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On effecting averages and changes of scale
via weighting functions
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A.lI. MURDOCH (STRATHCLYDE, GLASGOW)

WEIGHTING FUNCTIONS can be used to derive continuum equations of balance from
molecular considerations, and to obtain equations governing fluid flow through porous
media. The methodology of such (scale-dependent) averaging is outlined, and phys-
ical implications of specific choices of weighting function are discussed.

1. Introduction

IT 1s THE PURPOSE of this note to indicate a procedure by which concepts and
governing equations of one description of material behaviour can be related to
those of a “coarser” description of this behaviour. The methodology employs
weighting functions, and is here exemplified in two contexts. The first concerns
the precise derivation of continuum equations of balance for a material system
from a microscopic description in which molecules are modelled as interacting
point masses. The second involves fluid flow through a porous body. Starting
from a small-scale description in which pores are manifest, and flows therein
are governed by the Navier - Stokes equation, a corresponding equation is de-
termined for a large-scale description (wherein all fluid-related fields are defined
throughout the region occupied by fluid and porous body: it is at this scale that
Darcy’s “law” may apply).

The transition from the discrete viewpoint to its continuum counterpart is
treated in Sec.2. A discussion of the basic physics associated with different
choices of weighting function is presented in Sec. 3. Porous body considerations
are addressed in Sec.4. Some applications of the results of Secs.2 and 4 are
outlined in Sec. 6.

2. Continuum relations from a discrete model

Consider a material system M of distinguishable molecules, modelled as a
system of interacting point masses labelled P; (¢ = 1,2,...,N), whose masses,
locations, and velocities at time t are denoted by m;, x;(t), and v;(t), respectively.
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The mass density distribution appropriate to choice w of weighting function is
0w, Where

N
(2.1) ow(x.t) := Y mw(xi(t) — x).
=1

Here w assigns greater contributions to the sum from particles near the geomet-
rical point x than those far from x: more details will be discussed later. Holding
x fixed,

9o N N
9 pit g X — ; A
(2.2) 5 gm,Vu Vi gmlvxw.v,
N
= — Zmidivx{viw} = —divpy,
i=1
where
N
(2.3) Pulxt) = Zmivi(t)w(xi(t) - X).
=1

Defining the corresponding velocity field v,, (wherever p,, # 0) by
(2.4) Vu = Puw/0w

yields, from (2.2) and (2.3), the continuity equation

(2.5) 00w /0t + div pyvy = 0.

In the foregoing the only restriction upon w is that it be differentiable: to ensure
spatial smoothness of g, and v,, it should be of class C'. To make physical sense
it is necessary that

N
(2.6) / 0w = total mass = zmi.

all space i=1

This requirement, in the case of M consisting of a single particle, mandates

(2.7) / B

all displacements

The normalisation condition (2.7) suffices to deliver (2.6) in general.
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Linear momentum balance is obtained by considering the motion of P; in an
inertial frame. This is governed by

d
(2.8) > fie+bi = —{mvi}.
: dt

Here f;; denotes the force exerted upon P; by Py, b; the resultant force on P; due
to external agencies, and the sum is over all £ # . Multiplication of each term
by w(x;(t) — x) followed by summation over all i yields (see [1] for details)

(2.9) fo+bu = o-{ouvu} +div {Du + ouva ® Vi)
Here
N N
(2.10) fu(x,t) ==Y 3 fie(t)w(xi(t) — x),
i=1 ¢=1
e
(2.11) by(x,t) = Z b (t)w(x;(t) — x),
i=1
and
N N
(2.12) Dy (x,t) ==Y mi¥%i(x,t) ® ¥i(x, t)w(xi(t) — x),
i=1
where
(2.13) Vi(x,t) := vi(t) — vu(x,t).

Using a theorem due to NOLL [2], the existence and explicit form of a tensor T
such that the interaction force density

(2.14) b =divly
follows from very mild restriction on the decay of f;; with separation of P;, Py

(satisfied quite generally by non-ionic molecules). Equations (2.9) and (2.14)
yield the usual form of balance

(2.15) divT, + b, = gg{ngw} + div {0y Vw @ vy },

where the stress tensor

-~

(2.16) =T —Dy.

http://rcin.org.pl



534 A.1I. MURDOCH

In particular, (2.16) demonstrates the separate contributions to stress associated
with interactions (T,) and momentum transport {—ﬁw). Further, the spatial
smoothness of each of the continuum fields p,;, vy, £, by, D,, and div T,, is seen
to be precisely the same as that of w.

Energy balance is obtained by scalar multiplication of (2.8) by w(x;(t) —
x)v;(t) followed by summation over all i. A detailed discussion is given in [1]
wherein further time averaging is effected, so yielding field values in terms of
local space-time averages of molecular quantities.

The foregoing may be compared with the seminal work [3] in which continuum
field values were identified with space-time averages of ensemble averages (see
[4] for comparison of the two approaches).

3. On the nature of the weighting function

The results obtained in Sec.2 are only formal, since the only restrictions
placed upon the weighting function were its C' smoothness and normalisation.
Some physically sensible criteria and possible choices are now listed.

1. Defining

3
w(r) := yrc) if ri=|r| <&,

(3.1) .
w(r) =0 if |r|]>e¢

it is clear that w is normalised, and g, (x, t) represents the mass of those particles
lying at time ¢ within a sphere centred at x with radius ¢ divided by the volume
of this sphere. This choice is simple, intuitive, and explicitly scale-dependent.
However, wherever |r| = £ this function is discontinuous. It is a simple matter
to “mollify” w over an interval (¢, + §) in such a way that w is of arbitrary
given smoothness everywhere, with §(> 0) arbitrarily small (see [1], p.160).
Accordingly the above physical interpretation of p,(x,t) is essentially unchanged
for small enough choice of 4.

2. The spherical averaging region associated with choice (3.1) can be gener-
alised to that of a “cell” whose geometry is appropriate to the system of interest.
For example, near planar interfaces and boundaries it is useful to consider rect-
angular box-shaped regions with one pair of faces parallel to the interface or
boundary in question. More precisely, in such case w is a mollified version of a
multiple of the characteristic function for the region: the factor approximates
the reciprocal of the volume of the region, is mandated by normalisation, and
depends on the thickness of the mollifying envelope.

3. Values of fields 0., pw, fi and by, are biased local volume averages of molec-
ular quantities, and may be compared with appropriate measurement values.
Since actual local measurements reflect local space-time averages (no measure-
ment is either instantaneous or localised in a region of zero volume measure), it
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is time-averaged versions of these fields that are relevant. Further, different mea-
suring devices associated with the same physical quantity are to be expected to
deliver different “sampling” of molecular behaviour and as such may be identified
with different weighting functions (both in space and time). Such considerations
accord with the practical problem of calibrating different instruments which pur-
port to measure the same quantity.

4. Averaging via weighting functions may be repeated, by defining the w-
average, f,. of a spatial field f via

(32 fo®) = [ F)wly -x)dy.
all space

This accords with microscopic averages computed in Sec. 2 upon writing discrete
(that is, purely microscopic) quantities in terms of distributions. For example, the
microscopic mass density (at any given instant: time-dependence is suppressed)

N
(3.3) Omic(X) = Zmia(xf ~ X},
i=1
where § denotes the three-dimensional Dirac distribution. Clearly, from (3.2),

(3.3) and (2.1),

(3.4) (emic)w = Ow -

Upon repeating a w-average it is natural to compare (fy), with f,,. If one
requires that repeated averaging yields nothing new, that is if

(35) (fw)w == fws

then the form of w may be determined (see [1], p.161). In unbounded domains
the convolution format of (3.2) implies that the Fourier transform w(k) of w
should satisfy

(3.6) w(k)? = w(k).

Thus W(k) = 0 or 1 and the simplest (and most physical) choice is for a
wave-vector “cut-off”, say at |k| = e~! for some choice of length scale . That is,

(3.7) wk)=1 if k|<e?, wk) =0 if |k|]>e

In such case it follows that

(3.8) w(d) = ‘2?2? {sin (g) - (g) cos (g) } .
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where
(3.9) d:=|d|.

The analogue for a bounded rectangular region of dimensions 2L, x 2Ly x 2Ls
yields truncated (at wavelength €) multiple Fourier series which are delivered by

i e 1 f[ sin ((N;‘ + %) d:‘)

= 8LiL:ls sin(d;/2) :

g=]
where N; is the integral part of 2L; /¢ and d = (d;, d>, d3). A consequence of using
(scale-dependent) weighting functions of form (3.8) or (3.10) is that averaging

at scale ¢; followed by a further averaging at scale 5 yields the same result as
merely averaging once at the larger of the two scales.

4. Flow through a rigid porous body saturated with an incompressible
fluid

Fluid flow through porous media is best described in terms of fields which are
defined both in the region occupied by the fluid and that occupied by the porous
body itself. Such an “immiscible mixture” approach (see [5]) derives from working
at a scale g5 large compared with typical pore size and structural dimension. It
is instructive to motivate the relevant equations by examining the actual flow in
the pores, observed at a scale 1, say. The £2-scale equations may be obtained by
averaging the (£;-scale) equations which govern pore flow, at least in principle.
For incompressible fluid saturating pore space such a procedure is simple and
elucidating.

For a Newtonian fluid, flow is governed by the Navier - Stokes equation

ot

Here P denotes pressure, u viscosity, gg mass density, p momentum density, and
g gravitational acceleration. The w-average of any field f associated with the
fluid is given by (3.2) where f is considered to be zero outside the region &
occupied by fluid at scale €; (more specifically, £¢ is the support of the &;-scale
mass density function gg). In averaging individual terms of (4.1) it is possible to
relate averages of derivatives to derivatives of averages (see [6]). In particular,
upon suppressing time-dependence and writing

1.
(4.1) PR S Ty
20 2o

(4.2) fi=fu

it turns out that

(43 VP() = (VP)x) + [ Pn@uly —x)ddy,
S(x)
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where
(4.4) S(x) := 05 N support (w(. —x)),

and n is that unit normal to the pore boundary 9&; directed out of the fluid
region &£;. If w corresponds to choice 1 of Sec. 3, then S(x) denotes that portion
of the pore boundary within a sphere of radius € + 4 centred at x. In this context
averaging is often effected over so-called elementary representative volumes (see
[7]) so that w corresponds to such a choice of “cell” (see choice 2 of Sec.3).
Further, noting that p vanishes on 9€; (this is the standard “no slip” hypothesis),

(45) Zp(x) = (AP + [ Vp)nly)uly - x)ddy
S(x)

and

(4.6) div (p ® p) = (div(p®p)).

Finally,

where v denotes the porosity field.
Multiplication of (4.1) (evaluated at point y) by w(y —x) and integrating over
all space yield, upon invoking results (4.3)-(4.7),

:, 3 1
(48) VP4 EAP gD e prg=2 s v (——TJ@‘ﬁ).
20 ot ooV
Here
(4.9) D= 587 —pop
; = PGP - _PEP

is the extra contribution to the pressure tensor P1 associated with re-scaling,
and

(4.10) £7 .= f (—Pl i gﬂvp) nw dA
0
S

denotes the force density associated with the effect of the porous body on the
fluid. (It is of interest to note that if the fluid is at rest and the pressure P
constant then /P reduces to PVv.)
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It is useful in this context to introduce the volume flux vector

(4.11) Q= 05"p-

Writing

(4.12) £/ .= —/in dA
S

and

(4.13) uf P .=fr _§Ip

and making the constitutive assumption
(4.14) f/7 = K} (V/ - VP),

where

v/=ple=v""Q
denotes the ep-scale fluid velocity field and V? the corresponding porous body
velocity field, (4.8) becomes

(4.15)  div(-P1+ D)+ pAQ+ /7 — uK'Q + govg
1
=i (%—?eriv(;wq)).

Here the rigid body has been considered stationary (VP = 0) and K denotes
the permeability tensor. For steady, uniform, uniaxial flow through an isotropic
(K = k1) homogeneous (k and v constant) body, (4.15) reduces to

(4.16) div(-P1-D) + /7 - %Q + oovg = 0.

If D = P1, and £/? and oovg are neglected, then (4.16) reduces to Darcy’s “Law”
(4.17) n=-tq,

where II denotes the pressure gradient V(P + P).

5. Applications

The discussion of Sec.2, when extended to take account of a further time
averaging (at scale A, say: see [1], p.171) enables the notion of “reproducible
macroscopic behaviour” at a specific pair of length-time scales to be made pre-
cise [8]. Further, such considerations form the basis of a Statistical Mechanics
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ON EFFECTING AVERAGES AND CHANGES OF SCALE 539

approach [8, 9] to non-equilibrium macroscopically-reproducible behaviour via
the definition of a “macroscopic state” at a given length scale, together with
projection operator methodology.

The averaging procedure for a porous body outlined in Sec.4 draws atten-

tion to the existence of a highly inhomogeneous interfacial region located at the
boundary of the body, and facilitates detailed analysis of uniaxial flow over and
within a rectangular slab of porous material subjected to a constant, externally
applied, pressure gradient. Such a study elucidates the status of the ad hoc slip
boundary condition employed for such flows introduced in [10]: see [6].
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