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System symmetries and inverse variational problems
in continuum theory
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M. SCHOLLE (PADERBORN)

THE AM of the conventional Inverse Problem in Lagrange formalism is to find a
Lagrangian, the associated Euler-Lagrange equations of which are equivalent to a
given set of partial differential equations of a physical system. In contrast, I am
dealing with a different type of an inverse problem. I look for a Lagrangian which is
associated with a given set of balance equations. My approach is based on general
relations between symmetry groups (geometrical and gauge symmetries) and its as-
sociated balance equations. I follow two different mathematical lines: The first one
is Noether's theorem: Universal Lie symmetry groups like translations (spatial and
temporal), rotations and Galilei transformation are connected with the fundamen-
tal conservation laws for energy, linear momentum, angular momentum and center
of mass motion. All of these balances are of the “volume-type”. The second line
takes account of a relationship between non-Lie symmetry groups (e.g. regauging
of potentials) and balances of the “area-type”. These are physically associated with
line-shaped objects like vortex lines and dislocations. Following both lines in an in-
verse manner I derive the relevant symmetry properties of a yet unknown Lagrangian
for a given set of balance equations of volume- and area-types. Consequently, a rough
scheme for the analytical structure of the Lagrangian can be given. As an example,
a Lagrangian for the elastic deformation of a body with eigenstresses due to fixed
dislocations is constructed.

Notations

Subsequently I use the following notations for temporal and spatial coordinates and their
corresponding first order derivatives:

z = (2%)=(t,x) = (2" = t,z',---,2°),

d d d
8 = (0a) = (0, V) = (3c=3:$a,31=ﬁ,"-‘33= @)

The substantial time derivative is the operator
D= +v:V,

where v denotes the velocity field of the medium. Furthermore, the three canonical Euclidean
base vectors e, of the laboratory frame are defined as

e = (1,0,0), ez =(0,1,0), ez =(0,0,1).
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600 M. SCHOLLE

Let £ = €(1, 8¢, z) be a first order Lagrangian of a system based on N independent fields
v=(¢'2) = (¢'(2),---, 8" (2)) -

Then, the conjugated canonical field momenta 7% = (x0) = (77 (¥, 8¢, ), -, 7 (¥, O, z))

are given by

(0.1) e (4, 09, 7) =

We additionally define ® = (r:l, 72, :1'3},
Einstein’s summation convention is implied, whenever two indices occur twice in a product,
exept for special cases, where for clarity the summation is indicated explicitly.

at
9(Bav?)

1. The inverse problem of the second kind

IN TRADITIONAL continuum theories a system is regarded to be physically de-
fined, if a set of relevant balance equations is established together with an asso-
ciated set of constitutive equations for the densities, flux densities and production
rates involved in the balance equations.

Apart from this method, Lagrange formalism (LF) gives rise to an alternative
formulation of the dynamics of the system: as the main feature, all information
on the processes of a particular system is contained in one function only, namely
its Lagrangian. All balance equations can be derived from the Lagrangian.

However, in many cases the Lagrangian is unknown. Then, to establish an
adequate Lagrangian formulation of the system, one has to start from the es-
tablished set of phenomenological balance equations in order to construct the
suitable Lagrangian. This is a rough description of the “inverse problem in LF”.
An exact mathematical definition of the inverse problem in LF is much more dif-
ficult; it depends on the viewpoint, how the phenomenological equations should
be derived from the Lagrangian:

1. From the traditional viewpoint, either the phenomenological equations
themselves or an equivalent self-adjoint set of equations are expected to be the
Euler-Lagrange equations of the Lagrangian. We call this traditional concept the
inverse problem of the first kind (IP1).

2. Noether’s theorem shows us, how to derive the balance equations from a
given Lagrangian. Taking universal symmetries like time- and space translation,
rigid rotation and Galilei-transformation into account, the phenomenological bal-
ances for energy, linear momentum, angular momentum and center of mass mo-
tion can be derived by means of the wellknown “Noether machinery”. Thus, if
one interprets the relevant phenomenological balances of the system as Noether
balances, a different kind of inverse problem is defined which I call the inverse
problem of the second kind (1IP2).

Taking the second viewpoint, it is practicable to treat different physical sys-
tems in the same universal way, i.e. apart from their individual constitutive laws.
Lagrange formalism is a unifying concept for quite different physical problems.

http://rcin.org.pl



SYSTEM SYMMETRIES AND INVERSE VARIATIONAL PROBLEMS 601

However, not all relevant phenomenological equations can be interpreted as
Noether balances, e.g. the fundamental dynamical equations for vortices and
dislocations which are “area-type” balances. In order to define IP2 completely
we first have to find an adequate way to treat such balances in a way which is
quite analogous to Noether's theorem.

2. Symmetries and balances beyond Noether’s theorem
2.1. Two types of balance equations

We refer to the wellknown homogenous balance equation of an observable A,
(2.1) odra(x,t) + V-ju(x,t) =0,

which we call a volume-type balance equation. a is the local density and j, the flux
density of the observable A. This local form of the balance equation is associated
with a global form by integrating Eq. (2.1) over a fixed test volume V:

dA
2 _— =
(""2) dt ¢A ]
where
(2.3) Alt) ;= /a{x,t)dam
v

is the total amount of the observable A in the volume V, and

(2.4) Du(t) : /V Jalx, t) d /Ja x,t)

is the total flux of A across the boundary 9V of the test volume.

In the case of point-like objects, the quantities A and @4 are obviously asso-
ciated with the number of objects within the test volume V and with the number
of objects passing the boundary 9V, respectively. In Eq. (2.4) we took account of
Gauss’ theorem. Thus the term “volume-type balance” is sufficiently motivated.

We further refer to the homogenous balance equation of the type

(2.5) Ow(x,1) + V x Ju(x,t) =0

which, with regard to the subsequent theory and applications, is supplemented
by the equation
(2.6) V-w=0.

Obviously Eq. (2.5) is formally different from (2.1); we call it an area-type balance
equation. It is associated with an observable I'. Let us call w a generalized vortex
density and J,, the associated generalized vortex fluz density. The local form
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602 M. SCHOLLE

(2.5) of the balance equation is related to a global form by integrating over a
fixed test area F:

dI’
(2.7) v A =dr,
where
(2.8) ') := | w(x,t)-dF
/

is called the total generalized circulation of the observable I' referred to the test
area F.

(2.9) /VxJ (%, 8)+ /wat)ds

is called the total generalized circulation flux across the boundary line JF of the
test area.

It is a wellknown fact that Eqs. (2.5), (2.6) are frequently physically realized
by means of line-shaped objects which may be counted in a test cross-section. In
this case the vortex density w and the vortex flux density J,, are associated with
the number of objects piercing the test area F and with the number of objects
passing the boundary line F. In Eq. (2.9) we took account of Stokes’ theorem.
Thus the term “area-type balance” is sufficiently motivated.

Examples for two simultanous equations of the types (2.5), (2.6) awe:

e Helmholtz’ equations for the vorticity w = §V x v of an ideal fluid (v:
velocity field):

(2.10) dw+V x [-vxw] =0,
(2.11) V-w = 0.

¢ Fundamental kinematical equations of the dislocation theory:

(2.12) da+VxJ, =0
(2.13) V.a=0.

o is the second rank dislocation tensor and J the associated disloation flux
density. Equation (2.13) is related to the fact that dislocation lines cinnot end
within the crystal, whereas Eq. (2.12) is related to the number of disloc:tion lines
and its balance.

These area-type balances cannot be interpreted as Noether balanc:s! Never-
theless the question arises if the area-type balances (2.5), (2.6) can be obtained
within the Lagrange formalism by means of a straightforward and wified for-
malism similar to the Noether theorem.
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SYSTEM SYMMETRIES AND INVERSE VARIATIONAL PROBLEMS 603

2.2. An alternative symmetry-balance-theorem

Let ¢ = (1,--+,4") be a set of fundamental field variables of a physical
system, e.g. a set of potentials. Let further £(3,dvy,z) be the Lagrangian of

the system. Then let us look at a set F = {(Fl(w}, e FN(gb)}} of functions
F' € C*(RY) which induce a regauging of the fields v (potentials):

z% — 2%,

(2.14) : .
v —F (), Pek

Let us assume that these transformations (2.14) fulfil the strict symmetry crite-
rion:

(2.15) t(F(¢),0F(¥),z) = £(y,09,2).

Then they are called symmetry transformations of the Lagrangian. We further
assume that the set F is a non-Lie group, i.e. there are no group parameters
available with the consequence that Noether’s theorem is not applicable to (2.14).
Nevertheless, I shall establish an alternative method to get a set of balance
equations associated with the symmetry group F: Deriving (2.15) with respect
to Jat', I obtain a system of 4N equations

AOFJ
(2.16) 2] Ggf =T @=0:08 i=1. N,
with the field momenta 7§ defined in Eq. (0.1). This differential symmetry cri-
terion is a system of necessary conditions for the set F of symmetry transfor-
mations. These 4N equations are not linearly independent in general. However,
there always exists a basic representation of the field momenta

M
(2.17) 7= Zu;BP
r=1

with coefficients pg(1p, 99, x) which are invariant under to the gauge transfor-
mation (2.14), and with a set of M < 4 linearly independent basis elements
B:= {B'=(B},---,Bk),-, BM = (B{”,---,BR}")}. Their linear indepen-
dence means that

M
(2.18) Y =0 % =0 ¥

p=1
with coefficients Ay (1, 99, z) invariant with respect to (2.14). The basis elements
BP are functions of 1, ¢ and z, in general. By means of this basis representation,
the set of Egs.(2.16) can be simplified; it can be substituted by the reduced
symmetry criterion

OF’
(2.19) (B2),.r 55 = Bl

http://rcin.org.pl



604 M. SCHOLLE

a system of M- N linearly independent equations which contains the same infor-
mation about the non-Lie regauging group F as (2.16) does.

The basis elements B? represent characteristic features of the non-Lie group
IF; they are of the same importance as the infinitesimal generators for Lie-groups
are.

THEOREM. Let B = {B?|p=1,---,M < 4} be a proper set of linearly inde-

pendent basis elements due to Eq.(2.17). From this basis B we define the vortex
densities wP and the associated fluz densities J¥ as

(2.20) wP := VB! x Vy',

(2.21) J? .= 9y'VBP — 8, BYVY'.

Then, these quantities are invariant under regauging (2.14) and fulfil the M
homogenous area-type balances (p =1,---, M)

(2.22) OwP +V x J? = 0,

(2.23) V-w? = 0.

Proof: 1. The gauge-invariance of the balance quantities w” and J? is a
consequence of the reduced symmetry criterion (2.19). Looking at

. 7 :
w=VBx V=V [(Bf) b F %%l it

B 02Fi :
= v (B} )M (wvw) (B P)w Faw*aw“wk x Vi

and keeping in mind that the last term vanishes (*), the gauge-invariance of the

vortex densities can be easily shown:
OF7 ;
W=V (B), . (wvw ) V(B)yp X VEI ) = (g -

The gauge-invariance of the vortex flux densities J” can be proven in the same
way.
2. Obviously, by definition (2.20), (2.21) the two identities

dyw? = (3VBP) x Vi + VB! x (9,Vy)
= Vx [0,BIVY — 0’V B!| - 8,BIV x VY + 'V x VB = ~VxJ
V-wP = V- [V x (BIVY') - BIV x vy| =0
are fulfilled.

(*) This term contains a contraction of an expression symmetric with respect to the index
change i ++ k and an expression antisymmetric with respect to the same operation.
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SYSTEM SYMMETRIES AND INVERSE VARIATIONAL PROBLEMS 605

The above theorem supplements Noether’s theorem — it operates with another
kind of symmetries and another kind of balances. For further details I refer to
the forthcomming paper [8].

2.3. Helmholtz’ equation of the ideal fluid as an example

It is well-known that the Lagrangian for an ideal fluid takes the form [2]
(2.24) b==pladann % (V& + V) + u(o)

depending on the 4 independent fields ¥ = (¥',---,9*) = (p,9,7,9), namely
the mass density ¢ and the so-called Clebsch potentials which give rise to the
potential representation [3, 4]

(2.25) v=V®+4VY

of the velocity field v. As a consequence, the vortex field w takes the form
1 1
(2.26) w=§va=§V7xV1§?.

The function u(p) denotes the elastic energy of the fluid. Now we apply the
alternative symmetry-balance-theorem for area-type balances to this example:
the conjugate canonical field momenta take the form

= (w?,---,ﬂg) = (0,—0,0,—07),
® = (1‘11"' |“4) e (01 —9"‘0=—9’Y") .

Obviously. the field momenta can be represented by means of one basis element
BY only:

70 = —pB?
(2.27) E %
wx; = —ovB?,
with
(2.28) B° = (BY,,B}) = (0,1,0,7).

According to (2.20), (2.21), this basis element gives rise to a line density w and
its flux density J via

(2.29) w’ = VB? x Vii = Vy x V9 = 2w,
(2.30) 3= 9yiVB! - ,BVY = -—vxw,

which are gauge invariant and fulfil the homogenous balance equation of the
area type (2.22), (2.23). In (2.30) we took account of the two Euler-Lagrange
equations [2]

D9 =0, D¢y =0,
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606 M. SCHOLLE

of (2.24). Obviously, the associated balance equations (2.22), (2.23) turn out to
be Helmholtz’ equations (2.10), (2.11). Thus, the regauging group of the Clebsch
potentials @, v, ¥ determined by the basis element B? is associated with the
vortex dynamics of the fluid.

3. A Lagrangian description for the dynamical theory of elasticity with
eigenstresses

3.1. The general analytical form of the Lagrangian

For the ideal fluid we found that the conjugate field momenta caa be rep-
resented by means of one basis element B° only (see Eq.(2.27), and that it is
associated with the dynamics of vortices. Passing from the fluid to the solid we
take account of dislocations in an analogous way. Dislocations are lire-shaped
objects like vortices. Let us extend Eq. (2.27) towards a generalized basis repre-
sentation

3
" = —oBY+ 3 olBY,
(311} .‘t:;
n; = —ovB? + E o.B,

K=l

with four basis elements B, B', B?, B®, the dimension N of which is sill open.
BY corresponds to the vorter dynamics, whereas B!, B2, B3 correspoad to the
dislocation dynamics.

The associated area-type balances (2.22), (2.23) are based on the qiantities

(3.2) 2w = VBY x Vi = V x (B?v;b*') !
(3.3) 2], = 'VBY — 8,BYVy,
and

(VB x V¢') @ e, = 23: V x (BIVY') @ex,

k=1

e
Il
M

(3.4)

>
L
-

[~
I
M

(3.5) 8"V Bf — 8,Bf VY| @y,

&
Il
A

with an open set 1 = (gbl,- . ,wN) of fundamental field variables. w, J, are the

vortez field and the vortex flur density, and @, J, are the dislocation density and
the associated flux density. In the theory of generalized Cosserat-contirua [6, 7],
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SYSTEM SYMMETRIES AND INVERSE VARIATIONAL PROBLEMS 607

the dislocation density in a crystal lattice is defined from the three (reciprocal)

Cosserat-directors al, a%, a® via

3
(3.6) a= Z (Vxa®)Qe,.

The Cosserat-directors are associated with the crystal lattice vectors. Comparing
(3.2) with (2.26) and (3.4) with (3.6), I obtain the identifications

(3.7) v = B)Vy',
(3.8) a® = BFVy'.

Aditionally, we have to take account of the Noether balances. E.g. the momentum
balance [1]

(3.9) ap+V-Z2=0

which is due to space translations, is defined via Noether’s theorem by the con-
stitutive equations

3
(3.10)  p=-mVy' =BV + > olBFVY = ov+p*,

k=1

3
(3.11) EZ=0-meVy =L+ov®BVY - o.® BFVY
k=1
= pv®VvV—g,

where I have made use of the basis representation (3.1) and of the following
abbreviations:

i

(3.12)

(3.13) Uh®a =¢l,

p* is the quasi-momentum density and g the stress tensor. Furthermore the mass
density p is coupled with the Cosserat directors by means of
(3.14) o= o(a") = oa'-(a® x a%).

In order to simplify the subsequent procedure, I assume that the basis ele-
ments B, B* depend on the field variables 3 only and that o2 = 0, i.e. the
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608 M. SCHOLLE

quasi-momentum density p* is assumed to vanish. Consequently, the system of
equations (3.1) takes the form

ot 0 0
T T —oB; (¥),
(3.15) 6((21!) ) 3
¢

k=1

with the quantities g, v,a* determined by (3.14), (3.7), (3.8). Substituting £ = of
and taking

o ol
9@ ~ C8(aw)’
o¢ ot 3 do(a*) Oa*

v = 2ave) T L e arvw)

k=1

into consideration, the system (3.15) simplifies after division by the factor p to

I

se) O it
RS - o E*E%wq da*
VYY) oV [2"]+?_:_1 o o da* |3(VY)

This system of partial differential equations for £ can be integrated if and only

if the condition 5 A <
(3.17) ox _ Ldek) oulay)

o o Oa* Jdar
is fulfilled with an adequate scalar function u = u(a*,1). Then, we result in the
general analytical form of the Lagrangian:

(3.18) 0= of = —o(a®) [BYWAY' + 5v* +u(a,y)|.

Making use of Noether’s theorem with respect to time translation, the term
pu(a® 1) is identified as the internal energy density. It should be mentioned
that the rough scheme (3.18) of the Lagrangian can be applied to many different
physical systems in continuum mechanics!

3.2. The concrete Lagrangian for elasticity with eigenstresses

Having established the general scheme (3.18) for the Lagrangian, ve have to
go into more details: How many independent field variables ' are necessary to

http://rcin.org.pl



SYSTEM SYMMETRIES AND INVERSE VARIATIONAL PROBLEMS 609

determine the state of the system and which analytical form of the yet unknown
structures B, B® u(a®,) in the Lagrangian (3.18) should be used? In this paper
I prefer a more heuristic treatment:

At first, we may choose the internal energy density u according to Hooke’s
law of an isotropic material

3
(3.19) u=u(a")=Klnp+ %9-213 3 (a2

k=1

with the bulk modulus K and the shear modulus p. By means of Eq. (3.13), this
implies the well-known form of the stress tensor:

3
(3.20) o(ax) = Kol + pg'® Y [“" o - 3 (1.
=1

This formula is Hooke's law rewritten in terms of Cosserat-directors.
Secondly, in analogy with (2.25) I make a Clebsch-ansatz

(3.21) a* = Vo© + (*Vo*

for each of the three Cosserat directors a* with 9 independent potentials ¢", (¥,
0%; k = 1,2,3. Comparing (3.8) with (3.21), the three basis elements B*, B, B
are determined. Consequently, by means of (3.4), the dislocation density tensor
reads

3
(3.22) _g_:Z (V¢ x VI*) @ ey,

whereas according to (3.5) the dislocation fluz density tensor takes the form

3
(3.23) I=-vxa+ [DIVC* — D"V~ @ey.

k=1

Until this point the considerations took only account of the symmetry properties.
Equation (3.23) will be used for fitting the ansatz for the Lagrangian to real
dislocation dynamics.

The model is now restricted to purely convective dislocation dynamics. Then,
the first term in (3.23) is sufficient and the second term has to vanish according
to a particular ansatz for the Lagrangian. Supplementing the already introduced
field variables ¢, (*, 9" by an additional set @, x«, Yx, & of field variables, I
make the ansatz

1
(3.24) 8:95+§ (XxOe” + 100" + £x0C™) + *V + u(a”)
k=1
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for the Lagrangian of the elastically deformed crystal with fixed disl«cations. In
(3.24) the mass density has to be replaced by (3.14), the quantities a’ and u(a")
by (3.21), (3.19). Finally, the quantity v has to be understood as

3
(3.25) v=V&+ Y [xxVe* + 1V + &V

k=1

This expression is in accordance with Eqs. (3.7) and (3.15). Thus, I turns out
that v is the velocity field. As compared with the original Clebsch-aisatz (2.25)
in (3.25), there are involved 10 potentials @, xx, Yx, {x- We should not worry
about this unusual potential representation: (3.25) is a straightforvard result
of the theory. The essence of it is its regauging group which is asso:iated with
the vortezx dynamics by means of the symmetry-balance theorem d:veloped in
Sec2.2..

Variation with respect to @, xux, Vx, &x, @™, 9%, (" — the free and iidependent
fields — results in the Euler - Lagrange equations

(3.26) 0® : O+ V- (pv) =0,

(3.27) 3¢ : d(oxx) + V- [oxxv —ox] =0,
(3.28) 89 : B(ors) + V- [o1ev — ("ox] =0
(3.29) 8¢* : Bi(0éx) + V- [06xv] + 0, VI =0,
(3.30) Oxx : —oDwp" =0,

(3.31) dyx + —oD¢d" =0,

(3.32) 06k : —eDi(" = 0.

o, is determined by Eq.3.17). Equation (3.26) is the mass balance which can
also be obtained via Noether’s theorem with respect to the gauge traisformation
@ — P+¢, whereas Eqs. (3.27)-(3.32) are the essential dynamical fiell equations
for the potentials. Making use of (3.31), (3.32) the dislocation flux deisity tensor
(3.23) simplifies to

(3.33) J=-vxa.

Thus, the dynamical equations (2.12), (2.13) for the dislocations can e obtained
by means of the theorem for area-type balances stated in Sec.2.2.:

3;_@_+Vx[—vxg] =0

3.34
( ) V.a=0.

Obviously I am dealing with a purely convective dislocation dynamis: in terms
of a microscopic picture, the dislocations are fixed at their initial lattre position.
Thus, the deformations of the crystal are purely elastic ones and the Lagrangian
(3.24) describes a dynamical generalization of Kroner’s static theowy of eigen-
stresses [5] due to dislocations.
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4.

Conclusion

By means of this paper I have shown the method of determination of a La-

grangian along the line of the inverse problem of the second kind. Noether’s
theorem associated with volume-type balances has been used as well as a new
theorem associated with area-type balances. A Lagrangian for the convective
generalization of the eigenstress theory of (fixed) dislocations opens perspectives
towards a theory of moving dislocations, i.e. of plastic deformations. Investiga-
tions are in progress.
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