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Variational bounds on the effective moduli
of anisotropic piezoelectric composites

A. GALKA, B. GAMBIN and J.J. TELEGA (WARSZAWA)

InequaviTies of Thompson and Dirichlet type have been used to derive the elementary
bounds on elastic, piezoelectric and dielectric macroscopic moduli. The Ritz method
has been applied to determine approximately the effective moduli.

1. Introduction

PIEZOELECTRIC MATERIALS are often used in modern technical devices. The ne-
cessity of modelling the behaviour of intelligent materials significantly influences
the interest of many researchers in finding effective properties of piezoelectric
composites, cf. [1 - 5] and the references cited therein. We observe that biologi-
cal materials such like dry bones also exhibit piezoelectric properties, cf. [6]. It
seems that the paper by the third author [6] was the first on non-uniform homoge-
nization of piezoelectric composites, which includes periodic homogenization as a
particular case. In an accompanying paper [5], a detailed study of I™-convergence
for a class of physically nonlinear piezocomposites has been performed. This
class includes the linear case, which is the starting point for the present paper.
To determine the effective moduli one has to solve appriopriate periodic boundary
value problems posed on the so-called basic cell. For two- and three-dimensional
problems such cell problems cannot be exactly solved, hence the need for approx-
imate methods and bounding techniques. In the present contribution we shall
consider the problem of variational bounds for the effective moduli. Inequali-
ties of Thompson and Dirichlet type are used to derive elementary bounds on
elastic, piezoelectric and dielectric macroscopic moduli. Moreover, for two-phase
composites the Ritz method is applied to determine approximately the effective
moduli. The results obtained by using Ritz's method compare favourably with
upper and lower bounds on the corresponding coefficients.

2. Piezoelectric solid with a microperiodic structure

The elastic, piezoelectric and dielectric moduli are denoted by ¢;jxi, gijk, €ij,
respectively, (i, 7j,k,l = 1,2,3). The constitutive relations are given by

(2.1) D; = & E; + gikiert,

(2.2) ii = Cijkieyt — Gkij Ex,
UHttp:f/Lrlcpfh.orkgj.p
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or equivalently

(2.3) Ey = kxiDj — hiijei,

(2.4) Oij = Gijkier — Pkij Dy,

or

(2.5) D; = & Ej — hiniow,

(2.6) eij = Gijrent — hrij Ex,

where

(2.7) Kij = (), Bui= (Eul)kngnij» Qijkl = Cijil + (€™ rnGrijgnki
and

(2.8) dijrt = (€ )ijkty Cijkt = Gijkt — Pomii (K™ ) mnPkts

(2.9) (RV)ij = Kij — hig(@ Ditmnjmn,  Pijk = —Pimn (8™ it@mnjk-

By (s'l)gj,(c‘l],-jk; etc. we denote the components of matrices being inverse
of matrices (&;5), (ciju) etc., respectively. Here D;, E;, 0;j, €;; are components
of the electric displacement vector, the electric field, the stress tensor and the
strain tensor, respectively. In the linear case, being the subject of the present
contribution, the internal energy U(y,e, D),y € Y and its dual U*(y, o, E). have
the following form:

1 1
(2.10) U(y,e,D) = Ea’ijkl(y}eijekl — hij(y) Diejx + 51‘%&;(3})91'9;-

_ gk - 1| o
(2.11) U*(y,o0,E) = Eaéjkl(y)oijo'ki — hijr(y) Eioji, + 5!{&;(1!)&131-

The set Y C R3 is called the basic cell, cf. [2, 3] and the references cited therein.
The dual function U* is calculated as the Fenchel conjugate of U, see [7]

(2.12) U*(y, o, E) = sup {aije,-j + ED; —U(y,e,D)lec E3,D € R3} :

where E2 stands for the space of symmetric 3 x 3 matrices. The functions
@ijki, hijk and k;; are Y-periodic. The elastic, piezoelectric and dielectric coel-
ficients satisfy obvious symmetry conditions. The function U(y, -, ) is assumed
to be strictly convex, cf. [1, 6].

3. Homogenization

The density of the macroscopic or homogenized potential U” is expressed as

follows [6]:
ollows http:/rcin.org.pl
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: : 1 i:
(3.1) UMD = il il o f [§%'H () (ef5(v) + €y)
¥e

() + ely) = hwis () (Dr(w) + D) (el(v) + €by)

t %mj(y) (Diw) + D) (Dity) + D}‘)] dy,

. . 1 (6v; Oy
where e € E3, D" € R® and e}’}(v} =3 (Byi i 31,';)'
The superscript A stands for a homogenized quantity and
(3.2) Hper = {u = (1) € H'(Y)?|u takes equal values

on the opposite faces of Y},

(33)  Aper = {D = (D;) |Di € LA(Y), div,D =0 inY, fD(y)dy =
J

D;N; takes opposite values on the opposite sides of Y }.

The density of the macroscopic dual potential [/*" is expressed as follows:
} p p |

d’GHl UESper

per

- * ;) * H 1 1 A
(3.4) U*h(o" EM) = inf inf |-}-,—|/ [aﬂﬁkt(y) (Oi_i(lf) + arf‘j)
A

(ony) + of) —Pas;(v) (BL(9) + BE) (04i(9) + o)

4-%@(@» (EXo) + EF) (EY() + Eﬁ")] @y,

where o € E3 E! € R?, E¥(¢) = —%, and
Ay
(3.5) Hie = {@ € H\(Y) | ¢ is Y—periodic},
(36)  Sper = {o € LA(Y,E?) |divje =0 inY, fa(y)dy =,
J

0i; N; takes opposite values on the opposite faces of Y}.

Here N is the outward unit vector normal to 9Y.
ReEmMARK. The formula (3.1) results from the theory of I'-convergence applied

to convex periodic homogenizms[)ﬁ.W'oé)llﬁtrarﬁ,F§|]. The general case of convex
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homogenization of piezoelectric composites with periodic or non-uniformly peri-
odic microstructure has been investigated in our accompanying paper [5].

The form (3.4) of the dual potential {/*" is obtained by applying Azé’s theory
of duality, cf. [5, 6, 9].

4. Elementary bounds

The homogenized internal energy (3.1) can be written in the following
form [6]:

(4.1) Uh(e*, D) = 2‘ aluetely, —hi Drels + th D:D%,
where
ah B a!ZUh L a?brh Hf_!_ : a?brh
N ek Y OeseDy Y oDroDT

Explicit expressions in terms of a solution (v, D) e Hper X Aper of the minimiza-
tion problem a.ppealing on the r.h.s of (3.1) were derived in [6]. Supose that the
trial fields are: ef;(v) =0, Di(y) =0, 0i;(y) =0, and ¢(y) = 0. Then we get

1
(4.2) Ut(e*, D) < 5 < aijki(y) > elel— < hrij(y) > Dite
1
+§ < Kij(y) > D?Dj-l.
and ;
(4.3) U (e B") < 5 < iju(y) > olop— < hwij(y) > Efo
1 - 1
+§ < Kvg'j(y) > E?Ej .
where
(4.4) < >=—= /(-)d.y.

¥
For convex functions f and ¢ the inequality f(z) < g(z) implies f*(2*) >
g*(z*), cf. [7]. Hence

1 ]'1r
(4.5) Uh(eh, D*) > a,mei;e“ v Drel +§niij‘D?,

where a};;; and kJ; are the components of the matrices inverse to the matrices
A and K respectively, where

(4.6) A;‘jkj = <L éij.‘d Sl hmi}' Slici i 1)mu < Pl 3
l
|

(4.7) Kij = <Ry > ﬁtfph#f@ﬁ c";g>  [PRRRRP ) SHRIE
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and .

(4.8) vk = —(< Bimn > (< & > Duak
The inequalities (4.2), (4.5) are the elementary bounds on the homogenized inter-
nal energy cf. [3]. Taking into account (4.1), (4.2) and (4.5) and taking D" = 0

or e =0, we obtain two particular bounds
' h h  h_h h h h ~ @3
(4.9) ajiueier < aneiier < < aijki(y) > ee, for each e” € K,

(4.10)  &Y,DED" < klDID? < < kij(y) > DID?, for each D" € R®.
The inequalities (4.9) and (4.10) are equivalent to positive definiteness of the
following quadratic forms:

v

(4.11) (el —abm), (< aiu(y) > —ali), (65— 6Y5), (< Kij(y) > —&1).

By using these inequalities one can derive the elementary bounds on the diagonal
elements of Voigt matrices, that is the bounds on these particular homogenized
material coefficients. Now they are of the form

{4.12) ijkg < G:'_}u & a‘ijkf(y) >y

(4.13) kY < Kl < < Kijy) >,

provided that

(ijkl) € {(1111),(2222),(3333),(1212), (1313), (2323)},
(4.14)

(i) € {(11),(22),(33)}.

Every inequality for the homogenized coefficients a:}kt and nf‘J with indices not

belonging to (4.14) includes at least two elements from the set of the homogenized
moduli ai}u and .-c‘:-} with indices from (4.14). For instance, for af43 the

inequalities which include a%,,; and afy33 have the form:

(4.15)  |atiga— <ansz>| < \/(a’;‘m— < 1111 >)(a%s33— < azaaz >),

h h /
(4.16) |at133 — @yaal < \/(01111 — @f111)(a3333 — Ai333)-

Any inequality satisfied by hi‘_ij results directly from (4.2) and (4.5). It always
contains at least two elements from the set of the homogenized coefficients a{}u
and rig- with indices from the sets defined by (4.14). For instance, the inequalites
satisfied by hly; and involving afs,; and &f; have the following form:

(4.17) |htis — ksl < \/(0?313 — a¥313) (K4 — K1)

(4.18) |h"1!l3"‘ < hyyz > | rﬁp)’/wmaarﬁtﬁplg >)(K.?l-—- < K11 >) -
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The bounds obtained in this way are rather wide. Substituting
(4.19) el = PuiDf, D! = Qiuely,
into (4.2) and (4.5) and performing optimization of the expressions thus obtained

with respect to Fy;j and Qik, we get

(4.20} H o (h‘:i\f lk‘f)((a _a ]_I)an(h_;mn h:fflﬂ) - K’:‘iﬂ

(4.21) n{; < <Kij >

+(hhy— < hi >)((@"— < a2 >) ) iimn (B pn— < himn >,

and

(4.22)  afu + (W — ) (6" = 6*)71) (Wl — i) < afi,

(423) ey < <aiym >

+(f§1u < hmu >)((K. —~ 2 KB )mn(h'::kt_ < hnkt >)-

For indices from the set (4.14) these bounds are narrower than the Voigt-Reuss
bounds (4.12), (4.13).

5. Example: two-phase composite

Let us consider a fibre-reinforced composite, in which the matrix and fibre
materials are both homogeneous and transversely isotropic, with the axis of trans-
verse isotropy oriented in the direction of the fibres. The fibres are distributed
in such a manner that the symmetry of the homogenized material is the same as
that of the plane basic cell.

For convenience, six independent Cartesian components of the strain tensor
e and three Cartesian components of the electric displacement vector D are
arranged in the following manner:

(5.1) F* = (e11, €22, €33, 2 €93, 2 €31, 2 €19, D1, D3, D3) ,
where the superscript T" denotes the transpose. The free-energy densities of the
fibres and of the matrix are quadratic functionals of F, and hence are character-

. . h ’ : (1) (2)
ized by two 9 x 9 symmetric positive-definite matrices, say A and A

(5.2) U (F) = —F‘“ A - F,

. @ Yo O
(5.3) Uh(tfﬁi/r_an.b}r\g-'pr'
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The material constants for the fibre material PZT-7A and for the matrix material
are given by

(1) (2)
(5.4) A= and A = :
(1) : T
where a are the elastic moduli in [GPa]
(157 854 73 0 0 8 7
85.4 157 73 O 0 0
(5.5) @ _ |78 73 175 0 0 0
i Tl fel dp Sape s i
0 0 0 0 472 O
L O 0 0 0 0 35.8]
By using (2.7) we find
[154.84 83.237 82.712 0 0 0
83.237 154.84 82.712 0 0 0
(5.6) (D | 82712 82.712 131.39 0 0 0
- B 0 0 0 25.696 0 1B ey
0 0 0 0 25.696 0
L O 0 0 0 0 35.8

(1) (1) .
since the piezoelectric coefficients h in [V/nm]and & in [V/F] are specified
by
o D e 0 208
(5.7) nguei| 16 SN TSR T e £ R
1.02 1.02 —-458 0 0 0

a [o & g 0 -9.35 0}

(5.8) g = 0 0 0 —9.35 0. 0

2.121 2.121 -9.52 0 0 0
' 1
Here the dielectric coefficients (rlc) in [m/nF] and ? in [nF/m] are given by

o [0246 0O 0 7
(5.9) k=| 0 0246 0 |,
0 0 0.481]

(1) [4.065 0 0 7
(5.10) €= 0 4.065 0

ktt®://rcir. org? 97 °- |
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Let us pass to the specification of the material coefficients of the epoxy matrix.
Now the elastic moduli are given by

(8 44 44 0
44 8 44 0

@ @ |44 44 8 0
B st ionc |8 TG
B~ 0! .00 18
Lo 0 0 0 o0 18]

The piezoelectric coefficients are specified by

cCoOCCcCoOo

s O 00N G250 Q0
(5.12) € =h =[(00000 0|,
000000

while the dielectric coefficients are given by

269 0 0
(5.13) @=1.0 29.0 ]
| 0 o 269
: o  [00372 0 0
(5.14) 2 =olad 00372 00
0 0 0.0372

Let us introduce the following matrices:

(1) (2)

(5.15) T R
( TR @\ ™"\~
(5.16) i f;(A) -ng(A) ,

where f; stands for the fibre volume fraction, and f; =1 — fj.
If fi =04, fo = 0.6 then we have

(5.17)
r12.9 7.09 7.06 0 0 0 0 0 0.042 7
7.09 12.9 7.06 0 0 0 0 0 0.042
7.06 7.06 12.9 0 0 0 0 0 —0.28
0 0 (4] 2.93 0 0 0 —0.141 0
AT= 0 1] 0 0 2.93 0 -0.141 0 0 "
0 0 0 0 0 29 0 0 0
0 0 0 0 —-0.141 Q0 0.349 0 0
0 Q0 0 —0.141 0 0 0 0.339 0
0 0.669 |
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(5.17)
[cont.]
[ 67.6 36.8 31.84 0 0 0 0 0 0.408
36.8 67.6 31.84 0 0 0 0 0 0.408
31.84 31.84 748 0 0 0 0 0 —1.83
0 0 0 19.96 0 0 0 —-0.92 0
AX= 0 0 0 0 1996 0 -0.92 0 0
0 0 0 0 0 15.4 0 0 0
0 0 0 0 -0.92 0 16.2 0 0
0 0 0 —-0.92 0 0 0 16.2 0
| 0.408 0.408 —1.83 0 0 0 0 0 16.33 |

The inequalities (4.2) and (4.5) are equivalent to
(5.18) AT < AM < A?

where A" denotes the effective matrix. The matrix inequalities (5.18) imply im-
mediately upper and lower bounds on the diagonal coefficients. Better estimates
can be obtained from (4.20) — (4.23). In this case, however, on account of a weak
influence of coupling, the differences are small. At present no explicit bounds are
avaiable on the off-diagonal components. BisEGNA and Luciano [1, 2] claim that
they have provided bounds on the off-diagonal elements by taking appropriate
elements of the matrices A™ and A®. Such a statement is in general not true
since bounds on matrices do not coincide with bounds on their elements. Similar
remark concerns Hashin-Shtrikman type bounds given in [1]. We observe that the
bounds derived in [11] on off-diagonal coefficients are accurate only for the elastic
matrix. Therefore below, by using the formulae (4.20) - (4.23) we provide ex-
amples of determination of the bounds on off-diagonal elements for piezoelectric
coupling matrix of material coefficients. This seems to be an important novelty
of our paper.

Let us summarize these results:

(i) The bounds on the coefficient a5, are depicted in Fig. 1. The part of the
plane inside the parallelogram contains points with coordinates (af;;, af59). In
particular, we have —5.41 < af,, < 49.3. The bounds lie in the plane because
in the example studied it was assumed that afy,; and ali,e, coincide. The sign +
denotes the point determined by the Ritz method [3].

(ii) Figure 2 depicts the surface determined by maximal values of the coeffi-
cients af33 (the upper bound) as a function of a’;;; and af333. The last two
coefficients vary within the Voigt-Reuss bounds. In Fig. 3 the surface of lower
bounds is represented. Similar surfaces can be constructed for other off-diagonal

homogenized coefficients, cf. lfwlﬁsp?/??:(lin?org ol
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Fig. 7.

The domain contained between these two surfaces is called “the bounds re-
gion”, cf. Fig. 8. Figures 4a, 4b, 5, 9 and 10 represent cross-sections of the bounds
region within planes orthogonal to the coordinate axis and containing the Ritz
point, denoted here by +. The coordinates of this point were determined in [3]
by using the Ritz method. It is worth noting that the Ritz point lies within the
bounds region.
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Let us now pass to providing the values of the homogenized coefficients for the
same composite as they were obtained by employing the Ritz method [3]. Now
they are given by:

a. The elastic moduli

"18.46 581 796 0 0 0

581 18.46 7.96 0 0 0

ho | 796 7.96 59.98 0 0 0|

(5:19) =1 o 0 0 1982 0 (ade
0 0 0 0 1982 0

0 3.19

) r?ttp://r%in.orog.pl y -



688

A. GAEKA, B. GAMBIN AND J. J. TELEGA

b. The piezoelectric coefficients

0 0 0 0 =185 0
(5.20) h*=| o 0 B =135 .0 0];
0.128 0.128 —-4.98 0 0 0

c. The dielectric coefficients

10.04 0 0

(5.21) k"=| 0 1004 O

By

0 0 1.152

comparing the method of bounds with the Ritz method we conclude that in

this particular case of two-phase composite, Ritz’s method yields results which

fall

within the upper and lower bounds.
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