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IN THE MESOSCOPIC theory field quantities are introduced, which depend not only on
position and time, but also on an additional orientational variable, the microscopic
director. The orientation distribution function (ODF) gives the fraction of particles of
a particular orientation. An equation of motion for the second order alignment tensor,
including the influence of electromagnetic fields and of spatial inhomogeneities, is
derived. The starting point are the mesoscopic balance equations of mass and of
angular momentum. A constitutive equation on the mesoscopic level is discussed.
The two balance equations together with the constitutive equation yield an equation
of motion for the ODF. This finally leads to a nonlinear partial differential equation
for the alignment tensor, which involves also the fourth and the sixth moment of the
ODF.

Notations

ST = T CR

mass density,

material velocity,

stress tensor,

acceleration of external forces,

specific density of internal angular momentum,
couple stresses,

couple forces,

orientation distribution function.

1. Introduction

THE DYNAMICS of the orientational order in liquid crystals under the influence
of electromagnetic fields is interesting from the practical as well as from the
theoretical point of view. The most important application is the switching of the
preferred orientation in liquid crystalline devices. There are other experiments,
where a rotating electric field is applied to a thin free-standing film [3]. The
formation of dynamical orientation patterns is observed. In these orientation
patterns the orientational order is spatially inhomogenuous. This importance of
spatial gradients has not been taken into account in previous papers [9, 5] and
will be considered now.
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The orientational order in liquid crystals is described by the orientation dis-
tribution function or approximately, by the alignment tensor of second order.
The aim of the present paper is a derivation of a differential equation for the
orientation distribution function (ODF) and from there, the derivation of a dif-
ferential equation for the alignment tensor. The starting point is the mesoscopic
theory of liquid crystals.

Up to now, the theoretical work on the dynamics of the orientational order
has been based on a Fokker-Planck-equation for the orientation distribution
function [6, 7, 4]. This equation is motivated by physical arguments, but has
not been derived from the basic principles. On the other hand, the mesoscopic
balance of mass yields an equation of motion for the orientation distribution
function (ODF). However this is not a closed equation, as long as the field of
orientation change velocity and the higher order alignment tensors are not given.
In the present paper, an equation for the ODF is derived on the grounds of the
mesoscopic theory.

2. Mesoscopic concept

Liquid crystals consist of non-spherical particles. Here it is assumed that the
particles are rotationally symmetric, with the axis of rotation called microscopic
director n. In all liquid crystalline phases the microscopic directors exhibit a
long-range orientational order, but no (three-dimensional) positional order. The
orientational order can be described by introducing an orientation distribution
function (ODF) (see Fig.1).
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Fio. 1.
The axes of the rotationally symmetric particles are the miroscopic directors.

Their orientations are distributed at random in the isotropic phase, and they
are more or less parallel in the liquid crystalline phases. This corresponds to
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an isotropic orientation distribution function on the unit sphere, or an ODF
concentrated around one direction, respectively. If the orientation distribution
function is rotationally symmetric, the axis of rotational symmetry is called the
macroscopic director d.

This distribution function is defined on the so-called nematic space. The ne-
matic space is spanned by positions z, orientations n, and time ¢. z and n de-
termine the configuration of the rotationally symmetric particle. In all liquid
crystalline phases the ODF is anisotropic, whereas in the isotropic phase it is
a homogenuous distribution on the unit sphere. In the liquid erystalline phase
the ODF can be uniaxial or biaxial. In the nematic phase it is observed ex-
perimentally in most cases to be uniaxial. For uniaxial orientation distribution
functions there exists an axis of rotational symmetry called macroscopic director
d. The anisotropic moments of the ODF are called alignment tensors. They are
defined as

(2.1) (kj_fféﬁ aom nd2

where =7 denotes the symmetric irreducible part of a tensor. Because of the
symmetry of the ODF f(—n) = f(n), only even order alignment tensors are
nonzero. If the ODF is uniaxial, the alignment tensors can be expressed in terms
of the order parameters S*) and the macroscopic director:

(2.2) a®) =5k g .. d
k

for symmetry reasons, and analogously for the even-order moments which are
not traceless:
(2.3) /f z,n,t)n d n=c®d. . .d.
——
k

The second order parameter S is the Maier - Saupe order parameter.

The idea of the mesoscopic theory is to define fields on a higher-dimensional
domain, in contrast to the Ericksen- Leslie theory, which introduces an addi-
tional macroscopic field (the macroscopic director d). So-called mesoscopic fields
are introduced, which are fields of physical quantities defined on the nematic
space, i.e. depending not only on position and time, but also on the microscopic
director (the orientation). For instance, the mesoscopic mass density p(z, n,t) is
the mass density of particles of the particular orientation n Mesoscoplc ﬁelds
are denoted by a mark ~. Macroscopic fields are obtained from the mesoscopic
ones by avaraging with the ODF. The ODF gives the fraction of particles of
orientation n:

o(z,n,t)
24) f@ny =225
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For the mesoscopic quantities, the balance equations have been derived [1, 2].
From the mesoscopic balance of mass one obtains for the ODF in the case of an
incompressible fluid:

(2.5) L GV + Vi luf) =0

¥ is the material velocity of particles of orientation n. u is the orientation change
velocity. It is tangential to the unit sphere. V,, denotes the covariant derivative
with respect to the orientation variable. The last term on the left-hand side of
Eq. (2.5) is the flux in orientation space. It expresses the fact that the fraction
of particles of orientation n changes if the particles change their orientation (see
Fig. 2). The orientation change velocity u is tangential to the unit sphere.

u

.....

3. Balance of spin and simplifications

The mesoscopic balance of spin reads:

0ps T N
6y B4v (- (axD)") + Ve (@ud) =g: 1+ 20

')

The symbols are: §: mesoscopic specific spin density, g: couple stresses (V-_f_l
are short-range forces acting on the orientation), g mesoscopic stress tensor, g:
couple forces (long-range forces acting on the orientation). Equation (3.1) shows

that the antisymmetric part of the stress tensor produces the spin.
3.1. Approximations

In contrast to the previous work [9], the system is not assumed to be uniform.
The following simplifications are made:

-~

5]
1. The spin is stationary: o= 0.

ot
2. There is no material flux: ¥ = 0. In the case of freestanding liquid crystalline

films in a rotating electric field, there are experimental hints that there is no flow
of material [3].
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Then the spin balance (3.1) simplifies to
3.

—
o

) uVai=¢:i+onx3g+v- (nxf);

)

Ili:l>

and g are constitutive quantities. They depend on the variables in the state
pa.c e (see below) in a material-dependent manner. From Eq. (3.2) we see that

@ s

T
: £+ onxg+V- (ﬂ X g) vanishes if V,,§ = 0. Therefore we can write down
constitutive equation of the form

o Him

e i -
(3.3) e:i+nxg+V- (gxg) =3G-V.3.

The orientation change velocity u is a solution of the stationary spin balance
(3.2) if
(3.4) u=P / 4

It has been taken into account that u is ortho g onal to n, with the projector
P onto the space orthogonal to n (see Eq. (3.4)), because u = n, and n is a unit
vector. -

For the mesoscopic quantity G we make a constitutive assumption.

P'Q: :ﬁ nn

4. Constitutive equations

In order to make a constitutive assumption it is necessary to fix the domain
of the constitutive functions, i.e. to choose the state space. The state space has
to be a mesoscopic one, because we are dealing with mesoscopic constitutive
functions. It also has to include spatial gradients, because orientation patterns
are inhomogenuous in space. The electric field E is also included. It is chosen
here as

(4.1) 2= (27,802 Vg 2,22 722 1),
ool ) e o
here T is the temperature. It includes macroscopic (T', E, g, Va, VVa) and meso-
g : Vo VVp Vng : . :
scopic variables (9, — 5 @ '3 . Especially the macroscopic quantity,

the second order alignment tensor g, has been included in the state space. This
inclusion of an integral quantity is necessary, because the action on particles of
one orientation depends not only on particles of similiar orientations, but also
on particles of very different orientations.

Then a representation theorem for G, linear in all derivatives and quadratic
in E, gives:

(42)  u=pP-G=pV,lng+P- (Bsg+ fea-a+ Boa-nn-a+ BEE

+ PBsnn : VVa + 510%?“'? +Aun-VVa-n + fann : g) ‘0.
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Here it has been taken into account that the orientation change velocity must
be an even function of n
(4.3)

The coefficients 3; are functions of the macroscopic mass density o(z,t) and the
temperature T'(z, t).

u(—n) = —u(n).

5. The equations of motion for the orientation distribution function and
for the second order alignment tensor

The second tensorial irreducible moment of Eq. (2.5) reads

a [ e |
61) 5 [fEE @tV [0 dnt [ 00 Vo (fu)dn=0.
52 s? 2
The first two terms are derivatives of the alignment tensor. The third term is

integrated by parts using the Gauss theorem on the unit sphere. The resulting
equation reads:

(5.2) Q&_; +v-Va = 9g = ffu-Vn( n)d’*n.

In our case we have v = 0. Then inserting Eq. (4.2) and integrating the first term
by parts, we obtain:

da

69 F-onaras(voe)™" + ((a+50)4)

—2 (é+ﬁmVV) I/Mfdzﬂ
52

symm
+2(B:-/m_11fd2n)
32

-2 ((ﬁs + f11)VVa + ﬁwg_q) 3 /nnnnnnfd2n,

$2
where (...)*™™ denotes the symmetric part of a tensor, and we have introduced
(VV@)Z_H := Vi Via;;. It has been taken into account that

(5.4) Vain=P=¢§-nn,

and we have introduced the abbreviations

(5.5) A := Bsa + fea-a + HEE,

(5.6) B = (/33 (VVg)T + f11VVa + ﬁug) 3
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The higher moments f nnnnfd’n and / nnnnnnfd®n can be expressed by
52 52

the second order one using the closure relation, which can be derived using the
principle of maximum entropy [8]. This derivation of a closure relation will be
published elsewhere.

6. Conclusions

Starting with the orientational balances, we have derived a Fokker - Planck
type differential equation for the orientation distribution function (ODF). The
special form of this equation was obtained under several assumptions mentioned
in Subsec.3.1. Because the second order alignment tensor, which is the second
moment of the orientation distribution function, enters this equation, the equa-
tion for the distribution function is an integro-differential equation. Taking the
second moment of this equation, a nonlinear partial differential equation for the
second order alignment tensor is obtained. The orientation distribution function
is hardly experimentally accessible, and the second order alignment tensor is the
most important quantity from the experimental point of view. The fourth and
the sixth moment of the ODF enter the equation for the second order alignment
tensor. Closure relations expressing these higher moments in terms of the second
one can be derived by applying the principle of maximum entropy on the phase
space. The entropy is maximized under the constraints that the phase space
averages of the fields of mass density, internal energy density, spin density and
second order aligmnent tensor are prescribed at every z and ¢.

In most cases the ODF is uniaxial and the alignment tensor can be expressed
by the scalar order parameter S and the macroscopic director d. For this uniaxial
case, coupled differential equations for S and d can be derived.
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