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FIFTY YEARS OF THE ARCHIVES OF MECHANICS

A note on kinematics of surfaces

Dedicated to Prof. Henryk Zorski
on the occasion of his 70-th birthday

M.L. SZWABOWICZ (GDANSK)

THE QUESTION how to describe effectively the motion of a deformable surface in
ordinary Euclidean space is discussed. Two alternative formulations are supplied,
both based on the assumption that the Riemannian metric of the moving surface
must appear explicitly in the system describing the motion. The motivation for this
assumption is to divide the variables responsible for the evolution of the intrin-
sic geometry (strains) of the surface from those responsible for the evolution of its
extrinsic geometry (bending). Exemplary application of these results to the large
deflection/small strain class of deformations of thin shells is considered.

1. Introduction

IN MECHANICS surfaces appear generally in two contexts:

(i) as boundaries of three-dimensional domains;

(ii) as an idealization of thin structures, that is objects with one dimension
negligible in comparison with the other two.

The first of the above categories includes all phenomena that can be modeled
by three-dimensional topological manifolds with boundary, such like interface
dynamics, crystal growth and contact problems, whereas the second - all those
that can be directly modeled by two-dimensional manifolds like soap films, mem-
branes, thin plates and shells. Consequently, one faces surfaces of any topological
type: most often — with boundary, frequently - closed compact, and occasionally
~ complete.

For problems belonging to category (i) it frequently happens that it is only
the evolution of the boundary itself, and not the ambient domain, that is of
main interest (capillarity, crystal growth, solidification, friction and wear). Yet,
to find how the boundary evolves in time requires solving a three-dimensional
differential or even integro-differential problem for the entire domain, with in-
put data sometimes difficult to come by due to the limitations and/or ob-
stacles in applying the measurement techniques. A remedy is to introduce a
coarser, yet simpler, model founded on a geometrical approach, wherein the
velocity field of the particles on the boundary or the surface energy are ex-
pressed as functionals of the physical quantities driving the evolution process:

http://rcin.org.pl



614 M.L. SzZwABOWICZ

see the monograph by KoOSINSKI [1] on propagation of singularities in media,
the article by BLINOWSKI and TRZESOWSKI [2] on generalized theory of capil-
lary phenomena, the article by BROWER, KESSLER, KOPLIK and LEVINE [3]
for discussion in the context of interface dynamics and papers by ZMITROWICZ
[4], STROMBERG [5] and STARMANS, BREKELMANS and JANSSEN [6] for friction
and wear problems. This step converts the original three-dimensional problem
into a two-dimensional one for a surface, which allows to move it to the second
category.

Problems from (ii) are posed ab initio as two-dimensional by suitable approx-
imations of different forms of energy appearing in the phenomenon and subse-
quent construction of some two-dimensional constitutive equations. If the surface
is deformable (and usually it is), these constitutive equations must contain the
kinematical variables accounting for the influence of the actual configuration of
the surface on the physical state of the body the surface models.

Once all the physical factors are enclosed in mathematical formulae, one has
to cast the problem into its final form, which will then become an evolution prob-
lem on a two-dimensional topological manifold. The evolution parameter may be
the time (interface dynamics), forces (statics of shells) or some other variables
depending on the nature of the problem. In the course of this evolution not only
the geometry but also the topology of the surface may vary (cracks, ruptures,
bifurcations, branching of soap films). However, the common background is the
kinematics, which in this case is the theory of immersions of two-dimensional
manifolds into R®. Thus, the optimal, from the analytical point of view, final
formulation of the problem arises as a compromise between the group of equa-
tions responsible for the physics and those accounting for kinematics. At this
stage the key element is the choice of primary variables, which subsequently will
become the unknown functions in the systems of PDE's to be solved for some
initial and/or boundary conditions. The right choice may not only facilitate the
analysis by setting the problem in a form as compact as possible (say, for the
fewest number of unknowns) or exposing the group of parameters dominating
in the problem; it may also reveal interdisciplinary connections and analogies,
which help in understanding the underlying phenomenon.

Due to the above, kinematics of a moving surface has been treated from
different aspects in various places in the literature: the most recent references
are [1, 3, 8, 7, 10, 9, 14, 15]. Specifically, the theory of shells contributed to the
subject so abundantly that it is impossible to cite here even the most important
references (take, for instance, [11] as the starting point). All the same, as the
recent advances in mathematical theory of surfaces indicate [13], the subject
is far from being exhausted. Below I discuss possible novel formulations of the
evolution problem under the assumption that the surface metric must appear
as an explicit primary variable and show how they can be applied to the large
deflection/small strain theory of thin shells. This material has been treated in
more detail in [9, 15].
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2. Intrinsic and reduced formulations; evolution
Let our surface, moving in R®, be given at time ¢ by the position vector
(2.1) r =i+ yj+ zk,

where ¢ = z(J%,t), y = y(99,t), z = z(9%,1) are the Cartesian coordinates in
some fixed in time Cartesian frame i, j, k, and 9%, @ = 1, 2, are convective curvi-
linear coordinates (i.e. 9 = 0). Then, the local basis consists of the two tangent
vectors T,, (commas denote partial derivatives with respect to the coordinates
v*) and the normal to the surface n. Let the velocity field on the surface be
r = V°r,,+Un. For V* and U as known functionals on the surface, the lat-
ter equation yields a quasi-linear evolution system of three PDE’s for the three
unknown Cartesian coordinates of the immersion r (see [9]). This type of for-
mulation corresponds to the displacement formulations. Although being simple,
it gives, however, no insight into what is happening with physically measurable
quantities characterizing the surface (like internal distances between adjacent
points or curvatures), as the motion progresses.

The intrinsic formulations lie at the other extremity. They abstract the prob-
lem of the evolution from the ambient Euclidean space. The fundamental theorem
of the theory of surfaces establishes a local one-to-one correspondence between
the space of non-congruent surfaces and sets of six functions a,g and b,g (coef-
ficients of the metric and the second fundamental form) satisfying the compati-
bility conditions: the Gauss - Mainardi- Codazzi equations

(2.2) %E“Asﬁ“baﬁbm =K,
(2.3) baglae® =0,

where (.)|, denotes the covariant derivative, €** are the contravariant compo-

nents of the permutation tensor and K is the Gaussian curvature. Formally,
Eqgs. (2.2) and (2.3), written down in maps from some atlas, form a nonlinear
underdetermined system of three partial differential equations for six unknown
functions of points on some two-dimensional differentiable manifold representing
the topology of the surface. For a given topological type of the manifold, solu-
tions of these equations correspond to all possible mutually homeomorphic and
non-congruent configurations of the surface. By choosing any one-parameter fam-
ily of such solutions (with some parameter t) and interpreting this parameter as
time, we obtain a full description of a topology-preserving evolution correspond-
ing to some motion of a surface in R,

The fact that the system is underdetermined leaves a gap to be filled with
additional three equations whose connotation lends a definite meaning to the
whole system. In geometry these additional equations are predominantly of finite
type, like in the problem of isometric bending: @,s = 0. In physics they are
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usually systems of PDE that additionally relate the coefficients of both forms,
thus closing the system. For instance, in theory of shells these are the equations
of motion and in interfacial dynamics - the velocity functionals (see [3]).

The connected evolution system (see [1, 3, 7, 8] for discussion and derivation)
consists of the following six PDE’s:

(2-4) daﬁ = _zbaﬁU + Va [ﬁ e Vﬂia )
(2.5)  bag = Ulap — U(2Hbag — Kaag) + barV> |5 + bsaV e + V> bagla

for six unknown functions a,p = ang(i?‘\ t) and bag = bag(tﬁ‘", t) of points on the
manifold and time. H in Eq. (2.5) denotes the mean curvature of the surface.

Although mathematically satisfactory, this system suffers from excessive, for
physical applications, number (six) of equations and unknowns. A question arises:
does the information about the kinematics of a moving surface have to be scat-
tered on so many functions? Besides, the evolution of the metric informs us about
the variation of the local distances between the adjacent points of the surface,
but no such clear interpretation may be ascribed to the evolution of the second
fundamental form.

As a remedy, we may replace the coefficients of the second fundamental form
with its invariants: the mean and Gaussian curvatures, and its principal direc-
tions. The curvatures certainly bear more physical meaning than abstract func-
tions bags (in support of this statement see [2], where the authors used this idea
in connection with their considerations about the changes of surface energy un-
der transitions of the Euler—Poincaré characteristic of the interfacial surface).
Then, the Gaussian curvature may be eliminated from the system with the use
of the Gauss equation (2.2). This step leads to replacement of the compatibility
equations (2.2), (2.3) with a system of two nonlinear PDE’s for five unknown
functions: the coefficients of the metric, the mean curvature and the angle ¢
hetween a fixed convective field of directions on the surface and one of the prin-
cipal directions. In [9] I have shown that if one picks the directions tangent to
9! coordinate lines to be the reference field of directions, then the corresponding
evolution system consists of the following five equations:

(26)  bog=—2HU anp
- 2m{j(€08 2p 8k — sin 2 eq ) ( = 6; 5,3 —1— azﬂaz,g)
+ Va|s + Vsla
(27 H=H,V*+(2H*-K)U+ %AU,

e fF
2022 HQ—K

[ Ul — —AU +2(H? K)U} sin 2y .

(2.8) ¢ = (pa+kd )V + £V1lz 3 a'®U|a2 cos 2

——
2\/H2
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In the above formulae A denotes the Laplace - Beltrami operator, ¢ is the angular
velocity of the principal directions of the second fundamental form, a = det(aqg)
and k‘g are the components of the connection vector (the co-form of the connec-
tion form in the Maurer - Cartan equations) given by the formulae:

; 1 a12
29 kl‘]l NG {(_— =3 i ) (_ “2 ) 2] .
(2.9) a azza22'1 a1 |a + 022622,2 +a22,1 —2a12,2

Locally, away from an umbilical point, the evolution system (2.6)-(2.8) is
completely equivalent to the original system (2.4)-(2.5). Above all, it preserves
the bijective nature of the relation between the space of its solutions and the
space of non-rigid motions. It still contains, however, five unknown functions.

To obtain any further reduction of the evolution system and, thus, a more
compact description of motion of a surface, one may choose to decompose the
motion into the part responsible for the evolution of its intrinsic geometry and
the other, describing the evolution of the extrinsic geometry. This approach is
particularly useful in mechanics of deformable material surfaces. Then, evolution
of the intrinsic geometry is described by the strain rate, and that of extrinsic
geometry corresponds to the isometric bending (the other terms in common
use for this kind of motion are: pure bending, geometric bending, inextensional
deformation). There are exactly two alternative ways to make description of this
kind as compact as possible. Both are based on the so-called Darboux equations -
two nonlinear second-order PDE derived independently by Darboux and Bianchi
in connection with the problem of finding all isometric immersions of a given
two-dimensional Riemannian manifold into the ordinary Euclidean space. For a
fixed metric they become equations of the Monge - Ampére type, i.e. equations
whose leading term is the determinant of the second covariant derivative of the
unknown function.

The unknown function in the case of the first of the two equations has the
mterpretation of a distance function from some fixed, but otherwise arbitrary,
plane in R®. Suppose this plane coincides with the z = 0 plane. Then, the
unknown function is exactly the z Cartesian coordinate of the immersion sought
and the corresponding equation is:

(2.10) d; — K(1 = 2,42,5a°) =0,

where d. = 1/2e%*¢P#2|,52|5, is the Monge - Ampeére operator of the function
z and K should be replaced with the Gauss formula expressing the Gaussian
curvature of a given metric via its coefficients. Upon solving this equation, the
second fundamental form of the related immersion is furnished by the formula:

(2.11) bag = (1= 2,2 2,5 6*) V2 205,

and the remaining two Cartesian coordinates z,y follow from the coefficients of
the metric and the solution z via quadratures (see [9, 12]). Note that the above
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set of relations provides complete information about the surface at a ixed time
t in terms of just four quantities. By letting z and the metric vary with time
we obtain systematic account of its evolution. Then, evolution of tie metric
describes the evolution of its intrinsic geometry, whereas evolution of : supplies
information about the evolution of the second fundamental form and, thus, the
isometric bending, as desired.

As follows from [9], the corresponding evolution system is:

2U

daﬁ S z|QB+Va|B+V3|a‘
V1= 2z z,u0M
(2.13) 2 =V2z,a+Uy1—z,52,,0*.

An alternative description of the evolution problem may be based on the
second of the two Darboux equations after minor modifications. The unknown
function in this case is the function r = r(9%,t) describing the distaice of the
points of the surface at some moment ¢ from some fixed, but otherwisearbitrary,
point O in R3. Take O to be the origin of the Cartesian system. Thea r is the
length of the position vector and the equation is:

(2.12)

(2.14) dy2 — 2077 + K(r?arlga®® —4r?) +4=0.

Again, upon solving this equation the second fundamental form follows from the
formula

1 1
(2.15) bag = (—r2|uﬁ — aﬁg) .
\/ w7 2

£ Z(‘*‘”z)m (r2),5 a8

The related evolution system is:

. 1
r \/1 — a1y 0P
(2.17) £= Vora U 1 —wn et

3. Application to large deflection/small strain type of thin shell theories

For purposes of demonstration let us consider how the selection of a proper
description of surface kinematics may be helpful in modification of thenonlinear
theory of thin shells within the class of large deflection/small strain defomations.
The practical significance of this class follows from the fact that for meals, most
frequently used materials in construction of thin-walled structures, the :dmissible
strain is approximately a quantity of the order 103, This limitatim on the
admissible deformations the middle surface of the shell may assume, coisiderably
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reduces the practically accessible states of its equilibrium (see [14, 15]). Yet, this
fact is nowhere visible in the framework of the classical shell theory, due to the
fact that it is based on description of motion via displacements.

As I have argued in [15], to pose the problem in a form convenient for qual-
itative as well as quantitative analysis, it is necessary to employ one of the two
descriptions of motion based on the Darboux equations. With this choice the
strains appear as the primary variables in the theory. Besides, the whole extrin-
sic geometry of the shell’s middle surface is described by a single function z or
r. Thus, the shell problem is governed by a determined system of four nonlinear
PDE for four unknown functions, one of them being the Darboux equation and
the remaining three — the equations of motion. In view of “smallness” of strains,
this system may be subsequently linearized in these three variables. This step
simplifies the whole problem, because we then have to deal with a system linear
in three functions and nonlinear in only one, although the whole class of non-
linear large deflection/small strain deformations is covered effectively. Besides,
upon solving this system, the displacements may be computed via quadratures.

For demonstrative purposes, let us see how this procedure works in the sim-
plest case of statics of thin linearly elastic shells (see [15] for a more detailed
discussion). To distinguish the deformed configuration of the shell middle surface
from the undeformed one, the objects pertaining to the deformed configuration
are marked by overbars, e.g. Gag, bag, etc. That is, for this whole section and in
contradistinction to the notation from the previous one, a,s are now coefficients
of the metric only at some initial time ¢, and @,p at some later time ¢. Then,
Yo = (1/2)(@ap — aap) is the surface strain tensor, kag = —bag + bap is the

dA a
curvature change measure and J = = \/g. It may be shown (see [15]) that
with the above notation we have:
(3.1) 7% = = [(1 - 21)a®® + 24°9]
where v = tr (v),
(3.2) Fap=JEag, EP =01 JP=Addet(y)+2y+1.

Besides, the Christoffel symbols in both configurations are related by the formula

. X =
(3.3) Lap— P{;’:ﬁ — aA“'Yyaﬁ ; where  Yuap = Yualg + Yupla = Yaplu -

Now use the above to pull the Darboux equation (2.10) from the deformed con-
figuration to the undeformed one and subsequently, to linearize the result in 7,5.
This leads to the equation

(3.4) dz — [Zlag — (AZ)aas] Z,a i (’y"““l)\‘u - ny) (1 —ZaZg a‘*ﬁ)
- K {1 —Z,aZ8 [a“ﬁ(l +7) — 27“’3]} =1,
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which is a second-order PDE, linear in strains and nonlinear in the function z -
a Cartesian coordinate of the deformed shell middle surface. By assumption, this
equation approximates the kinematics of the shell middle surface in the neighbor-
hood of its undeformed state for sufficiently small strains and their derivatives,
but arbitrary bendings. To obtain a determined system of equations, we need
three further equations relating our four unknown functions. These are granted
by the balance conditions.

Suppose we have derived the balance conditions from the virtual work prin-
ciple by routine variational methods, starting from the strain energy density of
the form W = W(vag, kag) (if W is a quadratic function of its arguments, we get
the Koiter-Sanders first approximation theory). Then, the resulting Lagrangian
equilibrium equations take the form

oW —a OW 5o ow —a OW
3.5 — +b +2b
( ) ( 6'70:,5 ) BK,\g) | a'gz\.r?| [( 67crp - 65.\;&)

+(_ ow B aw)

_AU.| ‘fuﬂru +p(‘.t =— 0‘

Mup IE"“/\ﬁ
(3.6) = %.aﬁ = [(;—Tp_ﬂ'\ ;::; )’Y,\aﬂ lﬁ
+ (-;‘;‘; +E§§$) By
= [%&“” + ( aﬁﬁaﬁ*’ + ;:rﬁa""’) 'no,\wa““] Yuap +2 =0,

where p® and p account for the contributions from the external loads. Now,
replace in the above @*? and 5°” with the right-hand sides of (3.1) and (2.11),
respectively. The two equations (3.5) are of the order three in Z and two in Yag,
and the equation (3.6) — of the order four in Z and three in 7,3. Therefore,
linearization in 7,4 transforms them into the following three PDE:

(3‘7] H{k e HGNA7xA + H&KA#,YKIAL“ — D'
(3.8) V+ V05 + VP05 + V2 M|z, = 0.

The tensor coefficients H and V in the above are nonlinear functions of: the
derivatives of Z (up to the third order in the case of H and fourth of V), the
parameters of the undeformed configuration a,s and b,s, material constants, and
the external loads (for large deformations they may depend on the configuration
and, therefore, they may enter all of the coefficients). Their precise form will
depend on the physical model of the shell material and the external loads applied
to the shell.
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