shows the
solution of the classical heat equation, which is obviously not acceptable as an
approximation to the measured data, cf. [16].

The model accuracy of rigid conductor equations is obviously limited by the
height of the first peak — which is absent from those models. For several ex-
periments this lower error bound is quite large. For the internal state variable
model, a pure thermal approach restricts also the possibility to obtain correct
arrival times of the second sound peak, cf. [13]. Hence our present goal is to
study coupled thermo-mechanical model equations.

General considerations about thermo-mechanical coupling have been pub-
lished recently on the basis of the semi-empirical heat conduction model [5, 19].
In the present paper we present a hyperbolic system of four equations in one
space variable which describes mechanical motion and heat conduction along the
axis of the specimen. We will show that such a simple model can nicely reproduce
the measured temperature behaviour if suitable constitutive constants are cho-
sen. For the numerical calculations, we used values measured for Nal” at 15 KK,
although the data come from different sources and samples of the material.

The presented model does not contain any information about the lateral
motion of the specimen, hence also a peak indicated in the experimental curves
as lateral mechanical wave can not be obtained. This problem has to be left to
further investigation since these peaks are poorly distinguished, and the lateral
mode is rather decoupled from the heat problem (at least for the isotropic case).
cf. [4].

2. The coupled model

We consider here a simple 1D elastic model in the framework of classical
thermo-elasticity [23] togetherhﬁibh/}}r‘l&Ra&if.g\'%iant of the previously studied
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semi-empirical model of heat conduction. The coupling between both model
components is brought about by thermal stress which acts as a source term in
the mechanical subsystem, and by a heat source in the energy equation which
depends on strain.

For the mechanical submodel we introduce the strain w and the velocity v
as components of the state Upech = Umeen(2,t) = (w,v)?. The displacement
vector is assumed to have only one non-vanishing component u — that directed
along the z-axis, and this component depends only on z. We put w = u,, and
v = u;. As the first balance equation we have w,; = v,; — which is in fact,
just the symmetry of the second derivatives of the displacement u = wu(z,t).
The next balance law expresses the equation of motion, pv, = 0,z, where o is
the stress (body forces are neglected). We adopt for the mechanical stress the
linear relation ¢ = (2u + A)w + m#f, where g and A are Lamé constants, 0 is
the temperature deviation from some reference level 6y, and m is a negative
coefficient connected with thermal expansion. This gives us for the mechanical
subsystem, the equations

(2.1) Wy = Uya,

(2.2) Ut = CoWsz +Cmebz

with the mechanical wave speed ¢, = £/2u+ A/p and the coupling coeffi-
cient ¢,y = m/p, which describes the influence of the thermal subsystem on the
mechanical part.

Note that for constant temperature the above system is equivalent to the
classical wave equation wu,y = cfnu,u. In the present case, however, £ has to fulfil
the energy equation together with suitable constitutive equations for the heat
flux.

For the thermal part of the system, the state Upperm is composed of just two
variables, Uiherm = (0, ¢)T, where g denotes the gradient of the semi-empirical
temperature (3.

For the semi-empirical heat conduction theory in general, the heat flux ¢ is
given in terms of gradients of § and 3, while for § there is a kinetic equation.
Taking gradients we obtain an evolution equation for g = V3, cf. [17]. Through-
out the present paper we restrict ourselves to the simplest case where 3 itself
does not appear explicitly in that equation, i.e., we postulate a linear kinetic
equation.

Let us further assume that @ is small enough so that we can regard heat
capacity ¢ and conductivity & as constants (measured at 6y). Thus we obtain for
the thermal state

C——1
(2.3) ?ﬁtﬁ Sitciforg.pl
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(2.4) Gt =70~y

The first equation expresses the energy balance, the term r represents the influ-
ence of the mechanical subsystem. We found

T = Cuutlo¥,z , City = 'HE/C -

We disregard other heat sources, such as e. g. cooling through the lateral bound-
ary — which would result in a negative source term for a 1D model.

The second equation is the extended kinetic equation in its meanwhile classi-
cal form, 7 is the relaxation time; we denote 1/7 = v and K = K/cg. We observe
that in the rigid conductor case (v = 0), the above equations are equivalent to
O,¢t +70,t = 30,2z, where ¢; = £\/K/cT is the characteristic wave speed of the
thermal submodel.

The coupled system of equations becomes now

(25) Wy = Uz,
(2.6) Vi = oW,z +Cntbiz
(2?) 9,; = kggx ‘i"cttve oz ,

(28) Gt — 79!3 =

For a fully nonlinear variant - with all material parameters temperature-
dependent - the energy equation should be rewritten in terms of internal energy
rather than temperature. This case will be studied in a forthcoming paper.

3. Material constants and functions

Our goal is to describe a real-world situation, hence we need all relevant
material constants of a material for which heat pulse experiments have been
performed.

We found the best availability of measurements in the case of NaF, a
cristalline solid which shows second sound effects in some interval around 16 K.
In order to keep things simple we set fp = 15. For this temperature heat ca-
pacity, heat conductivity and second sound speed have been measured, and a
temperature plot is also available [6]. So we don’t use approximations but just
the measured values from [16].

To complete the set of model parameters we need mass density, thermal
expansion coefficient and the rlﬁféltﬁ(rlmal wave s’)eed For this we use values
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given in [14], concerning the speed identified from the position of the correspond-
ing peak in the temperature plot. The following table contains all material con-
stants we used in the numerical calculations described in the next section.

mechanical model:

p = 2.866 [g/cm?) m=—1.1464 E-5 [g/us?/cm /K]
cm = 0.5477 [em/ps] cmt = —4.0E-6 [em?/us? /K]
thermal model:

c = 7950 [Ws/m? /K]

k=205 [W/em/K]| | cio = —144.8 [1]

e = 0.19531 [em/pus]

T = k/ct/c = 0.675986 [us]

¥ =1/r=1.47932 [1/ps]

4, Numerical method

In this section we study initial-boundary value problems for the above system
(2.5) - (2.8). We assume that the body is initially at equilibrium: there is no
motion, no temperature gradient, no heat flux. Then, at the left-hand boundary
x = 0, we apply a trapezoidal heat impulse. The temperature is continuously
but quickly increased, then it is kept constant, and then decreased,

0 = atxpu,) + at1 Xty 261 +5) T a(ty + 2 — t}X|£1+£2,2t1-H2| .

Here is 2ty + to the total duration of the pulse, ¢; is the time needed for heating
or cooling, cf. [10]. By x we denote the characteristic functions.

At the right-hand boundary z = [ we “measure” the temperature ([, ), the
velocity v(l, -) and the strain w({, -) which are caused by that impulse.

For a fast numerical solution we want to apply an explicit method with con-
stant stepsizes, cf. [21]. Such methods as Lax-Friedrich or Lax-Wendroff schemes
are available and well understood for conservation laws of the form [2]

Uit +f(uJ}I =0,

In this section we denote by u = u(a,t) the state ¥ = (Umechs Utherm)” - In our
case we have a source term b(u) on the right-hand side, the system is not in
divergence form.

Observe that for the isothermal case # = const, the mechanical subsystem has
the classical form, and we obtain nice numerical results with any of the mentioned
methods.

http://rcin.org.pl
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Let us explain shortly the idea of the methods for this case. We replace the
flux f by a consistent numerical flux F(®) which depends on the step-size h of
the equidistant mesh in z-direction. A time-step is then carried out according
to

Ups1 = Un — ARAF®,

where U, is the numerical solution at time-step n, A denotes the forward differ-
ence, and A is the ratio of time to space step-size.

Classical requirements for such methods are the consistency of the numeri-
cal flux with the analytical one, i.e. f(u) = F{h)(u,...,u) (the numerical flux
depends on the state in several nodes, for Lax-Friedrich and Lax-Wendroff on
two, cf. [21]), and the CFL condition (Courant, Friedrich, Levy) which imposes
a bound on the ratio A. The latter has to be smaller than one over the largest
sound speed (here ¢,,) [9].

The Lax-Friedrich scheme is monotone — it does not introduce artificial oscil-
lations — but it also introduces considerable numerical diffusion; it is only of the
first order accuracy. On the other hand, the second order Lax-Wendroff scheme
often shows unphysical oscillations near shocks [20].

For our mechanical problem, however, both give quite good results for ap-
propriate A. We obtain the best accordance with the known analytical solution
just before violating the CFL condition, i.e. with A~ 1/¢,, (see Figs. 2 and 3).

g 0_1 T T T
£0.08 A
@
: /3
2:3 0 06 5 / ‘ o
= : ]
g 0.04+ new model: LW i \\\\ i
8 | newmoderLr ; i
@ ¢ 1
g' 0.02 Fourier ;
& 0 g ol 7

0 2 4 6 8

time (microseconds)

Fi1G. 2. Thermal submodel.

In the same manner we can consider the rigid thermal subsystem, cf. [12].
However, here we encounter already a source term which spoils the performance
of the Lax-Friedrich scheme.

In order to understand that fact, we can decompose the state u in the eigen-

basis of V, f. Then the diﬂere?]t%%épﬂFLCi)rf] tgiggsyaen'l is nicely diagonalized, but
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FiG. 3. Dependence on step-size and method.

there is a coupling via the right-hand side. This leads to an exponential decay of
the amplitude of a pulse running into an equilibrium region. The Lax-Wendroff
method (with A near 1/¢;) reproduces this behaviour correctly.

For the thermo-mechanical system, the optimal step-size for the thermal sub-
system is forbidden by the CFL condition (in all second-sound materials, the
speed of the longitudinal elastic wave is larger than the speed of the thermal
pulses).

However, the Lax-Wendroff results with a wrong A are still quite acceptable
(Fig. 4). A method which removes the error caused by numerical diffusion is
under preparation. The idea is to integrate both subsystems in their own meshes
and just to exchange the coupling terms (waveform relaxation).

Let us discuss now some results for sodium fluoride (NaF) at 15 K.

g o : .
A | / i
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F1G. 4. Temperature at far end.
http:?/]?cm.org.p[
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5. Results and conclusions

We omit the mechanical subsystem, and start with the rigid conductor. We
compare a classical heat conductor (Fourier law) with our present second sound
model. We give the temperatures at the right end of the specimen versus time as
calculated by Lax-Friedrich and Lax-Wendroff schemes, with optimal step-size in
Fig. 2.

Figure 2 shows so-called arrival prints of temperature. We can see that the
classical heat conduction theory (flat curve) is obviously not applicable, and the
Lax-Friedrich scheme is not distinguishable from Lax-Wendroff. On both curves
we can still recognize the 4 jumps of the first derivative which come from the
applied trapezoidal impulse.

A comparison between the optimal Lax-Wendroff solution and those obtained
with the step-size imposed by the CFL condition for the full system shows the
failure of the Lax-Friedrich method (Fig. 3).

We use 600 time steps and 110 space steps if the mechanical wave is relevant,
316 space steps otherwise. The Lax-Friedrich solution adds too much numerical
viscosity, it looks like a solution to the classical parabolic equation.

Now we come to the full system. We do not apply any non-vanishing
mechanical initial or boundary conditions, just a thermal pulse as in the rigid
case. As a result we obtain a compression wave, combined with an increase of
temperature, which travels approximately 3 times faster than the second sound
pulse.

In the wake of the first pulse we see a tiny drop of the temperature level
below the temperature of the environment — an observation confirmed by the
experimental plots, cf. [16]. We present here the arrival situation for temperature
(Fig. 4), velocity (Fig. 5) and strain (Fig. 6).

x107
3

velocity (cm/microsecond)

=4 . . '
0 2 4 6 8

time (microseconds)

FiG. 5. Velocity at far end.

http://rcin.org.pl
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Fi1G. 6. Strain at far end.

We superimpose onto the plot of the temperature (Fig. 4) in the coupled
model. the plots for # as it results for the rigid conductor equations, once cal-
culated with optimal step-sizes, and for comparison that calculated at the same
mesh as in the coupled case. It is very clear that after 4 microseconds, the in-
fluence of the mechanical wave has nearly vanished. We suppose that the true
solution after that time is similar to the rigid conductor solution — which is con-
sistent with our expectation on the basis of the large difference between both
wave speeds.

Finally, we visualize the result by a density plot and a 3D temperature dis-

-

tribution as a function of space and time, Figs. 7 and 8. The two pulses are

Fie- e Rt SRy B
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clearly visible, the slopes of the isolines in the density plot are the reciprocals of
the characteristic speeds ¢, and ¢;.
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Fi1G. 8. Density plot: two characteristic speeds.

We hope to get an even better accordance between our numerical results and the
real measurements by improving the model as well as the solver. Next steps will
be the variable coefficients and more realistic boundary conditions, as well as a
(negative) source term.
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