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On generalized Weber and Clebsch transformations

Dedicated to Prof. Henryk Zorski
on the occasion of his 70-th birthday

H.-J. WAGNER (PADERBORN)

SulTABLE generalizations of the Weber and Clebsch transformations of the hydro-
dynamic equations are introduced which have some bearing in the treatment of the
inverse problem of Lagrangian field theory. In particular these generalizations open
the way to equivalence proofs for several Lagrangians proposed in the realm of ideal
(magneto-)hydrodynamics. This means that the Euler-Lagrange equations corre-
sponding to these Lagrangians do not only imply but are also implied by the original
field equations of the systems under study.

1. Introduction

GIVEN A SET of field equations for a dynamical system, the inverse problem of
Lagrangian field theory deals with the question whether one can find an action
principle for it. In other words, it is examined whether Lagrangians can be con-
structed whose Euler - Lagrange equations are equivalent to a given set of field
equations.

Concerning the “Eulerian” field equations of ideal fluid flow in hydrodynam-
ics, magnetohydrodynamics, and plasma dynamics, a large number of proposed
Lagrangians can be found in the literature. To quote only a few surveys of the
whole field, see [1 —6]. However, in several cases it has only been shown that
the respective Euler - Lagrange equations imply the validity of the original hy-
drodynamical flow equations. But to establish full equivalence between the Eu-
ler - Lagrange equations and the original field equations, it is also necessary to
examine whether the Euler - Lagrange equations are capable of describing all
possible solutions of the original equations.

Up to now, complete equivalence proofs for certain Lagrangians have been
given for the cases of the barotropic and the non-barotropic ideal fluid [1, 7].
The main tools involved in these proofs are representations of vector fields in
terms of special potential classes as well as the so-called Weber and Clebsch
transformations of the hydrodynamic equations.

One aim of this paper is to show that - employing suitable generalizations of
these Weber and Clebsch transformations — complete equivalence proofs can also
be given for many other Lagrangians in hydrodynamics, magnetohydrodynamics,
and plasma dynamics. The class of systems which can be treated on more or
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646 H.-J. WAGNER

less the same footing is rather large and comprises e. g. charged ideal fluids
in external electromagnetic fields and ideal magnetohydrodynamic fluids with
infinite conductivity. Even a certain case of fluid flow in porous media - obeying
a nonstationary extension of Darcy’s law - turns out to be covered. The present
paper is organized as follows:

Section 2 is devoted to fixing of the notation. In Sec. 3, the original Weber
and Clebsch transformations for barotropic fluids are shortly revisited and their
connection to the solution of the inverse problem of Lagrangian field theory is
pointed out. In Sec.4 we then introduce suitable generalizations of the Weber
and the Clebsch transformations, starting from a generalized form of the Euler
equation. In the next section it is demonstrated that there is a considerable
number of hydrodynamical systems whose respective Euler equations can be
cast into such a generalized form. The paper is then concluded with a list of
Lagrangians for these systems for which equivalence proofs are now available.

Due to limitations of space, not all the — sometimes lengthy — derivations
can be given here. Only the generalized Weber and Clebsch transformations
are treated in some detail, whereas we have to restrict ourselves to summary
remarks in the remaining sections. The full length considerations can be found
elsewhere [6].

2. Notation

The trajectories of the material points of the continuum are given as follows:
(2.1) % =X(xg: )

Here ¢ means time and x¢ denotes the material (Lagrangian) coordinates:
(2.2) xo = x(x0,0) .

We require (2.1) to be invertible, thus leading to the “index field”
(2.3) xp = Xp(x, t).

The “Eulerian” velocity field u(x,t) is given as

(2.4) nlx, )= 2Jt(xg, t) :
ot x0=%o(x,t)

Generally, the fields of the form e(x,t) - i.e., described as functions of x and
t — are called “Bulerian fields”. They give rise to the corresponding “Lagrangian
fields” £(£) depending on xy and ¢:

(2.5) eB)(xo,t) = e(x(x0,1), ).
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The following abbreviation for the substantial time derivative is used in this
paper:

D J
2.6 —_ = =
26 i S A
It mainly comes into the play by means of the “local transport theorem”
3] D
(2.7) —¢elB)(xo, 1) = —e(x,t).
ot xo=xa(x.t) Dt (

3. Weber and Clebsch transformations revisited

In this section we give a rather condensed review of the Weber and Clebsch
transformations for the barotropic ideal fluid, i.e., for a fluid where the pressure
p is a function of the mass density p only. For details the reader is referred to
§§ 15,167 of [8] and §29 of [1].

Our starting point is the Euler equation

(3.1) %F-v U@—L)JFU) — V(P +U).

After transition to the Lagrangian picture (Lagrangian equations of motion), one
can derive the so-called “Weber transformation of the hydrodynamic equations”

3
(3.2) Zu”" (0,t) 5,—k(x0,t) = ul™ (x0,0) + (%o, 1)

with
t

3.3)  ¢P(xo,t) f( ~ull)(xg, t')2 — P)(xo,¢') "U{L)(xo,i')) dt' .
0

Transition back to the Eulerian picture implies the “Lin representation” of the
velocity field

(3.4) u(x,t) = Vo(x,t) + > ai(x,t) Vag(x,t)
with
(3.5) a(x,t) =uB)(x(x,1),0),  Pxt) = L) (xo(x,t),1).
Due to (2.7), o, xg, ¢ solve the following equations:
D D T
(36) EQ—O, EIU 0, Eqﬂ)—iu -P-U.

Note that the Euler equation (3.1) can be rederived from (3.4), (3.6).
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Now, what has this to do with the inverse problem of Lagrangian field theory?
The Euler - Lagrange equations of the so-called “Lin Lagrangian” [9]

3.7 L= %Q‘lz —eP(e) +ple) —eU + ¢ (829 ¢ V-(gu]) — o0 2 x6

t Dt
can be shown to include (3.4), (3.6), whereas the Euler equation is missing. The
above considerations now show that (3.4), (3.6) are an equivalent substitute for
the original Euler equation.

The Lin representation of the velocity field is globally valid. If one only looks
for a local representation, one can achieve a much simpler expression for u. This
is due to the fact that — at least locally — any vector field A can be represented
in terms of the “Clebsch potentials”:

(3.8) A = Vi + V.

For a proof see e.g. [10] and the references quoted there.
In particular, u(¥)(xg,0) can thus be represented as

04

3.9) P (x0,0) = 5o (x0) + aa(x0) (o).

Insertion of this representation into the Weber transformation and subsequent
transition to the Eulerian picture implies

(3.10) u=Vé+aVp
with . 2 o
~ u D
11 o 55 Sy = —a=0, —B=0.
(31 o L Fha e < M DiP

Again, the Euler equation can be rederived from these expressions.
Equations (3.10), (3.11) are included in the set of Euler - Lagrange equations
of the “Davydov Lagrangian” [11]

D
(312) L= ou—oP(e) +p(e) — U+ e+ V-(ew)) - o P

which arises from (3.7) by replacing a-(D/Dt)xy with the simplified expres-
sion a(D/Dt)f3. Therefore, the Euler equation is locally equivalently substituted
within the Euler - Lagrange equations of (3.12).

REMARK. In the literature instead of the Davydov Lagrangian one often finds
the “Bateman Lagrangian” [12]

D
(3.13) L= %euz — 0P(p) + p(e) — oU Bé - oa—p

which differs from the Davydov Lagrangian only by a 4-divergence and thus gives
rise to the same Euler - Lagrange equations.
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4. Generalized Weber and Clebsch transformations

Our starting points in this section are field quantities Y (x, ¢) and 1(x, ) which
are supposed to satisfy the “generalized Euler equation”

D
(4.1) HE Z Y;Vu; = V.
J

Just as the usual Euler equation (3.1) for a barotropic fluid in an external po-
tential field serves as a starting point for the derivation of the original Weber
transformation, the generalized Euler equation (4.1) will be shown to imply a
certain “generalized Weber transformation”. The following steps rather closely
resemble those for the barotropic fluid which can be recovered as a special case
by putting Y =u and ¢ =uw?/2 - P - U.

Reexpressing (4.1) in Lagrangian coordinates, with (2.7) we get

@) 2y, + S vP vy =gy
ot 7 x=x(xo,t) x=x(xo,t)

This implies the “generalized Lagrangian equations of motion”

; () (x, 9

: —Tk(X0,t
\ed; Z 3tY 3 nimL(XU )

3] d
+ 3 ¥ (x0,t) 2 —uj(x, 1) = —ak(Xo,
JZL ! Oy x=x(x0,t) O0i ort)

0
—xr(Xxp, t) .
x=x(xq,t) zoi kl )

d
-2

Making use of the chain rule, and employing the fact that u't) = 9x/0t, we are
led to

d 3] d
(4.4) Z ot (Yk(L){xo, )amx xu,t]) = ame(L)(xo,t)-

Integrating w1th respect to t and using (9zy/9x¢i)(X0,0) = dzok [ Oxoi = bip, we
end up with the following “generalized Weber transformation”:
t

9 ;
(xo0,1) = Y9 (x0,0) + 5— [ #P(xo,¢)dt'.

45 S YP(xot) i
k

Az Oz /
Transformation to the Eulerian picture leads to
i 50 2
(4.6) Zt: (Zk: Y™ (xo,t) £ 'mk(xo.t)) Foteay o Toi(x, t)

—xz0i(x,1).

t
0

—Z( *) (x9,0) + =— [ %) (xq, t’)dt')
“om |
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Employing the chain rule, we finally get:

PR i Ity 9
@n  Yixt = 2 0,05 anx ) + 5

/ ¥ (xo(x, £), ') dt

0

Defining

t
48)  axt) =YP(x(x,),0), éxt)= [ DB (xo (%, £), ') dt’,
0

we end up with the following decomposition of Y:

(4.9) Y(x,t) = Vo(x,t) + Y ai(x,t)Vaoi(x, ).
i
The time evolution equations of the fields o; are simply
D
(4.10) ﬁa,(x i) =.0,

due to the fact that a;(x,t) = fi(xo(x,t)). Moreover, (4.8) implies
(@11) 24D (x0, ) = Y0, ).
In Eulerian coordinates, this corresponds to
(412) L 4ix,t) = pix,)
' i, SR R

Vice versa, the generalized Euler equation (4.1) can be rederived from (4.9) with
(4.10) and (4.12). Using the obvious commutation relation

D d
(4.13) A EV 2 Vu;) b6
we get
(4.14) EY = —Vo+ Z (-—-—-a ) Vo + Za, V.?Jm
Dt 1 (]
—{l
D
=V (E¢) Z Vuj ¢ + Zai ( ) Zat(VuJ
S J \._.VU_/
=1 =

= Vy - (Vw)Y;
i
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The results obtained so far can be summed up as follows:

PROPOSITION 1. (Generalized Weber Transformation)

The validity of the generalized Euler equation (D/Dt)Y + 33, Y;Vu; = Vi
gives rise to the following generalized Weber transformation:

6 ! I
(4.15) ZY“" (%0, t) 52k (x0,1) = ¥ (x0,0) + )(xo, t') dt
Zoi

1

PROPOSITION 2. (Generalized Lin Representation)

The validity of the generalized Euler equation (D/Dt)Y + 3, Y;Vu; = V¢
is globally equivalent to the existence of the representation

(4.16) Y=Vé+Y iV,
i
where «;, z¢; and ¢ are solutions of the following time evolution equations:
D D D
(4.17) Di%=0, =0, pé=¢.

With regard to the derivation of a generalized Clebsch transformation, we
now make use of the fact that Y(¥)(xq,0) can be locally represented in terms of
Clebsch potentials:

2 Bo(xo) -

(L) -
(418) Y; (xﬂa 0) 3xﬂi

(x0) + ao(x0)

Thus, (4.7) implies

(@19)  Yi(x0) = 3 VD (xolx,1),0) -z, ) + i@(x. f)
i J

Z (62: 0i )
+3 (a(xo) aiiﬁo(xn))

i

i3-‘(:}:(11 t)
xp=%o(x,t) 65'3,}

0
o 9s; —zgi(x,1) + —t;b(x )k
xXp=xXo(x

Defining
(420) a(x! t) = Ct'g(x{](x, t)) ) ﬁ(xs t) = ﬁﬂ(xﬁ(xa t)) 1 n(x!t) == ?}[](Io(x, t)) \

and using the chain rule, we get

d
(4.21) Y;(x,t) = ;%(n(x, 1)+ 6(x, )+ alx, O 5-B(x, ).
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Putting qu(x, t) = n(x,t) +¢(x,t), we end up with a Clebsch representation for Y:
(4.22) Y(x,t) = Vo(x,t) + a(x,t) VA(x, 1),

where a, 3, and n are solutions of

D D D
4.2 —_— = —p0 =00, —n=0u.
(423) it LT el R
Moreover
D - D D D
4.2 ot (TN el Lyl T L
(424) FrRARmt i s T i

Vice versa, in analogy to (4.14) it can be shown that the generalized Euler equa-
tion is derivable from (4.22) together with the above time evolution equations
for a, 3, and ¢.

Again we summarize:

PROPOSITION 3. (Generalized Clebsch Transformation)

The validity of the generalized Euler equation (D/Dt)Y + 32, Y;Vu; = Vi
is locally equivalent to the existence of the representation

(4.25) Y =Vé+aVa,
where a, 8 and ¢ are solutions of the following time evolution equations:

D D D:
(4.26) 5;9=0,  5B=0, é=1.

We conclude the present section with the remark that due to

(4.27) D%q’s = %& + (u-V)é = %Q‘S +u-(Y —aVp)

9 = 0 - D d
Sh+uY o V)= gé+uY-a (E—tﬁ b Eﬁ)
© 0 - a
= —3—E¢+U'Y+aaﬁ,
the time evolution equation (4.24) may be replaced with the “generalized Ber-
noulli theorem”

d < 0
(4.28) *é?(f)"rﬂ'a—gﬁ‘l“u-Y -9 =0.
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5. Examples

It remains to show that there indeed exists a sufficiently nontrivial list of hy-
drodynamical systems with Euler equations that can be cast into the generalized
form (4.1).

The first example on this list to be mentioned is the non-barotropic ideal
fluid. Here the energy density e, the temperature 7' = de/ds, and the pressure
p = p*0e/dp are depending on both the mass density p and the entropy density
s. In addition to the Euler and the continuity equation we require the isentropy
relation Ds/Dt = 0 to be valid.

We define the following quantity (sometimes called “thermasy” [13]):

t
(5.1) 6= fT(L)(m(x, 0),¢)dt’.
0
It is a solution of DA/Dt = T and one can show that the Euler equation
D Vp
2 = s iy A
(5.2) Dtu . U

can be cast into the form of the generalized Euler equation (4.1) with

2
(5.3) Y =u-0Vs, w:“?—e—g—U.

If the forces exerted on the non-barotropic ideal fluid are due to an external
electromagnetic field, then the respective Euler equation

D = Vp ¢ 1
(54) au— ?+m(E+ E'I.IXB)
can be cast into the form (4.1) with
2
q u P_4 1 )
E' — —_— — _ —_— — —_— e ——— _—— .A y
(5.5) e u+mCA 0Vs, ) Tt 2 m({p U

where ¢ and A denote the usual electromagnetic scalar and vector potentials.
Another example consists of the Euler equation for a non-barotropic ideal
fluid in magnetohydrodynamics with infinite conductivity:

D vp 1
: e Yipp B) .
(5.6) Dtu - +4ﬂ9 ((V x B) x B)

Introducing an auxiliary vector field h(x,t) via

i
(5.7  Ri(x,t) = 41_?72 f B,E_“(xo(x,t),z*)%(xk(xu(x,t),:'))dt',
ko

http://rcin.org.pl



654 H.-J. WAGNER

Eq. (5.6) can be cast into the form (4.1) with

2
(5.8) e By L o R e s s
0 B 0
Here one has to make use of the fact that h(x,t) is a solution of
B 4
5.9 — = —h~— ;
(5.9) = &h ux (Vxh)+ V(u-h)
which implies
VB &
-1 = — o, :
(5.10) T Bt(VXh) V x [ux (V x h)]

As a last example, we mention the following nonstationary extension of Darcy’s
law for the seepage of a barotropic fluid in a porous medium:

D
(5.11) Dt = ~VP~YU - Au.
Here, (4.1) can be achieved by putting
o2
(5.12) Y = ue, Y= 3 —-P-U|e,

For all these examples there exist Lagrangians for which — with the help of the
generalized Lin representations — one can show that the Euler equation is always
equivalently substituted within the respective Euler - Lagrange equations.

For the sake of completeness, we list up these Lagrangians but — due to the
limited space — this has to be done without giving any further details:

(i) Non-barotropic ideal fluid [9]

D

i ) D
(5.13) 5—5911 Qe(9$5)—gU+¢(ae+V-(.@u}) QGDtS"QQ T

(ii) Non-barotropic ideal fluid in an external electromagnetic field

s ¥ AL 9 ( = )
(5.14) xC—-z.gu oe(p, 8) oy cuA
a D D
+¢(BEQ+V'(QU)) o QBES—QQ.'—tIO.

(iii) Non-barotropic ideal fluid in magnetohydrodynamics with infinite con-
ductivity [14]

o B’ d s
6.15) L= gou—oelos) — g+ e+ V-(ew)) ~ s

D d
_QQ-—D-Exo—h-(EB—V X (u x B)) -kV-B.
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ON GENERALIZED WEBER AND CLEBSCH TRANSFORMATIONS 655

6.16) L= {Sow— oP(o)+pl0) - U} +9( e + V- (ew) oo oo

(iv) Barotropic fluid in a porous medium

Dt

Making the replacement a-(D/Dt)xg — a(D/Dt)f in the above expressions,
one is left with Lagrangians that are no longer global but still local solutions of
the inverse problem of Lagrangian field theory. This can be proved with the aid
of the generalized Clebsch transformations discussed above.
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