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FIFTY YEARS OF THE ARCHIVES OF MECHANICS

On defective crystallography

Dedicated to Prof. Henryk Zorski
on the occasion of his 70-th birthday

G.P. PARRY (NOTTINGHAM)

SupPOSE that a solid crystal derives from a perfect (Bravais) lattice of atoms, so
that the set of rearrangements of the points of this lattice provides symmetries of
the crystal. In the elasticity theory appropriate to such a crystal, it is traditional to
assert that the corresponding strain energy density function has invariance properties
related to a (proper) subset of these symmetries. Here I discuss similar issues in the
context of the continuum mechanics of smoothly defective crystals, focusing on planar
distributions of defects.

1. Introduction

I piscuss issues related to material symmetry for defective crystals. Experi-
ence with perfect crystals shows that choosing an appropriate symmetry group
for constitutive functions that govern the mechanics is a subtle procedure. To
be specific, one usually chooses a point group of orthogonal transformations as
symmetry group for the strain energy function (say) of a cubic crystal in contin-
uum mechanics, even though this is not the full group of symmetries of a cubic
lattice, and even though a cubic lattice is not a continuum. So it is natural to
try to understand the issues related to the choice of symmetry group first of all
in the context of perfect crystals, before proceeding to the defective case, and I
outline relevant concepts in Sec. 2 of the paper. Aside from the purely pragmatic
reason that calculations based on the point group symmetries perform reason-
ably well in linear elasticity theories, there is just one logical reason that I know
to prefer these groups. That reason derives from a calculation of FONSECA [6],
which shows that

e for a strain energy function w with symmetry group corresponding to the
full set of rearrangements of a cubic lattice,

e with A the class of Lipshitz deformations u defined on a region §2 satisfying
homogeneous boundary condition u = Fx, F € M, ,, x € 892,

(1.1) inf f w(Vu) = | 2| $(det F)
n

for some ¢ : RT — R (see also CHIPOT [2]). This implies, loosely, that a perfect
crystal cannot sustain shear stresses in equilibrium, and it is a rigorous result
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which one must somehow reconcile with the fact that the shear strength of real
crystals is nonzero. Various options present themselves for consideration:

o no real crystal is perfect, but if for the sake of argument we suppose that
some real crystal is perfect,

o equilibria do not correspond to infima of an energy functional of the form
given above, but if equilibria do correspond to such an infimum,

o the choice of symmetry of group for the energy function is incorrect.

In this paper, responding in part to these three options:

e In Sec.2, 1 describe aspects of perfect crystal symmetry, concentrating on
two-dimensional crystals, for the sake of simplicity;

e In Sec.3, I introduce geometric variables which categorize crystals which
are not perfect, but which are defective, and focus on special cases where the
defectiveness of the crystals is uniform;

e For planar defective crystals, in Sec. 4, I discuss the construction of discrete
sets of points which are compatible with the continuum description of the crystal,
and derive some symmetries of these sets of points. Then I suggest that some
of these symmetries should be taken over to the continuum model. It turns out
that relevant symmetries are determined by the dislocation density tensor, so
that the symmetries depend on position only to the extent that the dislocation
density depends on position.

2. Perfect crystal symmetry

Let
(2.1) A(vg) = {x € R%; x=mgvae, my,mg € Z}

be a real 2-dimensional lattice with the two basis vectors vy, vo linearly inde-
pendent. Note that A(v,) = A(vp) if and only if

(2.2) Vo = MgyVs,

where (mgp) is a matrix of integers with | det(mgp)| = 1. If one regards the points
of A(v,) as embedded in a continuum, then any deformation of the continuum,
with deformation gradient denoted F', which has the property that

(2.3) F¥e =¥,

maps the lattice onto itself, in the sense that if z = m,v, € A(v,), then

(2.4) Fx = F(mgva) = ma(Fv,) = mev, € A(v),) = A(v,).

So there is an infinite number of deformations which rearrange the discrete points
of the lattice A(v,).
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The apparatus of traditional crystallography is directed at the classification
of subgroups of the set of rearrangements of the points of A(v,). Specifically, one
considers those rearrangements (m,y) such that

(2.5) Fvy, = mgyvy,

where F' is orthogonal. If {v,} is given, the orthogonal transformations that
satisfy (2.5), for some (mg) of the appropriate form, make up the point group
of A(v,), and the rearrangements that satisfy (2.5) for some orthogonal F' make
up the lattice group of A(v,) (see ERICKSEN [5], PARRY [16], ZANZOTTO [19]).
If one deals, in nonlinear elasticity, with strain energy density functions of
the form w(v,) and accepts that the individual atoms which correspond to the
points of A(v,) are indistinguishable, then it is reasonable to require that

(2.6) W(ve) = B(Va),

whenever (2.2) holds. In addition, it is common to assume that there exist fixed
vectors V, such that
(2.7) Vo =TV,

where T is the macroscopic deformation gradient which governs the behaviour
of material line elements relative to an appropriate reference configuration. This
is called the Cauchy - Born hypothesis (see ZANZOTTO [20] for comments on this
hypothesis). With (2.6) and (2.7), define w(7T") by

(2.8) w(T) = B(va).
Then the symmetry property (2.6) gives

(2.9) w(T) = w(ve) = W(MapVp) = W(MepTVp) = D(TmapVs)
= H(TSV,) = w(TS),

if one writes, following (2.5),
(2.10) SVy=mguVy.

One might call the orthogonal S which satisfy (2.10) elements of the point group
of the reference lattice A(V,), so the symmetries of the corresponding strain
energy density include those given by w(T) = w(7TS), with S in this point
group, as in (2.9). However there is no logical reason, a priori, to exclude those
non-orthogonal solutions S of (2.10) which correspond to the symmetry property
(2.6) (but recall Fonseca’s calculation) and concentrate just on the relevant point
group. ,

Finally, classical theorems of invariant theory (GREEN and ADKINS (8], WEYL
[18]) give representations of the solutions w(-) of (2.9) for an arbitrary point
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group. Solutions w(-) of (2.6), on the other hand, are constructed by finding a
fundamental domain D with the properties that

(i) if {vo} € D, then there is no other point of D which has the form {mgv;},

(ii) each {v,} may be written as {mg,v,} with {v,} € D.

There are various ways of constructing such a domain D;

¢ PARRY [13] and PITTERI [17] give (equivalent) geometric and analytic meth-
ods of finding D.

e One can conveniently rephrase the problem in complex form, see PARRY
[16]. This method has various other advantages, too.

o CONWAY and SLOANE [3] give arithmetical ways of solving the problem.

3. Defective crystals

In this section I replace the basis vectors {v,} which generate the perfect
Bravais lattice A(v,) by lattice vector fields {d,(-)} which are imagined to char-
acterize the internal structure of the crystal, see DAVINI and PARRY [4], PARRY
(14], FONSECA and PARRY [7].

A state X of the crystal consists of three lattice vector fields d;(x), da(x),
d3(x) defined at each point x of a region 2, thus

(3.1) 2 ={do(-), a=1,2,3;02}.

For brevity I write henceforward X' = {d,(-), £2}. It is assumed that d;(x)-d2(x)A
ds(x) # 0, for all x € £2, so there exist dual lattice vector fields d*(x),d*(x), d?(x)
with the property that d®(x)-dy(x) = 5. Two states X' = {d,(-), 2}, £* =
{d}(-), 2*} are elastically related to each other if there exists an invertible smooth
mapping u: 2 — 2* = u(2) such that

d!(u(x)) = Vu(x)d,(x), or
(32} a( ( )) ( ) a( )

d** (u(x)) = [Vux)]Td*(x), a=1,2,3, xci
It is evident from (3.2) that the Burgers integral . d"(x)-dx, C a contour, is an
elastic invariant integral, in the sense that

(3.3) § a)dy= fdx)-dx
u(C)=C+ C

if ¥ and X* are elastically related to each other. It is shown in [4] that there is an
infinite number of elastic invariant integrals, and that there is a finite functional
basis for the corresponding set of densities. Central to the proof of these results
is the notion of a (real-valued) scalar defined on a state X' = {d,(-), 2}. Thus

(3.4) P'E(x) = ,u(x, da(x]1 Vda(x)s Vzda(x], . )
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is a scalar if wherever X' and X* are elastically related to each other, then

(3.5) pg(x) = pg-(u(x)).

From (3.5) one can regard the scalars as some kind of internal variables for plas-
ticity theory, since they are transported unchanged in any elastic deformation.
The prototypical examples of such a function pyx(-) are the nine functions

a b ab
(3.6) d*.vVad = -

det{d?} n
which are lattice components of the dislocation density tensor, cf. KoNDO,
BILBY, KRONER [9, 1, 10, 11]. (In (3.6), I define S% = d*-V Ad®, n = det{d?} =
d'- d2/\d3) From (3.2) and (3.5) it is clear that §, us(z d“(x) -dx is also an elas-
tic invariant integral, one can also easily show that [, up(x)n dV is an elastic
invariant integral.

Slips and rearrangements enter this theory if one enquires how two different
given states are connected when all the elastic invariant integrals match in the
two states. It is clear that if the two states are elastically related, then these
integrals match; the point is that there are other changes of state which preserve
the integrals which are not elastic deformations. It is shown in PARRY [14] that
these changes of state can be interpreted as slip in surfaces (say) where lattice
vector fields are constant. Also there is some compatibility requirement on states
that allow slip (partial integrability). Again in [14] it is shown that if there is a
non-elastic change of state, from 2 = {d,(-), 2} to 2’ = {d}(-), 12}, preserving
the integral invariants, then

(3.7)  VA(@*-d¥)=0, wn=vn/, VvA(@d*-d¥)=0,

whenever
ab ab
(3.8) UE}'E{I,S?(-), (dc-V)S?(-); a,b,c=1,2,3}.

In fact these last equations (3.7) are necessary and sufficient that all integral
invariants match in the two states X, X’. I do not discuss the derivation of
these equations here, nor the requirement that X', X' are defined over the same
region 2 (this is not a restriction, in fact). In [15] I use a theorem of Cartan,
in a form quoted by OLVER [12], to derive abstract properties of states X which
are such that (3.7) has a nontrivial solution for X' (that is, a solution with
X' # 3. I choose to display the relevant properties of such states, here, only in
the particular case where the nine scalars S /n are constant throughout 2.

THEOREM 1. States X such that (3.7) has a solution X' # X are locally
diffeomorphic to a state ™ which has the structure of a (local) Lie group with
structure constants €;;(S% /n).
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NOTES

1. States &' = {dq(:), 2}, Z™ = {Dg(+), 2™} are locally diffeomorphic if
and only if for each xy € {2 there exists a neighbourhood Ny, of x¢ in {2 and
a diffeomorphism uy, : Nx, — ux,(Nx,) such that D, (ux,(x)) = Vux,(x)da(x),
X € Ny,.

2. I say that ™€ has the structure of a (local) Lie group G with structure
constants s,-jk(Sck/n) if and only if

(3.9) D.(¢(X,Y)) = Vx{(X,Y)Do(X), Y €™,

where ( is the composition function for G, so that if g(X), g(Y) are group ele-
ments corresponding to the parametrization by points X € 2™, then g(¢(X,Y)) =
9(X)g(Y). If one fixes Y in (3.9) and puts {(X,Y) = uy(X), then (3.9) becomes

(3.10) D, (uy (X)) = Vxuy (X)D,(X),

so that X™¢ is locally diffeomorphic to itself. This result could be derived from
[4]; what is new here is the identification of the local elastic deformation which
takes L™ to itself as the composition function for G. States which allow slip,
then, have the Lie group structure given by (3.9). The corresponding dual vector
fields D%(x) are called left-invariant in the Lie group literature, they are the
Maurer - Cartan fields (forms) on the group.

4. Symmetry of crystals with planar distributions of defects

Now I focus on the particular case where
(4.1) d1 =d1($1.$3), dz ——-dz(:c;,:rg), d3:83.

In this case only two of the components of the dislocation density may be nonzero
and they are
(4.2) Sin=-), S%/n=y.

I assume that A\ and u are constant (so that the theorem of Sec. 3 applies), and
I show elsewhere that there is no loss of generality (so far as the subsequent
discussion is concerned) in assuming that

(4.3) d; = ey + ux, dy = es + Ax.

To decide on the symmetry of relevant constitutive functions, I ask if there are
any sets of points naturally associated with these vector fields. One might have
the view that if there is an “atom” of the crystal at the point x, then there
must also be an atom at the point x + d,(x) (by virtue of an interpretation of
the vectors d, as vectors joining “nearest neighbour” atoms, perhaps). However
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this notion does not have appropriate invariance properties, in general, and it is
better to assert that if there is an atom at x, then there is also an atom at x,
where x, is defined by

(4'4) Y == da(Y)| Y(O) =X, Y[ta) =Xa,

where the numbers {1, t2, 3 are to be prescribed. A set of points which is consis-
tent with this interpretation of the vector fields should have the properties:

(i) iterations (4.4) of points in the set remain in the set,
(ii) there is a (nonzero) minimum distance between points in the set.

The numbers {t,} determine whether or not these properties are satisfied. 1
give results just for the simple case where

(45) ,utl = /\tz = 11‘121 f3 =

(more general results will be given elsewhere). In this case, from (4.4), notice

that y = di(y) = e; + uy may be written as (y + u'e;)" = u(y + p'e;), so
y+ute = et (x+pte). Thus (x; + u'e;) = 2(x + p'e;) and in the same

way X2 + A" lez = 2(x + A 'ey). Then, one can show that the set of points
e e, e e

(4.6) S(x)= {y:y=2m(x+—1) +n(—1——2) =k, mezt nEZ},
Iz BeooA I

has properties (i) and (ii) above, and so the rearrangements of S(x) are of interest.
Note that S(x) can be rewritten as

d1 .’E) f d]_(x] dg(x)) e
4.7) S(x ={ :y=2m—+n(——— —==_ meZT, n:Z}.
(47) S@) =1y = i
Let
~ S _d d 5 i M
d; =d; + pv, d; =dz + v, u—,u ! w_‘u 3 (=v)

Then S(x) can also be recast as

(4.8) S{x):{y:y:?mgz(—]:—)+nﬁ—e—;-, me Zt, nEZ},
1

so that the mapping d, — ;:ia gives a rearrangement of S(x), But &,, = Yapds,
where

2 —u/A 0
(4.9) (b = (A/;s 0 0).
0 (A |
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Recalling (4.2), one sees that this symmetry of the set of points S(x) depends
on the dislocation density tensor.

If, now, one seeks to identify symmetries of an objective strain energy density
function
(4.10) w=w(d®*-d®, $%/n),

which have the form d, — v,dp = Hb, notice first of all that d® = (7'T)“bdb, 80
that S% = (y~T)a§¢d(y=1)d and 7 = (dety) 'n. The point of view that has
been taken in this paper suggests that the particular mapping corresponding to
(4.9) be taken as a symmetry of the energy density, as it preserves a relevant
set of points. But for this particular mapping, and for the particular dislocation
density (4.2) one calculates that

(4.11) 5% /7 = §%/n,

so that the symmetry derived by consideration of the rearrangements of the dis-
crete set of points preserves the (continuum) dislocation density tensor (more-
over, the symmetry is independent of the point x which parameterizes S(x)).
Finally, one deduces that the energy density must, at least, satisfy

(4.12) w(d*-d, §°/n) = w(d*-d", §°/n),

where d* = (y~7)%d? and (v) is given by (4.9), which generalizes (2.6) to the
case of a defective crystal.
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