Arch., Medh., 50, 3, pp. 549-558, Warszawa 1998
FIFTY YEARS OF THE ARCHIVES OF MECHANICS

Random field models and scaling laws of heterogenous media
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IN MANY PROBLEMS of solid mechanics (e.g., stochastic finite elements, statistical
fracture mechanics) there is a need for resolution of dependent fields over scales
not infinitely larger than the microscale. This task may be accomplished through a
“meso-scale window” which becomes the classical Representative Volume Element
(RVE) in the infinite limit relative to the microscale. It turns out that the material
properties at such a mesoscale cannot be uniquely approximated by a random field
of stiffness/compliance with locally isotropic realizations, but, rather, two random
continuum fields with locally anisotropic realizations, corresponding respectively to
Dirichlet and Neumann boundary conditions on the meso-scale, need to be introduced
to bound the material response from above and from below. We discuss statistical
characteristics of these two mesoscale random fields, including their spatial correla-
tion structure, for anti-plane elastic response of random two-phase composites with
Voronoi geometry at the percolation point. Particular attention is given to the scal-
ing of effective responses obtained from both conditions, which sheds light on the
minimum acceptable size of an RVE.

1. Does there exist a locally isotropic, inhomogeneous elastic continuum?

EVERY SOLID MATERIAL possess a certain microstructure, whose complexity is
very often characterized by a geometric and physical randomness of basic con-
stituents — typical examples are polycrystals, composites, fibrous, cellular, and
granular media. In studying mechanics of such materials one typically introduces
an approximating continuum model which relies on a so-called Representative
Volume Element (RVE). The constitutive properties — tensor C'f}L = CH - of
the RVE are usually being calculated either by a method of bounds (e.g., of
Hashin - Shtrikman type) or by a less rigorous, but sometimes more convenient,
effective medium theory (e.g., a self-consistent model); excellent reviews of these
topics are provided in [1, 2, 3, 4]. The resulting constitutive response is determin-
istic, as it is tacitly assumed that the typical scales of variability of macroscopic
stress, strain, and displacement fields are much larger than the RVE size.

Aside from this classical category of studies in micromechanics, there has been
developed for the past two decades a subject area of Stochastic Finite Elements
(SFE) [5, 6, 7], which aims at the inclusion of microscale material variability in
the solution of boundary value problems set on scales much larger than the length
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scale d of the microstructure. In SFE the microstructural variability is accounted
for by simply assuming perturbations lej“ to be present in the Hooke’s law

Oij = C'.,-.-H(x.w)sg._; 3 e B wefl,
(ijm) + C;jk.i (x.w}‘

(1.1)

Il

Cijki(x,w)

In other words, Cjji is taken as a random field over the material domain B;
here w denotes a realization from a sample space 2. In fact, typically a locally
isotropic continuum is being assumed

(1.2) Cijii(x,w) = A(x,w)dij0n + p(x,w)(dikdji + dirdjx),
where A and p are the Lamé constants. Let us note here that the Statistical

Fracture Mechanics [8] is another, yet related, area whose analyses often require
random field models.

Fic. 1. A close-up of a two-phase material with a Voronoi mosaic microgeometry is
shown in (a), and a larger sample with 250,000 grains at volume fraction 50% is
depicted in (b), where an arbitrary window of length scale L x L is drawn. There

are, on average, ten pixels per one Voronoi cell in (b).

The above considerations lead us to a basic issue of the dependence of effective
Hooke$ law on the size L of a so-called window, such as shown in Fig. 1. Here we
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introduce a nondimensional parameter, relative to the grain size d,
(1.3) og=-

to quantify this scale dependence.

It can easily be inferred from Fig.1 that fluctuations are present for any fi-
nite window, but as its size tends to infinity, they die out to zero — this is the
classical, deterministic, continuum limit § — oo, in which the RVE possesses a
statistical representation of the microstructure with all the typical microhetero-
geneities. Below this limit we have a random field problem: Cjjz(x,w, d) has to
be described statistically. The question is: how do the statistics of effective mod-
uli behave as a function of 67 Furthermore, as shown in our previous papers [9,
10, 11, 12] and discussed in Sec. 2 below, associated with the scale dependence of
Cijki(x,w,d), there is an interesting issue of non-uniqueness of the effective con-
stitutive response, and, in order to bound the latter rigorously, one can choose
either essential or natural boundary conditions. In fact, according to the Hill's
prescription [13] the relations between volume average stress and strain become
the same in the § = oo limit regardless of which of these two conditions have
been used. Let us note that this is different from a methodology due to DRUGAN
and WILLIS [14].

We note here that the problem of determination of the RVE received consid-
erable attention in the field of porous materials [15]. In the terminology of that
reference, our window would be called an Arbitrary Volume Element, the vol-
ume being equivalent to a window's area in two dimensions (2 — D). However, as
shown in [12], connectivity of a soft phase versus a stiff one plays a very impor-
tant role in the approach to the RVE: a matrix with rigid inclusions approaches
the RVE limit quite rapidly (6 < 10), while a matrix with very soft (hole-type)
inclusions requires windows of the order of several hundred hole diameters to get
there. This result motivates the setting of our present study in two-phase Voronoi
mosaics, where, by varying the volume fraction of one phase versus another, we
can go from a situation of a disconnected stiff phase embedded in a matrix of a
soft one, through a system of percolation of both phases, up to a situation of a
soft phase being disconnected in a matrix of a stiff one. In this paper we discuss
scale dependence of effective moduli and their statistics in the most challenging
regime: percolation point.

2. Scale-dependent hierarchies of bounds on effective moduli

In this section we focus on 2 — D, two-phase microstructures of linear elas-
tic materials in antiplane shear. The microstructural geometry is specified by a
Voronoi mosaic in which each cell is being occupied by either phase 1 or 2 ac-
cording to a probability equal to the global volume fraction, which is chosen at
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I

50%, Fig. 1. This is the percolation point because the dual Delaunay network is
six-coordinated on average (i.e., each Voronoi cell has a mean of six neighbors).
The Hooke's law of either phase (1 or 2) is given by

(1) oi=Cyej i,j=12, Cij=CW8; or CH4;,
where, for simplicity of notation, we denote
(2.2) oi = 043, £ = €43, t,j =1,2.

On the microscale, the governing equation of this piecewise-constant material is

2 2
(2.3) C (%+%‘-) =0, C=CY or C®, u=us.
1 )

The isotropy of both stiffness tensors C*) and C®) in (2.3) leads to a so-called
contrast a = C?) /C)| sometimes also called a stiffness mismatch; without loss
of generality we assume « > 1. Figure 1 depicts just one realization B(w) of a
random medium, which, as is commonly done in mechanics of random media, is
taken as a set B = {B(w); w € 2}.

Let us note that there are several other physical problems equivalent to
anti-plane shear by virtue of well known mathematical analogies — for exam-
ple, in-plane conductivity. Also, the microstructure chosen here may be applied |
to model a range of different materials - examples are offered by duplex steels l
[16] for a finite o, or porous materials [15] for an extreme a = 0 or cc.

The effective moduli for a finite window domain of scale § sampled in our
material can be defined in several ways. Here we choose an approach based on
an interpretation of a Hooke's law as one in which either a uniform strain E? or
a uniform stress org-' is prescribed. In the first case, we should choose essential (or I
displacement, Dirichlet) boundary conditions while in the second case, we should
choose natural (or traction, Neumann) boundary conditions. The first setup is

(2.4) i = CHey under  u(x) =eJL; Vx€ 0B,

where @;; id the resulting mean (volume average) stress, and which leads to an

effective stiffness C§. The second setup is

(2.9) Ty = S:-;o? under i(x) = o_?nj(x) Vx€dB,

where &;; is the resulting mean (volume average) strain, and leads to an effective

compliance S§. Determination of either tensor, C§ or S}, requires three tests.
For any realization B(w), a window’s response on the mesoscale (4 finite)

is, under these definitions, nonunique - because Cj; # (5’:-';;)‘1 almost surely -

and anisotropic. Thus, the answer to the question posed by the title of Sec. 1
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1s negative. However, considering the ergodicity of the Poisson point process
underlying our two-phase microstructure, it can be shown from the variational
principles [11, 17, 18], that the ensemble averages of these two tensors provide,
with the increasing scale §, an ever tighter pair of bounds on C*f

(26) CR=(sR)=(sp)! < (83)! < (8)!
< eT<{ohziGhcloly=¢" Vi<

B0
c
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F1G. 2. Hierarchies of bounds on effective anti-plane moduli C§ and S} of the
two-phase microstructure of Fig. 1 at C*) = 1 and contrast a = 100.

In Fig. 2 we show this hierarchy for our two-phase Voronoi composite at con-
trast o = 100 at 50% volume fraction of either phase. Although it is the perco-
lation point for this system — the most challenging regime in random systems —
the scale (i.e., §) and contrast (i.e., «) dependence of both tensors follow, with
very high accuracy, the laws first found for 2 — D Bernoulli lattices [11], namely

(2.7 (C§) = ag + ay exp (azd %), (S2) = by + by exp (626—531:!) ‘

Indeed, the contrast dependence in (2.7) has been verified for o = 10, 102, 103,
and 10%.

The probability distributions of C§ and 8} that are involved in the hierarchy
(2.6) are now assessed in terms of the statistics of their traces and radii of the
corresponding Mohr’s circles; the radius is, of course, defined by R = C12 max =
\/(C'u — C)%/4 + C}, . Figures 3 and 4 display, for five scales 4§, these statistics
for tensors C§ and Sj, respectively. They have been obtained by solving, through
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volume fraction 50%, C(*) = 1, and contrast a = 100.
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a computational mechanics method, boundary value problems for a number of
two-phase Voronoi composites B(w) of the set B, all being generated in a Monte
Carlo sense.

Note that while the traces have asymmetric distributions, their character
is very similar for both tensors. The Mohr's circles’ radii have even stronger
skewness, and their coefficient of variation (COV) is practically constant with
the changing scale: COV = 0.5 £ 0.05; this holds again for both tensors. Also
shown in Figs.3 and 4 are Beta function probability density fits to the traces
and radii, which, as discussed in [12], are very satisfactory for other types of
composites as well. This latter reference also gives a discussion of the spatial
correlation structure of random fields C§ and Sj.

These results provide a stepping stone for a stochastic finite element study
of macroscopic response of a material with such a microstructure [19], where,
following the approach developed earlier [20, 21], we recognize our meso-scale
window to play the role of a single finite element.

3. Closure

It should finally be noted that there are other ways to define effective meso-
scale responses. First of all, besides (2.4) and (2.5) one could consider mixed
(displacement-traction) boundary conditions [22], which would result in some
intermediate response. Next, by appropriately modifying the microstructure in
the boundary zone through an introduction of a meso-scale periodicity, one could
look at the displacement-periodic and traction-periodic conditions. A comparison
of all the above cases, in the setting of matrix-inclusion composites, has recently
been conducted in [23]. Other possible approaches include a homogenization
formulation, and nonclassical (e.g., nonlocal) models. In particular, considering
the presence of the grain-type microstructure, we face a question whether a
classical or a micropolar continuum is more appropriate. A forthcoming study
[24] outlines the determination of effective micropolar moduli, which thus sheds
light on a heretofore enigmatic Cosserat characteristic length.
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