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FIFTY YEARS OF THE ARCHIVES OF MECHANICS

Diffusion

Dedicated to Prof. Henryk Zorski
on the occasion of his 70-th birthday

E.A. TURSKI (WARSZAWA)

THE CLASSICAL FIELD of statistical mechanics — the theory of diffusion processes -
is still offering considerable challenge when the physical problems to be described by
it are more “realistic” than those easily envisioned as simple random walk. In this
lecture I shall present our recent results on diffusion processes in two wide classes of
physical problems: i) Diffusion in dense quasi-two-dimensional adsorbates on surfaces
of the crystals, where the interparticle interactions and the interaction with the host
solid cannot be neglected and play a mutually complementary role. These phenomena
can be conveniently called the dynamics in d = 2+ 1 dimensions. ii) Diffusion in the
crystals containing topological (line) defects, such as dislocations and disclinations.
I shall present our results on use of the combined continuum theory of defects and
the path integral approach to description of such diffusion processes. Possibility of
generalization of these models for quantum particles will also be outlined.

1. Introduction

THE PHYSICAL PROCESS which keeps the fragrance producers and sellers in their
lucrative business is the diffusion. Indeed, it is slow motion of the concentration
profile, as compared to the thermal speed of a gas particle, which keeps the
fragrance particle component close to our body. It also prevents the smell of
burned bacon, or bouquet of just opened bottle of Frankenwein, from filling
the interior of the house instantaneously. The slowness and the persistence of
the diffusion is one of the reasons why this dynamical process is of such an
importance in various branches of biology [1].

The theory of diffusion appears to be a mature field. Close scrutiny, however,
reveals that it is still in the developing stage particularly when one attempts to
describe phenomena, which albeit on the first glance are not that much differ-
ent from the other “diffusion” processes, nevertheless, show dramatic differences
from the textbook definition of diffusion as the long-time large-distances limit
of the random walk. In this lecture I shall discuss two classes of such problems
related to two fields of solid state physics: surface physics and theory of imper-
fect solids. Both of them can play an important role in analysis of the crystal
growth phenomena, no attempts, however, will be made to discuss these potential
applications in greater detail.
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630 E.A. TURSKI

The plan of my lecture is then as follows. In the following Sec.2, I shall
present a brief account of our recent extensive work on the use of a novel sta-
tistical mechanics technique — the local mean field theory — to the description
of the diffusion on the surface of a solid. In particular I shall discuss recent at-
tempt to formulate a theory of diffusion in dense adsorbates, in which, due to
adparticle interactions, one observes mutual competition between the flow and
hopping characteristics of particle dynamics. In Sec. 3, I shall review our exten-
sive work on the simple diffusion in the medium containing random arrangement
of topological defects, i.e. dislocations and disclinations. I shall show that in this
case, the long time and long distance limit of the mean square displacement
of a particle is no longer proportional to time and that diffusion might show
nonmarkovian character. In some special and highly idealized situations it may
even exhibit Sinay-like behavior in more than one dimension. In Sec. 4, I shall
very briefly discuss the problem of a single quantum particle moving on a lattice
with topological defects. This section serves as an introduction to our recent and
ongoing work in that field.

2. Surface diffusion

When a freshly cleaved surface of a crystal is exposed to an ambient gas, some
of the gas particles get stuck to the surface in a process which we call adsorption.
The adatoms do not get just to any point on the surface but to its specific points,
called adsorption sites, which form a d = 2 lattice with structure not necessarily
the same as the crystallographic structure of crystal surface. Formation of an
adsorbate is a complex phenomenon, particularly since in most of the circum-
stances, electronic degrees of freedom of the adatoms are mixed with these of
the host solid providing chemical-like binding between adatoms and the crys-
tal. I shall restrict myself to seemingly simpler situation of a physisorption, that
is when the chemical structure of adatom remains intact throughout the forma-
tion, equilibration and future dynamical history of the adsorbate. As we shall see,
this is a sufficiently rich model to analyze fundamental problems of the diffusion
theory [2-4]. It is a very important model, for it permits us to asses how the intri-
cacies of interactions between the adsorbed particles and the host solid, mediated
by solid phonons (both bulk and surface) can be handled in description of the
dynamical properties of the adsorbates. Understanding of particle migration over
the solid surface is also of considerable applied interest, for example the particle
diffusion, along the surface of growing crystal, might change the morphological
mode of the crystal growth [5]. In this lecture I shall be mostly concerned with
fundamental aspects of the surface diffusion, particularly for dense adsorbates,
when mutual interactions among the adsorbate particles cannot be neglected.
The wealth of phenomena in dense adsorbates becomes enormous, offering possi-
bility of studying transitions from localized (registered and nonregistered) phases
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DIFFUSION 631

to orientationally ordered (hexatic) fluids to two-dimensional fluid layers. Their
extensive discussion can be found in the recent collection of articles [2]. In some
sense these are 2+ 1 dimensional systems, that is they permit us to see how the
truly three-dimensional properties of the system are turned off and replaced by
two-dimensional ones.

How do we describe diffusion in the adsorbates? Conventionally the starting
point would be the kinetic lattice gas approach in which one postulates cer-
tain equation of motion for the multiparticle probability distribution function of
finding nr, nRy, . . . particles at lattice sites R, R/, ... at a given instant of time -
P({ngr},t). This equation, called the Master equation, is difficult to derive from
the first principles for the lattice gas model does not have its own, endogeneous,
dynamics. In contrast, the static properties of the lattice gas, and eo ipso these
of modeled adsorbate, are fully determined by:

1) the lattice gas Hamiltonian, conveniently and conventionally written as:

(1) H({nr}) = - > Jrrnror + 9 V(R)ngr ,
R.R' R

where the “exchange integral” Jr g describes the interparticle interactions and
V(R) is the on-site potential, describing, for example, binding of the particle to
the host solid;

2) the choice of the ensemble used in the evaluation of the statistical sum;
that is deep physical insight into what are the proper constraints imposed on the
system.

To describe the lattice gas dynamics we must supply it with a model dynamics
given by the master equation of the form:

(2)  aP({nr} 1)
= Y W({ng}, {nkDP({nr},t) = 3 W({nr} {nr}P({nr}1),

{ng} {ng}

with the properly chosen transition amplitudes W, which are functionally de-
pendent on the occupations {ng}. The only guiding principles we have in con-
structing these transition amplitudes are: our knowledge of underlying physics
(which might be far from complete) and the detailed balance condition. The later
assures that all the solutions of Eq.(2) tend asymptotically to the equilibrium
solution P*4({nr}) ox exp(—fH({nr}).

As it stands, Eq. (2) presents formidable, and with exception of simple cases,
unsolvable, mathematical problem. Variety of approximate schemes have been
advocated in the literature. In a series of publications [6-8] we have proposed a
new method to analyze such an equation which uses so-called local mean field
approximation. We found our method to be quite useful for moderately dense ad-
sorbates with attractive interactions, for which a good agreement can be obtained
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632 L.A. TURSKI

between predictions of our model [7] and Monte Carlo simulation results [9]. For
systems with repulsive interactions [8] we have obtained sensible agreement be-
tween our prediction for the behavior of the diffusion coefficient in the 2 x 2
ordered region of the phase diagram, shown in Fig. 1, and the reported experi-
mental data. In Fig. 2 we have shown the behavior of the diffusion coefficient as a
function of the lattice gas density plotted for various values of the temperature,
corresponding to ordered and disordered region of the phase diagram in Fig. 1.
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F1G. 1. The mean field phase diagram for lattice gas with repulsive interactions.

In spite of this progress one easily recognizes that the lattice gas models suffer
from a serious drawback, namely they cannot account for any flow properties of
the dense adsorbate. When the density of adsorbate increases, particularly above
that of a monolayer, fluid-like properties of the adsorbate gain importance, dif-
fusion ceases to be hopping-like, and the kinetic lattice gas approach becomes
deficient. To analyze such situations we have proposed in Ref. [10] a fluid-like
mesoscopic model which takes into account details of dynamic (phonon medi-
ated) interactions between the adsorbate and the host solid. This model results
in a hydrodynamic-like equations for the adsorbate fluid. These equations de-
scribe the fluid flow for which the momentum is not conserved on account of
a single particle friction term violating the Gallilean invariance of the model
containing new “transport” coefficient . This breakdown of conservation law
for momentum emerges from the fully Gallilean invariant original model after
phonons are projected out and transient in time terms are averaged out. This
procedure effectively assumes that the host solid is “infinitely” heavy, and that
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Fic. 2. a. Diffusion coefficient of the interacting lattice gas D/Dg versus 3J. Adsorbate
concentrations n decrease by 0.1, from n = 0.9 for the topmost line down to n = 0.1 for
the lowest one. b. Adsorbate concentration dependence of D/Dy. Parameter 3.J
increases by 0.1 from AJ = 0.9 for the topmost line up to 5J = 1.4 and then
by 0.2 up to 3.0 for the lowest one. V = 1.5J and Dy = vz/2d in both panels.

its center of mass can “absorb” arbitrary amount of momentum restoring the
overall Gallilean invariance.

This new hydrodynamic picture of the dense adsorbate dynamics is difficult
to use. In order to see how it can be utilized in practice we have created its
toy version [11] based on the cellular automata paradigm [12-14]. The cellular
automata models explore the complementary to lattice gas feature of the lattice
models concentrating entirely on the velocity degrees of freedom of the migra-
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ting particles. The important role in the model [11] is played by a lattice collision
operator constructed such as to mimic the physical processes of interaction be-
tween the adatom and the phonons of the host solid. This collision operator turns
out to be closely related to cellular automata version of the Boltzmann - Lorentz
model, well known from the classical kinetic theory.

As we have discussed it above, we do have three different possible approaches
to the analysis of the seemingly simplest problem of the adsorbate dynamics,
namely the diffusion processes. Each of the methods, kinetic lattice gas, meso-
scopic density functional, and cellular automaton, can address some of the fea-
tures of the adsorbed dynamics and fails to account for the other. Can one devise
a model which will, within some limitations, encompass all the three of them? In
a recent paper [15] we have proposed a model which, as we believe, does actually
this. The basic ingredient of our model is generalized to the 2d-dimensional u
space master equation which in well defined limits reduces to the standard form
of master equation [7] or to the Boltzmann - Lorentz-like kinetic equation [11].
We have shown that our model provides a description of the diffusion processes
in which fluid - like characters of the processes, emphasized in Ref. [10, 11] are
combined with the hopping mechanism of Ref. [7, 8]. Using suitable generaliza-
tion of the local mean field analysis from Ref. 7], we derive a new expression
for the diffusion coefficient which permits us to analyze its dependence on sev-
eral parameters, like temperature, density and a value of the coupling constant
measuring the strength of mutual particle interactions.

Within the model of Ref. [15] we envisage the adsorbate as a d-dimensional,
classical, many-particle system dense enough so the mutual particle interactions
cannot be neglected. We describe the state of such a system by a p-space dis-
tribution function F(r,v,t) where r and v denote particle position and velocity,
respectively. The customary normalization of F(r,v,t) is [ drdvF(r,v,t) = Ny,
where N is the total number of particles in the system. This distribution func-
tion obeys the generalized master equation in the p-space, which we postulate
in accord with two fundamental requirements.

The first one is that this equation reduces to the well known master equation
for a lattice gas (in the continuum limit) when the velocity degrees of freedom
of particles are “averaged out”. This means that in some limit, discussed below,
the diffusion process described by our new model has to reduce to that discussed
in Ref. [7]. The second requirement is that in the opposite limit, when fluid
properties of the system are of greater importance than the hopping ones em-
bodied in master equation of Ref. [7], we recover the description provided either
by mesoscopic model of Ref. [10] or by the cellular automaton model [11]. This
in turn implies that the master equation in the p-space must bear a similarity
to the Boltzmann-Lorentz kinetic equation, an essential ingredient of the model
in Ref. [11]. The third condition imposed on our model is that it must take
into account mutual interactions between particles in such a way as to make the
applications of the local mean field model discussed in Ref. [7] possible.
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The master equation, which fulfills the above conditions reads:
(3) O F(r,v,t) = —v-VF(r,v,t) + W{F}.

To construct the operator W we follow the lattice gas parlance and consider
the full u space distribution as a cell variable. The p-space cells are constructed by
splitting the configuration space into (quasi) lattice with a spacing a, and letting
a particle in each configuration space cell to explore the entire momentum (or
velocity) space.

The operator W acting on the phase space function F(r,v,t) can be written
down explicitly in the following form:

(4)  WF(r,v,t) = ¢5(v) / dv'y I'(r+at)F(r+a,v,t)— zI(r)F(r,v,1),

where ¢ p(v) is the Maxwell - Boltzmann distribution function. The sum in Eq. (4)
runs over all z nearest neighbors of the particle located at a site r. The coefficients
I' are the transition rates for particle short range “jumps” between the sites r and
r+a. Equation (4) resembles closely the generalization of the Boltzmann - Lorentz
collision operator [15]. Indeed, replacing I"'s by averaged values and replacing
¢p(v) [dv' by the integral operator averaging velocities over the surface of a
unit sphere in the velocity space, we obtain the Boltzmann -Lorentz operator.
In a general case, the operator W is nonlinear due to the F' dependence of the
transition rates I'.

To proceed with analysis of Eq. (4) we follow our version of the local mean
field theory discussed in length in Refs. [6, 7]. In this procedure one is replacing
the many-body master equation by an effective single particle one in which the
transition rates are functionally dependent on a single-site effective field which is
randomly distributed. The effective master equation has to obey the H-theorem,
thus for each realization of the local field distribution the density differs from its
global mean value py by a factor oc I'"1:

-1 Po

(5) plh) = I (h) et

where I'(h) is the effective transition rate which depends on the value of the local
field h, and f(h) is the field distribution. The main point is now how one gets the
field distribution f(h). The explicit mean field procedure for the construction of
f(h) was provided in our earlier work Ref. [6, 7], we quote here only the final
result. Denoting by C A D= [dhf(h)A(h) the average over the random local
field, we obtain the following expression for the diffusion coefficient [15]:

a? g o et c? _2
(6) DzCF_l:)+ =75 = Dhopping 1+E'2-CF =2 15

where Dyopping is the value of the diffusion coefficient following the kinetic lattice
gas model discussed in Ref. [7] and at the beginning of this section.
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The above equation combines two contributions to the diffusion process: the
one which is due to fluid - like properties of the system and that which is due
to its lattice gas properties. It is the inverse averaged transition rate dependence
of this coefficient which makes a comparison with the Monte Carlo data in our
recent work (7] so effective.

Following the analysis from [7], one can obtain from Eq.(6) the following
wengineering”-like expression for the diffusion coefficient

(7) D = Dy [exp[—poz(eﬁ“' — 1)] 4+ AT exp[pgze?’ (*7 —1)] exp[2/3V]} ’
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F1G. 3. a. Diffusion coefficient for T = 400 K plotted as a function of density pg. The
dotted line is for pure lattice gas model, the dashed one is the “fluid” contribution to
the diffusion coefficient, and the solid one is the total diffusion coefficient. b. Diffusion
coefficient for density po = 0.4 plotted as a function of inverse temperature 1/7". The
dotted line is for pure lattice gas model, the dashed one is the “fluid” contribution to
the diffusion coefficient, and the solid one is the total diffusion coefficient.
A=10"*K! and J =200 K in both panels.
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where A = kpg/(mzipa?) and 14 is the overall rate factor setting a universal
inverse time unit of our model. Dy = vya® exp(—BV) is the diffusion coefficient
for the noninteracting lattice gas. For heavy adsorbates on metal surfaces the
prefactor v is typically of the order of 10'2sec™. Assuming the mass of an
adatom to be that of an oxygen atom and using the square lattice model with
a = 1078 cm we obtain A = 0.00143 K. Varying the mass and using different
values of the prefactor we find that A may change between 107! < A < 107°K~1.
Values of the on-site potential and of the exchange coupling are chosen as in the
Monte Carlo simulations of GOMER et al. [9] and in Ref. [7]. At low densities the
hopping term dominates. while for larger ones the contribution due to the fluid -
like behavior starts to grow and eventually it dominates. For reasons discussed in
Ref. [15] our model should be treated with caution for large densities. In Fig. 3 we
have shown the density and temperature dependence of the diffusion coefficient,
respectively. The general behavior of it agrees with the physical picture one has
concerning in what regime which contribution, hopping one or fluid one should
dominate.

3. Diffusion in the presence of topological defects

So far we have discussed diffusion in systems where interparticle interactions
modify the usual picture of diffusion viewed as a limit of the random walk.
The resulting description still gives Einstein-like relation between the root mean
square displacement of a “typical” particle and time (r?) « ¢. The difficulty was
how to calculate the proportionality coefficient i.e the diffusion coefficient. In
this section I would like to discuss a different problem. I shall consider as simple
random walk problem as possible - a single particle making unbiased jumps on
a locally perfect lattice. The point here is in the word “locally”. The lattice of
adsorption sites in Sec. 2 was perfect. What happens when this lattice, and as a
matter of fact any lattice, is imperfect?

The analysis of influence of various types of defects on simple diffusion is
clearly beyond the scope of the lecture. I shall concentrate here on a particular
type of extended line defects in solids, namely the topological defects. To be
specific I shall consider edge and screw dislocations and disclinations of a sort
(Kleinert disclinations). The latter are of a rather academic interest buf they
lead to a dramatic change in the diffusion behavior, they lead to so-called Sinay
diffusion in more than d = 1 case. The material in this section is based on recent
series of publications [16-19] and covers only salient features of our theory. No
dislocation theory primer is included in this paper. The reader is referred to
the wealth of available literature for necessary details of continuum dislocation
theory [20-22].

Imagine a two-dimensional plane on which a Brownian particle has left its
chalk-trace. Take now a black marble and roll it down that plane over the parti-
cle trajectory,without the slip. The chalk leaves the image on the marble surface.
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The question might arise, and actually it did to BOCHNER [23], what are the sta-
tistical properties of this image trace. The mathematical problem is that at each
instance of the marble motion the plane is tangent to it, and in that tangent plane
we have quite ordinary random walk; that is an “easy” part of the story. The
difficult one is that we have to paste together pieces of locally normal random
walks all over the curved surface. This kind of “academic” problem is precisely
the one one encounters when studying diffusion in crystal which contains con-
tinuous distribution of dislocations and /or disclinations [21, 22]. Following main
assumptions of this theory, a diffusing particle sees a locally perfect crystal. It
recognizes that it moves in topologically distorted medium only after completing
its path. Since the diffusion process involves all paths between two remote points,
thus the presence of topological defects might affect the diffusion. Moreover, in a
real crystal one controls neither the position nor the topological charges (Burg-
ers vectors and Frank angles) of the defects. Both of these characteristics of the
defects and their distribution are therefore random quantities. The statistics of
them is independent of the thermal ensemble used to discuss the diffusion. De-
fects are a random quenched distortion of the lattice and therefore we have to
incorporate them carefully into description of the diffusion.

In a series of papers [16-19] we just have proposed such an approach in
which the diffusion process in the crystal with a given density of dislocations
is visnalized as a random walk in which the particle makes a jump from one
allowed lattice site to another, with the jump probabilities the same as in the
simple random walk, but only in the local frame. In local coordinates (£) the
Langevin equation for such a process is then very simple and reads:

d
(8) EEG =+ ZO, 1

where [ is the usual Langevin force representing white noise with zero average
and variance
(9) (1%(t)1P(t")) = 2D6*Pé(t — t').

In the above formula (f) denotes the ensemble average and D is the bare diffusion
coefficient in the medium free of dislocations. .

Transforming the Langevin equation Eq. (8) back to the laboratory frame (z')
we have:

(10) ' (t) = Bh(a ()% (),

where Bl (z) is the “distortion”tensor (which differs from Kroner’s by a unit
tensor) specific to, and known, for all interesting types of defects. In Ref. [17] we
have shown that the correct interpretation of the stochastic equation (10) is the
Stratonovich one, which leads to the covariant diffusion equation of the form

(11) & P(z,t) = DATP(z,1),
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where "
(12) AT =gIVIVT, VI =V +21f,

and ¢, the inverse metric tensor, and the torsion vector 2Tti, are all given
in terms of the distortion field B},. In Eq. (11) P(z,?) is a scalar probability
distribution for a particle occupying site z at the time t.

Note, that equation (11) is the most general Fokker-Planck equation de-
scribing random walk on a manifold with non-zero torsion. Note also that the
coefficients of this equation depend on the distortion field generated by dis-
locations. In case of random distribution of defects these coefficients become
quenched random variables. I note in passing, that Eq. (11) is the fundamental
equation in a not really explored field of random statistical geometry, which has
many applications in general relativity, pattern recognition etc. .

To discuss the diffusion process one has to average over a quenched random
distribution of topological defects. This is conveniently done in a Martin - Siggia —
Rose-type path-integral representation [24]. In refs. [16, 17] we have discussed
in greater detail the predictions of the above outlined theory for quenched dis-
tribution of random disclinations and screw dislocations. Disclinations are the
most prominent “topological” defects and their presence leads to the dramatic
changes in the character of diffusion processes. Equation (11) for disclination
case assumes the form of the Fokker - Planck equation with random drift veloc-
ity Vi = —DéY 0; 2@, where §2 is the Frank angle and @ is the two-dimensional
Coulomb potential. For distribution of dislocation, statistical properties of the
defects density p(z) becomes important. We have studied defects distribution
which is Gaussian with zero mean and has translational invariant second mo-
ments which include possibility of screening of topological charges [16, 17]. De-
noting the screening length as x we have shown that the particle exhibits nonuni-
versal subdiffusion with:

(13) (E2)(e) ~ 8110

where v is the strength of the defects distribution correlation.

The unscreened case is even more dramatic. For k = (0 we have shown, fol-
lowing arguments of BOUCHARD, COMTET, GEORGE and LE DOUSSAL [25] that
the particle diffusion becomes Sinay-like:

(14) @)(t) ~ (nt)?.

As far as I know, it is the first example for Sinay diffusion in more than one
dimension.

The quenched distribution of screw dislocations is more interesting due to the
role played by these defects in crystal growth phenomena [26]. In this case our
statistical model turns out to be, in a sense, exactly solvable (viz. Ref. [16, 17]).
For the mean-square displacement of the particle we find an anisotropic normal
diffusion behavior, enhanced in the z-direction. The latter is plausible since the
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locally isotropic random steps globally lead to climbing up or down of the particle
on the spiral staircases of the screw dislocations. This effect is not strong enough
to generate a superdiffusive (at least logarithmic) correction in the z-direction.
However, anomalies do show up in higher cumulants of the particle position.
E.g., for the fourth-order cumulants we find (z?), = 0, and

(15) (222%), ~ (2%)e ~ tInt

for t = oco. Thus, topological defects give rise to a non-Gaussian random walk
process. A measure of the deviation from Gaussian behavior are the relative
cumulants which exhibit long-time tails, e.g. (z%)./(z?)% ~ Int/t. It is an open
question whether one can observe this anomaly either in computer simulations
or in laboratory experiments.

4. Quantum dynamics

In previous section I have analyzed the classical diffusion of a Brownian
particle on a Riemann-Cartan manifold representing a crystal with frozen-in
(quenched) topological defects [16, 17] (see also [27]). In an identical setting we
now want to establish a general framework for the discussion of the long-wave-
length quantum states of a single particle. For special cases of single straight
dislocation lines this problem has repeatedly been discussed in the literature. The
main physical effects connected with screw dislocations are the Bohm - Aharonov-
type interference effects [28] and the (questionable) possibility of bound states
of the particle to the dislocation lines [29]. For edge dislocations the existence of
bound states has been demonstrated [30] on the basis of the deformation-potential
approximation, see e.g. [31]. We will specify our general form of the Schrodinger
equation on a manifold to these cases and comment on the most significant phys-
ical implications. This section contains most of the results contained in a recent
work by RICHARD BAuscH, Rupi SCHMITZ and myself [19].

In order to construct a foundation for our quantum mechanical analysis, in
Ref. [19], we propose a model guided by the picture of a classical random walk of
a particle in a topologically distorted crystal, which is the quantum tight-binding
model on a d-dimensional lattice being coherently deformed due to the presence
of frozen-in topological defects. With the notations n for the position vectors of
the lattice sites and a(n) for the vectors pointing from n to the nearest-neighbor
sites of n, our model Hamiltonian reads

(16) H= -% S v(m) 3 t(a(n)) [<,01 (n+ a(n))p(n) + @ (n)p(n + a(n))] :
n a(n)

Here v(n) is the volume of the lattice unit cell at n, t(a(n)) is the transfer en-
ergy along the bond a(n), and ¢', ¢ are the particle creation and annihilation
operators obeying the commutation (or anti-commutation) relations.
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In order to reveal the long-wavelength quantum states of the particle, one
has to expand the g-operators depending on a(n) in (16) to second order in
the lattice constant a of the undistorted lattice. The details of this analysis
require careful but rather straightforward application of the rules of differential
geometry. The resulting continuum limit of the Hamiltonian (16) for a model
with a distortion-independent transfer energy ¢ = %%/(2ma?) where m is an
effective mass of the particle is:

ﬁ.2

(17) H=—— [ d'e/5e! [¢9VIV; + ¢V Tih)] o,

where the operators p,¢! obey the commutation relations [go(:s),tp?(y)} =

é(z —y)/Vg(=).

The Hamiltonian (17) is manifestly covariant as a consequence of the special
form (16) chosen for the lattice model. The expression g”V¥'V; in the kinetic
part of (17) is identical to the Laplace - Beltrami operator (1/,/9)0iy/g9" 8; and
in general differs from the operator g/ VTVT entering the diffusion equation on
a manifold [16]. The potential enmgv in (1:) is proportional to the divergence
of the torsion vector T? = g”TA' which is the only nontrivial scalar of the
manifold in addition to the scalar curvature R. Whereas one finds V;T" = 0 for
screw dislocations and V;T" # 0 for edge dislocations, the condition R = 0 is
valid for both types of dislocations [32]. As an example of a defect with R # 0, we
mention a kind of disclination defined by a distortion field Bf*(z) which describes
local rotations of the lattice [33] and implies V;T" = R/4.

In Ref. [19] we have discussed application of Eq. (17) to the problems known
in the literature and concerning the existence and/or nonexistence of the bound
states formed for quantum particles by the topological lattice defects. We have
clarified this issue by showing that the model in Eq.(17) does not allow for
existence of the bound states for edge and screw dislocations. To describe the
possibility of these bounds state one has to generalize the model allowing the
transfer energy ¢ to become space-dependent. Details of that discussion are out-
side of the scope of this lecture.

The other quantum mechanical model of the particle motion in the presence
of the topological disorder was discussed by Andrzej LUSAKOWSKI and myself
[34]. This model analyzes the tight binding Hamiltonian Eq. (16) in the presence
of the random arrangement of the Bohm - Aharonov magnetic field fluxes pene-
trating the lattice cells. The position and value of the flux are quenched random
variables. The analysis provides the analytic expression for the density of states
of the particle shown in Fig. 4. The divergence of the density of states typical for
a two-dimensional system is gone but the density is shrinked, the zone boundary
is moved inwards. The shrinking of the zone depends on the jump anisotropy co-
efficient r but it is already clearly visible for isotropic case r = 1. This unexpected
and puzzling result is well confirmed by the numerical simulations [35]. The the-
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F1G. 4. Density of states plotted for various values of the ratio r = K, /K,. Upper line
r = 0.5. Bottom line » = 1. Two-dimensional density of states for free particle is shown
for comparison.

ory presented in Ref. [34] is a “first step” to the analysis of one of the most
challenging problems in contemporary quantum statistical mechanics, namely
the theory of quantum particle motion in a random magnetic field. Preliminary
results obtained by us recently indicate, among others, that there is no simple
diffusion there and that the system exhibits long time tails in the current-current
correlation functions leading to the not yet fully explored memory effects in the
dynamics of particles in random magnetic field. Work along this line has just
been published [36].
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