Arch. Mech., 50, 1, pp. 53-81, Warszawa 1998
FIFTY YEARS OF THE ARCHIVES OF MECHANICS

A thermodynamical description of the martensitic
transformation

A model with small volume of averaging

J. KACZMAREK (GDANSK)

IN THE PAPER a thermomechanical model of the martensitic transformation in a
single crystal is introduced. The model is related to a small volume of averaging.
It means that detailed phenomena such as motion of single interfaces, internal ro-
tations towards habit planes, separate mechanisms of dissipation or nucleation of
different martensite variants can be discussed in the framework of the model. Such
a description is attained mainly by means of the introduced free energy. Therefore,
the construction of this function is a central part of this paper. The free energy
depends on the Lagrangean strain tensor which describes the dominant part of de-
formation, relative displacement vectors for modelling shuffles and variables which
are introduced with the aid of material directors. With the help of the last variables,
an internal rotation is discussed. Furthermore, higher gradients of deformation are
also taken into account. A general thermodynamical formulation for this small scale
model is considered.

1. Introduction

THE MARTENSITIC TRANSFORMATION appears in many alloys, organic mate-
rials and even in living organisms. This transformation is diffusionless and is
characterized by dominant shear strain. In case of moving interfaces between
martensite variants or between martensite and austenite, such a transformation
leads to shape memory phenomenon [1].

In general, the martensitic transformation creates complicated microstruc-
ture. In the case of moving interfaces, the microstructure has its own complex
dynamics. This dynamics becomes still much more complicated when thermal
processes are taken into account. They cause the stabilization martensite phe-
nomenon. The stabilization can considerably influence temperatures of the trans-
formation.

The martensitic transformation is a subject of intensive investigations in met-
allurgy. Such a transformation is the main mechanism of the shape memory phe-
nomenon [1]. Increasing interest in this phenomenon appears in mechanics for the
last twenty years. This is possible owing to results which were attained in metal-
lurgy. Very helpful in mechanical description are, for instance, crystallographic
structures of CuAl [2] or CuAlNi [3] alloys, positions of their habit planes or
forms in which their martensitic structures appear in the material.
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Miscellaneous points of view are presented in mechanical description of the
martensitic transformation. One-dimensional models are discussed in order to
give a qualitative mechanical description for some special behaviour of a material
(see for instance [4, 5]). There are some models related to a single crystal [6,
7, 8]. A statistical approach is presented in [9, 10]. On the other hand, very
averaged descriptions over the composition of martensite variants and austenite
are discussed in the literature, see for instance [11-16]. They are simpler and
are more applicable.

Complicated behaviour of materials which undergo the discussed transfor-
mation suggests a multiscale approach. Such point of view is presented by the
author of this paper. Consequently, two models should be introduced. The first
one is a model with small scale of averaging. It means that many detailed phe-
nomena are taken into account in this description. There are single martensite
variants, moving interfaces, shuffles which are usually neglected in description of
the martensitic transformation, internal rotations towards habit planes or sep-
arated mechanisms of dissipation. However, such a model is rather complicated
and difficult in applications. Some elements of such a description are discussed
in [17, 18].

The model with small scale of averaging is viewed to be a theoretical and
numerical basis for a more averaged model. The last one would have a reduced
number of variables and more simple constitutive equations which would be
derived from the small scale model. A concept of multiscale approach of this
kind has been discussed in [20]. The program discussed here is too large for one
paper. On the other hand, the model of small volume of averaging is complicated
itself. Therefore, the purposes should be more limited at the moment.

Consequently, the aim of this paper is to introduce a thermomechanical model
of the martensitic transformation related to a small volume of averaging which
takes into account the detailed phenomena accompanied by this transformation.

2. Crystallographic considerations related to the martensitic
transformation

The model of small volume of averaging will be constructed mainly by intro-
duction of appropriate form of the free energy. Properties of the free energy are
responsible for the detailed behaviour of the material in the frame of the model.
However, in order to determine this function, variables which are appropriate
for description of kinematics of the martensitic transformation and some inter-
nal state variables should be introduced. Selection of these variables depends
on understanding the crystallographic properties of the material undergoing the
considered phase transformation.

The crystallographic structure of the martensitic transformation will be dis-
cussed with the help of the CuAl alloy. Properties of this alloy are representative
for a large class of shape memory alloys based on copper.
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A THERMODYNAMICAL DESCRIPTION OF THE MARTENSITIC TRANSFORMATION 55

Let us discuss a process of nucleation of martensite variant from austenitic
structure in a single crystal.

The austenite single crystal has a cubic body-centered structure bee which
is shown in Fig. 1. This structure is also called the 8 phase [2]. A face-centered
structure which is not cubic can be distinguished in the frame of the bce one.
This is marked by a bold line. Furthermore, four planes are displayed by means
of thin lines. They are called basal planes and are connected with the 0Y axis.
We can distinguish in a similar manner next four basal planes assigned to 0X
and next to 0Z axes, respectively. Thus, we have twelve basal planes. Some of
them coincide in the undeformed state of austenite. Thus, in this undeformed
state we have six different basal planes.
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F1G. 1. Structure of austenite for CuAl alloy.

We can distinguish three stages of the martensitic transformation. The first
stage consist in realization of the Bain strain. Let us select, for instance, 0Y axis.
If we apply an extension along 0Y then, the previously discussed face-centered
structure can be transformed into a cubic fcc one. The strain of this kind is called
just the Bain strain.

The second stage of the martensitic transformation is a micrononhomogeneous
shear. This deformation appears on one of four possible basal planes related to the
0Y axis. Micrononhomogeneous deformation of this kind is shown at Fig.2 and
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[110]

F1G. 2. Micrononhomogeneous shear on the basal plane of CuAl alloy.

is connected with shuffles. The micrononhomogeneous shear occurs in direction
d which lies on the basal plane. We have four such directions accompanied by the
0Y axis. They are fixed to point 0 and lie on each of the basal planes and on the
ZY and XY plane, respectively. The shuffles marked by w; and ws in Fig. 2 are
a measure of deviation of atoms from the position indicated by a homogeneous
deformation.

The third stage of transformation considered is a rotation of the hitherto
obtained structure towards a habit plane. We have two possible habit planes
related to each structure obtained in the discussed manner.

In real evolution of the crystal structure these three stages are not separated
so clearly.

Thus, we can obtain twenty four martensite variants. Indeed, we have four
micrononhomogeneous shears accompanied by the 0Y axis and next two possible
rotations. This gives eight martensite variants related to the 0Y axis. Similarly,
martensite variants can be obtained for the remaining axes.

Orientations of basal planes and habit planes are shown at Fig. 3 where no-
tations from [21] are used. Capital letters denote Bain axes. Small letters are
connected with directions of nonhomogeneous shear. Variants which are differ-
ent by rotation are marked by primes at the capital letter.

Possible twenty four martensite variants appear in the material in six self-
-accommodating groups. Consequently, each group has four marensite variants
separated by habit-type or twin-type planes. Four martensite variants organized
in one self-accommodating group are shown at Fig. 4.
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FiG. 4. A selfaccommodating group of four martensite variants in CuAl alloy.

[57]
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3. Kinematical considerations

Crystallography of the martensitic transformation discussed in the last section
suggests the measures of deformation which should be assumed. They should give
a possibility of classification of martensite variants.

Let us introduce a system of orthonormal base vectors b = {b;, by, b3}. Di-
rections of these vectors coincide with axes 0X, 0Y, 0Z as in Fig. 1, respectively.

We introduce also the sets of vectors which define the shear systems connected
with the micrononhomogeneous shears.

Let us consider a vector b;. We assign to this vector two planes which contain
the vector b; and vectors b;, j # i, respectively. Thus, a double index is assigned
to each plane of this kind as I = {i, j}, j # i. The first index is related to the
Bain axis and the second one determines the plane introduced.

With the help of these planes we define vectors djo, @ = 1, 2. They are
unit vectors with their initial points in 0 and lie on the lines which appear
as intersections of plane I with a pair of basal planes related to axis . Their
positions are illustrated in Fig. 6. Pair of vectors {d;i, dj2} determine a shear
system. Furthermore, we create new basis d; = {dn1, dy2,dp x dpa}.

Let e be the Lagrangean strain tensor. Then ej;s = dpjedy; is a measure of
shear strain in this shear system. Vectors dj; and dj indicate possible directions
of shuffles.

Let us notice that structures given on Fig. 5 ¢ and Fig. 5d have the same strain
given by er12. They differ only by shuffles. Thus, the shuffles which are small and
usually neglected in description of the martensitic transformation are important
for distinguishing different martensite variants. Moreover, we can say that during
deformation given by e, a bifurcation between two direction of shuffles appears.

However, qualitative meaning of shuffies is still greater. Namely, the possible
habit planes towards which the structures rotate, depend just on the kind of
shuffles which have previously appeared. Accordingly, the shuffles influence the
kind of internal rotation.

Let us notice that micrononhomogeneous deformation appears as a conse-
quence of complex crystal lattice accompanied by a multicomponent alloy. There-
fore, a natural way of introducing the shuffles follows from multicomponent con-
siderations.

Consequently, let us introduce a set of displacement functions

(3.1) z,(X, t) = {x(X, 1), ya(X, 1)},

where A € A = {1,...,Ny}. It is assumed that the function x is accompanied
by the microhomogeneous deformation assigned to the body, and functions y)
indicate the positions which differ from the homogeneous one. Thus, the relation
between x and y, has the form

=x+E&,.

3.2
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F1G. 5. Evolution of crystal structure during shear strain in the shear system (d,, ds).

€, is an independent variable. However, we have observed that shuffles appear in
d;; or djp direction in the I-th shear system. Let us note that the base vectors dy,
ds2 can be also viewed as material directors which are deformed as d‘}(l = Pd;z,
for @ = 1,2, where F is the deformation gradient related to x.

Taking into account the above remark we can assume that £, = wyd}, or
€\, = wyd},. Then, for instance for @ = 1, we obtain £, = w)Fdp;. Putting
w) = wxdy; we have £, = Fw,.

The gradient of deformation transforms orthonormal vectors dj, into df,
which are usually not orthonormal. In some cases, it is convenient to assume
approximately that d, = Rd;,, where R is a rotation tensor which appears in
polar decomposition F = VR [28]. Taking into considerations (3.2) we can also
write that yy = x + Fwy =~ x + Rw). Such an approximation will be useful in
further derivations.

Let us notice that the approximation Fw, ~ Rw) suggests some constraints
related to the gradient of deformation. However, this approximation appears in
displacement function yy only. Then, the gradient of deformation F related to x
defines y,. As a result of this, constraints are related to y, and finally to w) but
not to F.
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F1c. 6. Distributions of vectors d;, in the austenite structure.

The vector w) is a variable which characterizes relative translation of sublat-
tices. Thus, in the above approximation, it is assumed that the rotation is the
most valid part of the gradient of deformation for kinematics. It characterizes
the change of directions in rotating lattice. In general, relative displacement vec-
tors should depend on the remaining components of the gradient of deformation.
However, such a dependence should not follow from kinematics but from depen-
dence of the free energy on F and wy. This kind of dependence in the equilibrium
case is discussed in what follows.

In general, the relative displacement vector wy has not to be considered as
w) = w)dy; because the last relation is a constraint in fact. Consequently, the
vector w) will be viewed as an independent variable which is convenient for
modelling the shuffles in the free energy.
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The approximations discussed above related to wy have an interpretational
meaning and are applied further during the derivation of equations. It is assumed
that they do not influence integrability of the finally obtained fields. The main
interpretational aspect related to w) rests on elucidating the fact that w) appears
as a result of multicomponent considerations and is not directly related to defects.

Next problem is connected with a rotation towards the habit plane. This
rotation is caused by forces in the material which act in order to fit together
the austenite and creating martensite variants. The habit plane is a plane on
which the mentioned structures are fitted together and which is undeformed. We
may say that the austenite attracts a creating martensite variant until this vari-
ant takes appropriate, energetically most advantageous position in the crystal.
This attraction is accompanied by two habit planes. Thus, a bifurcation process
related to the internal rotation can take place.

The internal rotation will be introduced here with the help of variables which
are defined by means of material directors. Let p; and p be a pair of material
directors which lie on a habit plane. In other words, the habit plane is spanned
by these directors. They transform as pb =Fpg, f=1,2.

The directors are transformed during the martensitic transformation. We try
to describe the forces in the material. Therefore, the discussed variable should
exclude an external rotation. Taking it into account, the following measure of
deviation of directors is introduced:

(3.3) ag=R 7 (F-R)ps=(R'F-1)pg,

where R is an external rotation. At this moment, a problem of separation of
internal and external rotations appears. An idea of this separation is introduced
by assuming some additional auxiliary configurations.

It is assumed that the internal rotation develops only when the shear strain
er12 in the I-th shear system is between the given values e};, and e}j,. This
follows from the fact that the internal rotation appears only if an elastic region
is exceeded. Indeed, in the usual elasticity problems related to such a rotation
are not observed.

Let us distinguish some special configurations. The first one is the reference
configuration which coincides with the natural state of austenite. The second
configuration z, = 24(Xx) is connected with the deformation for which the
strain e}, is attained in a given point of the body. The third configuration
z, = u(zq) is connected with deformation for which the strain ej}, is attained
and the fourth configuration is an actual configuration w;.

Configurations z, and z, are fixed and are different for different points X.
Thus, they are accompanied by retaining in memory the state of deformation in
a given point attained in the past.

The deformation gradients are assigned to the mentioned configurations F** =
[€aN], F* = [20], F*® = [;,] and the total gradient takes the form F =
FEMFSFEQ.
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At the moment we are able to separate internal and external rotations. Let
us assume that deformation occurs in region S, i.e. between the second and third
fixed configurations. Then, an external rotation follows from polar decomposition
F¢¢ = VR. Then, the definition of variable ag is more precise. Let 1s assume
F* = R*U®. In such a case, Eq. (3.3) can be rewritten as

(3.4) ag = R"'(R°U°VR - R)p; .

It is assumed that the internal rotation is identified with R®. It means that in
the S domain only this rotation appears. Thereby, the evolution of tke internal
rotation is viewed as relatively faster than the external rotation in the considered
domain.

Let us note that the definition of variables ag depends on the select.on of vec-
tors pg. In the simplified case it is possible to take into account one director lying
on the rotation axis of the martensitic structure. This axis can be approximately
considered as unchanged with respect to austenite. In this case the aumber of
variables is reduced.

Let U¢ = U*V and Rpg = pg. With the help of this, a variable ag = Rag
is introduced. This variable can also be expressed as ag = (R*U® — 1)pg. With
the help of the last formula we can discuss a problem of existence of the internal
rotation.

The plane spanned on p;, P, is undeformed if

P
(3.5) Up,U°p, = PiP2s
Up,UP, = Poby -
Furthermore, we assume that austenite and martensite are fitted fogether if
ag = 0. It means that

(3-6) (RSUC = l)ﬁl = 0, (RSUC ¥ 1)§2 - 0.

It is known from crystallographic considerations that U, can be interpreted to be
responsible for the Bain strain and micrononhomogeneous shear. On the other
hand, we have obtained in (3.5) and (3.6) nine equations and nine vériables U®
and R®. It is known from crystallographic considerations that for equilibrium
martensite U # 1. Thus, if R® = 1 then Eqgs. (3.6) are not satisfiad. Conse-
quently, there exist R® # 1.

4. Free energy

A model of the free energy plays a key role in the discussed smal-scale ap-
proach. Detailed phenomena modelled by the free energy give eviderce of what
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kind of averaging is used. We have discussed the evolution of crystal structure
during the martensitic transformation. As a result, components of the deforma-
tion measure are introduced in order to describe this process.

Consequently, we take into account the shear strain in separate shear systems,
shuffles represented by relative displacement vectors, internal rotations towards
habit planes which can be modelled with the help of directors. Furthermore, we
observe in Fig. 4 that the interfaces are flat. Such a phenomenon should appear
as a result of mechanical properties of interfaces. Therefore, this fact should also
influence the free energy form.

Accordingly, the most important independent variables of the free energy
were discussed in the previous section. Furthermore, we assume that the free
energy depends on temperature and some internal state variables which will be
discussed later.

The free energy will be introduced with the help of the following program:

1. The skeleton of the free energy is based on geometrical objects distinguished
in crystal structure of austenite. They are:

¢ Bain axes,

o six different basal planes in undeformed state of austenite,

e twenty four habit planes,

e directions of micrononhomogeneous shear.

2. It is assumed that elastic properties of austenite and martensite are known.
The free energy is defined in the neighbourhood of equilibrium of austenite and
martensite as a positive definite quadratic form with appropriate symmetry prop-
erties.

3. The boundary of elastic range for austenite and martensite are given as
five-dimensional hypersurfaces in the space of strain E. In this region the phase
transformation is initiated.

4. The first stage of construction of the free energy consists in defining its
part which depends mainly on the strain tensor.

5. The second stage consists in introducing relative displacement vectors in
order to describe the evolution of shuffles.

6. The third stage consists in taking into account internal rotations towards
possible habit planes.

7. The last stage consists in introducing higher gradients of deformation.

First, the part of the free energy which depends mainly on the Lagrangean
strain tensor e is introduced. As follows from crystallographic considerations,
this part of the free energy should have six minima for martensite and one for
austenite. Furthermore, the elastic properties of austenite and martensite near
their equilibrium position are assumed to be modelled by a quadratic form with
respect to the strain tensor e.

Let F be a set of all strain tensors e expressed in the basis b. Let us assume
that E can be decomposed into the sum E = AU S U ;M of sets which
represents elastic range for austenite, a spinodal region and elastic range for the
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I-th variant of martensite, respectively. These sets are defined as

(4.1) = {¢: Fijxi(e) >0, 1(0, e) C A},
(4.2) M; = {e ; Uu(e) >0, l(enmr, €) C My},
where OF

Fijii(e) = m(e

I(e', ") means a segment with ends €', e”, ey is a strain assigned to I-th
martensite variant in equilibrium. The set S is a domain where Fjjj(e) is not
positive definite. Let us remark that 9S4 = dA4 and Sy = IM;.

Let Fq = cijkieijext be a positive definite form which describes elastic prop-
erties of austenite near the equilibrium point e = 0. Such elastic properties are
real only in some neighbourhood Uy of this point. On the dS4 the free energy
is not positive definite. Thus, the function F 4 should be appropriately mod-
ified in domain A — Uy4. Similarly, a positive definite quadratic form Fpy =
emrijki(€i; — emrij)(ext — enrr) + d which represents elastic properties of I-th
martensite is introduced. Furthermore, we assume that a critical stress as well
as the corresponding strain for which martensitic transformation is initiated is
known. It means that forms of hipersurfaces 854 and dS)s are postulated in E
where the free energy should be semipositive only.

It is convenient to discuss the form of the free energy or, more exactly, the
graph of the free energy as a fiber bundle. The fiber bundle is understood here as
a generalization of Cartesian product of basis manifold and a fiber manifold [30].

Let A; : E — E; be a mapping which transforms the strain tensors expressed
in basis b into the strain tensors expressed in basis d;. Let ey = djjedjy be
a component of strain tensor e; € E;. It is known from previous considerations
that the most characteristic feature of the martensitic transformation is the shear
strain. In the discussed case it is the shear strain in shear system {dp, ds2}.
Accordingly, €12 is just the main feature of martensite variants created in this
shear system.

Let us introduce sets Ny4 = {en12: 0 < en2 < e}y5}, Nis = {en2 : efp <
enz < 6;12} Niv = {enz : efly < ena < ey} and Ny = Nyg U Nys UNIM:
where e},, and ej}, are components of strains such that e; € 954 and ey’ €
BSM; Functions F 4 and F s are exprebbed in the basis d; as F z7(er) = FA )
A7'(er) and Fyys(er) = Fap o Ap'(ey).

Let has(eri2) : 08Sa — flenz), enz € Nia — {0} = Np be a family
of homeomorphisms. Then, Ny can be seen as a basis of a fiber bundle and
f(er12) as a family of fibers. As a result, we consider the elastic domain A =
Ue,penotenz, flenz)} = No x 0S4 as a fiber bundle or, in other words, as
a generalized Cartesian product of Ny and 8S4. The projection in this bundle
acts as w(f(er12)) = er12. We discuss one coordinate representation. Then, the
structural group consists of one element only.
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Let us introduce the following sets in E; x R space:

Bia = {brai2 = {en2, Far(en2)}: en2 € Nra}

and
By = {bimiz = {en2, Fui(en2)}: en2 € Nim}-

Let us consider also the sets Fas = {{er, _F—Allas,q} : ey € 054 = f(eh10)}
and Fye,..) = {{er, Failg(e;n)}: er € f(enz)}. With the help of these sets we
can determine the graph of F 4; as a fiber manifold

(4.3) Fu= |J {buuz, Ff(em)} = Ba x Fas
er1z€No

with projection 7 in the bundle as m(Fj(e,,,)) = braiz.
As it was mentioned previously, F 4 has not an appropriate form because it
is not positive definite on 85 4. Therefore, F 4 should be modified on 4 — Uj.
It is assumed that 0 € Uy, U4 C int A and there exists e;12 which gives U4 =
f(eri2). The idea of modification (4.3) consists in introduction of a modifying

function C such that we obtain from F 4; a new function Fju; in the form

F : iy
(4.4) T _Aflu,, er €Uy
Fuar+0C, e;c A-Uj,.

The graph of the map C' is assumed as

{er, 0}, ef €Ua, ena<en2=N;jaNadU,,
45) C= - ;
{er, Ceyy(er)}, er€ flenz), €n2<enz<ej;,
where the condition ’(F )
0“(Far+C
———(enn) =0
33?12
is fulfilled and F,; is semipositive definite on the whole 95 4.
Let furthermore Bra = {{enz, Far(enz2)} : en2 € Nra} and Fas, =

{{er,(Far+C)}as}: er € 3Sa}. Then, we have defined the free energy Fy; in
the domain A and the graph of this function can be identified with the general-
ized product Byrg x Fys,.

The function Fy; can be expressed in basis b as Fq = Fqy o Af(e). There
are six shear systems I. Such a construction can be carried out in six ways. We
assume that they lead to the same results since we have only one variant of
austenite.

Similar construction will be carried out for martensite variants. Let hasr(en2):
ASmr — flemr), en2 € Niyr—{emn2} = Nimo be a family of homeomorphisms.
Then, the elastic domain for the I-th martensite variant can be expressed as

M = Ue, peNme, 18112, fri(en2)} = Nimo X 9Smi1.
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Let us consider the sots Foasy, = {{er, Fuirilosy,}: er € 0Sur = f(ef}2)}
EI}d FM}f(eng) = {{e;, FM“lfo(enz)} o fo(e“g)}. Then, the function
Fpprr takes the form

(4.6) Fuir= |J  {bima, Fuiglenz)} = Bim x Fosy, -
ern2ENMo

Let us assume that the elastic properties of the I-th martensite are given in
elliptic form only in a set Upsy C int M, and that there exists é719 € Nypo which
gives 0Upm1 = fmir(€r12). Then, a correction function Cprr induces a new form
Fpir as

Fuur, er € Umr,
(4.7) Bigir =
Fyuiup+Cur, e eMi—Uy;p.

The map C)pyr is assumed in the following form:

{e;, 0}, er € Upr,

{er, Curlenz)}, e € flenz), ej3<en2<én:
with the following condition

O*(Fmir + Cur)
36?12

(4.8) Cpmr = {

(e712) =0,

and Fyrry is semipositive definite on the whole dSys.

Let__furthermore Bim = {{ena, Furr(enz)} : enz € Niu} and Fyg,,, =
{{er,(Frmr + Cmr)}osy,} : er € @Sus}. Then, we have defined the free
energy Fyr; in the domain M and the graph of this function can be identified
with generalized product Bry X Fyg,,, -

The function Fysry can be expressed as Fasr = Farpro Af(e) in basis b. Let us
note that an internal rotation can appear. Then, the martensite becomes rotated
with respect to the austenite. As a result of this, elastic constants undergo a
transformation being dependent on the possible rotation. In order to stress this
fact we write Fyy = Farrr(R) o Aj(e). It is assumed that R is not variable at
this place but is fully determined.

The form of the free energy function in the S domain is less precisely deter-
mined. It follows from the fact that we have not too many detailed information
on this subject. Therefore, we assume only general properties for this part of the
free energy. Thus, we assume that the following conditions are fulfilled by this
function:

Fs|n;s = Bis, Fslas, = Falas, Fslosy; = Fmrlasy;
(4.9) 9Fs e 9F4 8&‘ = aFM*"
' de las, de lasy’ Oe lasy Oe l8Sp;’
BZFS\ i @| Bng‘ 5, BEFM;‘
Oede a5y, Oede 1854’ dede 1851 dede 105y’

where Bjg should be postulated.
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General features of temperature dependence are presented by means of plot-
ting components of the free energy c;jx(T), 3Sa(T), C(T), emrijri(T), dSmi(T),
Cumi(T) with temperature. Increasing temperature we can pass from stable

martensite to a pseudoelastic case. It is displayed by conditions %E(eM;) =0in
e

JoF
the first case, and by E(ejw) # 0 in the second case.

Finally, the free energy part Fp which depends mainly on the strain tensor e
has the form

Fyu, EEA,
(410) Fg = FM”{R)OA;, ee My,
Fgis ecS.

Another part of the free energy is related to micrononhomogeneous defor-
mation. We have discussed previously that the shuffles appear in two possible
directions d;; or dj in a given I-th shear system. Thus, a bifurcation process
related to shuffles should be modelled.

Let wy, A € A be the A-th relative displacement vector which can appear in
the I-th shear system. Let us introduce also a function Cy(z), a = 1, 2 which

90 0y =0 and 2-C2(0) > (0. This
az2

function has one minimum in z = 0 and for increasing z it increases up to a
certain determined value.

With the help of Cq, a bifurcation for evolution of wy can be modelled. To
this end let us introduce a function of variable w) given by

is symmetric, positive, and C,(0) = 0,

(4.11) My = Ci(wad)p)(wadfy)? + Ca(wadly ) (wad]s)? .

Properties of functions C, produce evolution of the relative displacement vector
w) in two possible dominant directions df, or dj,. Evolution along d}, elimi-
nates evolution in d}, and inversely. However, we have a group of vectors wy
since A € A. Kinematical considerations indicate that all vectors of this group
should develop in the same directions after a bifurcation (Fig. 2). Thus, we have
a collective bifurcation. Therefore, an energetic barrier should make impossible
a bifurcation of wy and wy, A # X' in two different directions.

Let us introduce some additional notations. By daay = d(wyd},, wyd},) we
denote a distance between wy, = wad}, and wy,. We use functions C, again.
Let us consider next the function of variables wy and w) in the form

(4.12) My = Ci(daax )3y + Ca(diar )dary -

This function has a similar structure as function (4.11). Therefore, if wy develops
in one direction then an energetic barrier appears and blocks evolution of wy in
the other direction.
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The functions introduced above describe the process of collective evolution
of relative displacement vectors in two possible directions. During evolution of
wy, A € A, different arrangements of these vectors appear. Previous discussion
does not provide appropriate justification for considering separate evolutions wy
for different A\. However, special arrangements of these vectors lead to two-path
martensitic transformation. This phenomenon happens, for instance, in CuAINi
alloy. In this case, during loading and unloading, vectors wy change in two dif-
ferent ways. Then, new stress-induced phases appear. They can be distinguished
only by positions of the relative displacement vectors. In order to obtain a pos-
sibility of modelling such a phenomenon, the following function is postulated:

(4.13) My iy = ¥(ax(enz) + wy) — falenz)(ax(enz) +wa),

where wy = |w,|. Form of this function allows to model the evolution of w)
by dependence on ej2 and by control positions of minima of the introduced
functions with the help of ay and f. By means of similar functions, the two-path
martensitic transformation has been discussed in [19].

Finally, the part of the free energy which describes shuffles is suggested in the
form
(4.14) Fway=d. M+ Y, Mpy+Y Mwn,

A A#EN, ASN A
where J = (I, a).

Next component of the free energy describes the evolution of internal rotation
towards a habit plane. We have twenty four possible habit planes. They can be
marked by multi-index K = (I, «, ) = (J, ), «,8 = 1, 2. The habit plane
can be represented by a pair of linearly independent vectors pg,, p = 1, 2 which
are determined in the crystal structure of austenite. In Sec. 3 we have discussed
variables which are appropriate for description of the internal rotation. Let us
introduce these variables in a convenient form

(4.15) ay = R7H(F)(FF — R (F))pky -

The deformation gradient F€® is assigned to the configuration known and fixed
at the moment. Thus, all variables ax, depend in fact only on F* as independent
variable.

Let V, be a space of all admissible F; € Vi(z(Xp)). Vs depends on a fixed
configuration z4(Xp) for the considered point Xp.

In the space V; we define curves K 5(e12) which are parameterized by epi2 €
Njs. They have the following properties: K j(en2) = Kja(enz) for ejp < enz <
€112, where €15 only slightly exceeds e},. Kj1(€r12)NK2(€n2) = B € Vs, where
B is a bifurcation point for these curves which do not coincide for points eri2 >
€r12. Thus, the two curves coincide up to the bifurcation point B accompanied
by €712. By this we introduce the assumption that internal rotation appears
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directly after exceeding e};,, and then also the bifurcation process starts. We
assume that for Ki(e}],) and Ka(ej],), the following conditions are satisfied:
aj; = 0, ay2 # 0 and aj, = 0, aj; # 0, respectively. It means that austenite
and martensite are fitted together at the end of these curves. Thus, the Kz are
viewed as certain paths of deformation and create a skeleton for this part of the
free ene:gy.

Let us introduce also a function g : K;3 — R which has the following prop-
erties:

1. g(K1(en2)) = g(K2(en2)) for ena € Nys,
2. g(Kn(eh)) =0, ~(ehia) =0, D (
- 9\ J1\ €12 ' Beya " 112 ' €2,
3. g monotonically decgeases on Nyg,
89, o g
4. 65112 8“2) =0, 31'3%12(
These properties prove the symmetry of evolution for two possible internal
rotations.
Construction of the part of the free energy which depends on rotation is
introduced also with the help of the basis and fibers which together create a
graph manifold as a fiber bundle. Let us consider a basis

er2) =0,

E;;Q) >,

bys(enz) = {Kyplenz), 9(Kiplenz))}-

It is assumed also that parts of the domain can be represented as a generalized
product in the form Dgys = K g(enz2) x Dyglenz) C Vs and Dgryy N Dgya # 0,
Dgy1 U Dgy2 = V. Then, we are able to define

fislenz) = {{Dyslenz2), gs(F)(en2)}: F € Dyglen2)}

with the property that infg gf(F) = g(K s(er12)). The infimum is attained for
F € K p(ena2) N Dyglernz). fip is viewed as a fiber for defining the graph of the
considered part of the free energy. Function gy attains minimum at intersection
of Dj3 and K or, in other words, at the intersection with the basis b,3.

Now the mentioned part of graph of the free energy can be defined as

bjilenz) x fnilenz2), F° € Dgpy,
bi2(enz) x fralenz), F° € Dgya.

It is assumed that for F* € Dgjy; N Dgyo these functions coincide.

The model considered is related to a small volume of averaging. Then, nonlo-
cal effects become more important. These effects can be approximated by higher
gradients of deformation.

During the martensitic transformation we observe, in a small scale, the thick-
ness of the interface. On the other hand, the interfaces are flat during the trans-
formation. Furthermore, we can consider breaking of interfaces during the ap-
propriate loading process [27]. Thus, interfaces have many fine features which

(4.16) Frk)(F°) = {
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should be modelled in a small scale. These phenomena suggest the necessity of
taking into consideration higher gradients of deformation as an approximation
of nonlocal effects.

Some models which take into account this kind of description of the marten-
sitic transformation are considered in literature. See for instance [22, 23, 4].

In the paper, a concept of application of higher gradients in description of
fine features of the interfaces is discussed. First, let us introduce this concept
with the aid of a two-dimensional example on a plane. Let ¢ be a field on the
plane and m and n be two linearly independent vectors. Let us corsider a free
energy as an example, in the following form:

(4-17) F¢ = Cm(Dm¢)2 A= Cn(D:né)(DnQﬁ)z-

It is assumed that the function C,, has properties shown at Fig. 7. It means that
it is a symmetric positive function of its argument, it has maximun at point 0
and strongly decreases to zero if the argument increases. If the derivative of rank
s in direction m is large enough, then the dependence of Fy on D,¢ vanishes.
Consequently, propagation of ¢ will be continued first in the m direciion. It hap-
pens since the gradient dependence on Dy,¢ accelerates the equalization of field
¢ in the m direction. As a consequence, Dj, ¢ gradually vanishes and propagation
in direction n becomes more active. This concept will be next generalized to a
three-dimensional model.

lC‘n

4 Dn ¢

F1G. 7. A qualitative form of function C\,.

A crystal structure, in general, has some distinguished directioas. They are
connected with arrangement of the atoms. If the interface appears, then some
directions can be distinguished on this interface for the same reasoa.

Let B = {by,..,bx} be a set of distinguished directions on the habit plane
HPy and v be a vector which is perpendicular to this plane. Vectors by, ..,by
are in general linearly dependent.

Let us consider a point X which lies on the interface. This fact can be recog-
nized by the state of deformation. Furthermore, we can investigate a deformation
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in the neighyourhood of this point and determine what is a preferred direction
lying on this habit plane H Py for this point. More exactly, if the point lies on
a flat interfice, no direction is preferred. However, if the interface is curved at
this point tlen, it is assumed, a kind of edge on this plane appears. This “edge”
reflects the arangement of atoms and, as a consequence, a preferred direction of
the crystal sructure. It is assumed that the set By is just a set of these preferred
directions aid they can be recognized by the analysis of deformation near the
point X.

Let us irtroduce a function p(X) = {k, 1, vg} which assigns a triplet of
vectors to pant X. The vector k € Bk indicates the preferred direction, 1 € H Pk
and lk = 0. Let, furthermore, M = {M,} = {F;», wyn} be a set of variables.

After these preparations, the following form of the free energy dependent on
higher gradiznts of deformation is assumed:

(4.18)  Fyu) = Z[ckq ), k)(DieM,)? + Cig(p(X), 1, DiM,)(DiM,)

+Cug(p(X), Vi, DicMy, DyM,)(DyM,)?].

The idea of dependence of Cj, and Cyq on DM, and DM, follows from (4.17).
If DM, is large enough then Cjy and Cy, vanishes and development in the k
direction is sreferred. Next degree of this hierarchy consists in the fact that the
surface is straight in direction k. As a result, we have DM, = 0 and then 1 is
the second direction of development. Third degree of this hierarchy is evidently
the vy direction.

Let us mote that formula (4.18) takes into considerations the symmetry of
crystal structure of both the austenite and martensite. It consists in taking into
account the distribution of directors pg, which define the habit planes and vec-
tors vy . Position of habit planes uniquely defines the kind of martensite variant
which is fitted together with austenite on this plane. This is just connected with
crystal symmetries of these two structures.

Summng up the above considerations, let us notice that we have constructed
four summands of the free energy. However, they depend on multi-indices I, J,
K. Therelore, the domain of the free energy is not determined clearly enough.

Let us observe that independent variables and their higher gradients do not
take all possible values but only some admissible ones. Indeed, we do not expect
that, for instance, w) takes a very large value. Rather, we define only some
admissibl: domains in the set of all possible values of variables. These domains
are defined here by means of multi-indices I, J, K.

Let 854; ='{e : dpedpy = 8;12‘ djedyy < e},n, Tt I'}. With the help
of this we obtain 854 = |J9Sas. The set 8S4; determines the validity of index
I for a further stage of deformation. If the deformation attains this set then it
means thit the first e}, is attained still before €},,,. As a result, two paths for
bifurcaticn for wy, are determined and two other for the internal rotation given
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in F¢. The equilibrium paths for the relative displacement vector w) are given by
Wya = wyd},. We assume that these vectors develop only in some neighbourhood
U(wy) of this paths. It means that the domain of admissible w), is

(4.19) Wy =Wia={wr: wa EU(Wxa), A€ A} = IIHU(Wra) -

Similarly, we assume that F, develops near its path K;3 = K in some neigh-
bourhood U(K;3). Thus, we have

(4.20) Vi = Vjﬁ = {Fs : P e U(I{Jﬁ)}.

Dependence of the free energy on higher gradients is connected with the habit
plane H Py . Thus, the set of admissible higher gradients of deformation takes
the form

a .
(4.21) Hy = {{a—X;Mq} 3= 1,2,3} ’

Finally, we define subdomains of the free energy with the help of multi-indices
K=, a, ) =(J, B) as Dx = E x W; x Vg x Hg. Thus, the total domain
is assumed as
(4.22) D =|J(E x Wy x Vg x Hg).
K
The total form of the free energy is then described by means of the expression

(4.23) Fk(g9) = Fg + Fw(y) + Frx) + Fo(k), g € Dg.

The free energy can be also expressed with the aid of graph manifold in the
following form,

(4.24) {9, Fi9)} =J U {9, Fx(9)}.

K geDy

It is assumed that in regions where Dg N Dgr # 0, the free energy is determined
equivalently.

Let us note that such a form of the free energy is relatively simple in compar-
ison with those given in the Landau theory [29]. The expression given by (4.23)
reflects many properties which are introduced by the geometrical skeleton of this
construction. This skeleton is based on 854, d;, symmetries near e = 0, € = ey
and directors pg . Accordingly, we are able to introduce terms of the free energy
which are responsible for separate phenomena.

Let us observe that second or third-order terms of the free energy in three-
dimensional case in the Landau theory [29] are very long polynomials. They are
difficult for physical interpretations. In order to express the free energy which is
discussed in the paper, the degrees of polynomials have to be much more higher.

The expression (4.23) has a good physical interpretation. It takes place owing
to the mentioned geometrical skeleton which is connected just with interpretation
of the physical processes.
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Summing up this comment we may say that the form of the free energy is
relatively simple in comparison with those known from the Landau theory. On
the other hand, this form is relatively complicated in comparison with those from
the more averaged level of description.

5. Thermodynamical description of the martensitic transformation

The model with small volume of averaging describes the detailed behaviour
of microstructure. Therefore, the free energy introduced in the previous section
is relatively complicated. This function is a basis for the model discussed in the
paper. As a next step, balance equations and a more general form of constitutive
equations will be discussed.

Let us note that during kinematical considerations, a few displacement func-
tions have been introduced. It follows from the micrononhomogeneous deforma-
tion which appears during the martensitic transformation. Such a deformation
is connected with complex crystal lattice. It suggests a multicomponent descrip-
tion. However, in general, we would like to avoid such a description since it is
too complicated. On the other hand, relative displacement of atoms are not a
large deviation from homogeneity. Consequently, the one-component description
is most appropriate. In such a case the presence of relative displacement vectors
can be viewed as a result of a multicomponent approach.

In the first stage of our considerations, energy balance equations for multicom-
ponent body are introduced. Next, we approximate them by a balance equation
connected with one-component description, with some effects which are a result
of the initial approach.

Let us introduce a set of displacement functions discussed in Sec. 3

(5.1) 2.(X, t) = {x(X, t), ya(X, t) =x+Rw,},

where A € A, p € {0} U A. The approximation assumed for function y, was
discussed in the previous section.

Let us introduce the expressions for energy related to various components of
the body

] Sl Ldws o
(5.2) Uy = / (é’oe + 5901‘;'1?::) dv, ¥y = f (QAB + EQ.\y,\iy,\i) dv,
x(B) xa(B)

where e is the internal energy density, gg, o) are densities related to individual
components and (gg + 35 0x) = 0. In this notation we have also ¥, = {¥y, 7, }.

The following general form of the balance equation is assumed for considera-
tions [26] as an initial stage

(5.3) > 20, = 3 (88 + Pul) + Su(B),
r 1
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where @, is outflow of the conserved quantity ¥, through the boundary of the
body, P, is the production and S, is the source of this quantity.

Taking into account higher gradients of deformation discussed in the model
of the free energy, we assume the following form of the outflow &@,:

G-1
(5.4) gpﬂ(w'ﬂ) = f (Qp ind Z tle...M¢£ii,M1...M¢
a)l:n(B} fd

H-1
= Z f#NNl---N¢u’nN.N1....V¢ day ,
¢=0

where the last term exists only for p = A > 0.
The remaining parts of equation (5.3) are postulated as

(5.5) Pu@) = [ peutv,
XH(B)
and
(56) Sp('ﬁ#) = f Q,u(rp 5 bpiépi)dvp -
Xu(B)

Let us substitute (5.2), (5.4)~(5.6) into (5.3). Next we perform the limit
approximation. Assuming that wy — 0 we obtain a one-component body. Then,
we assume that

)\.ﬂ(B) =7 X(B)! Zqﬂ- = q} ztj.lMl...M@iii,M]‘..M‘, =¥ tM]...M,:.I-i:i‘Ml...qu L
B p

Zpe,u — Pe Z CuTep — Te, Z be,uiépi — biz; .
1 1 1

However, we do not carry out this transformation consistently. The last term of
the sum (5.4) and the kinetic energy in (5.2) related to relative displacement
vectors remain. After applying the well-known steps in deriving the balance
equations and assuming that ¢ = qn, we obtain the following form of tie energy
balance equation:

(5.7) / l@é +00 Ti Ti+ Y 0x Yaj Unj + Qi — Pe —Te — bgi‘;l dv
)

x(B)
G-1 H-1
= / Y tan. M %M My >3 FANN.NDANN,..Ng | da=0.
ox(B) \?=° e
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Let us consider the kinetic energy part more carefully. Using definition of y, we
have

(5.8) Z Ou Zpi Zpi = 00 T; T + Z Ox Yni Yni = (90 : 5 Z QA) T; T
H A X
+Y on(Uni — E) i+ D or (U — Fi) &+ Do Ei &
A A A
N @ EiTi+ Y Ox WAN WAN -
o

In the last step, interactions between the macroscopic inertia effects repre-
sented by time derivatives of r; and the microscopic inertia effects represented
by relative displacement vectors are neglected. It means that the influence of
macroscopic motion on relative displacement vectors is due to the internal forces
in the material represented by the free energy.

Next problem is related to the internal rotation. The free energy depends not
only on the strain tensor but also on the internal rotation in the spinodal region.
This suggests the necessity to investigate more carefully the balance of angular
momentum. It will be done later. The internal rotation mentioned is connected
also with certain inertia effects.

The moment of inertia tensor for the part P of the body B is defined by
formula Iy, = [, P) CEmri€inkTrTidv, where r = x — X, is position of the point

‘ u( Sk ;
with respect to the center of mass of P. The moment of inertia density can be

deﬁned as
i = ———— = 0Emri€inkTrT
mn 3H(P) PEmri€inkTrTk -

However, if u(P) — 0 then r — 0 and finally i,,, = 0.

The martensitic structure created during the phase transformation tends to
fit together with austenite. It happens with the help of material forces which
are created by locally nonhomogeneous deformation. It means that atoms are
shifted from the averaged positions which are determined by the deformation
function. As a result, a local distribution of density with respect to the assumed
averaged density is changed. Consequently, we admit for qualitative considera-
tions, that there is a translation dr of the averaged density from the material
point in nonequilibrium state with respect to the internal rotation. This shift of
density is not connected with the introduced relative displacement vectors since
they characterize durable shift of atoms and are constant in martensitic phase.
Accordingly, we assume that

; 0Imn
tmn —
u(P)

We assume here that during p(P) — 0, an averaging shift of density dr # 0 can
be considered.

= OEmri€ink (Tr + 070 ) (7 + 07%) = CEmri€ink0TroTs .
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In order to take into account the inertia effects related to internal rotations,
the kinetic energy term

1
Iy = §/imﬂwmwndvn
1 :
where w, = §€”£j(xi)‘j' The term I; should be added to the formula for the

: . o .
total energy of the body. If we investigate the expression afk then we obtain

a formula with two main parts. The first one is connected with conservation
of imn and the second one has the form [ #,,Wmw,dv. In the considered case
we assume for simplicity, that the term related to conservation of i,,, is equal
to zero. The author introduces this simplification in order to avoid complicated
considerations accompanied by relatively simple effects of a rotational inertia.
However, total neglecting of these inertial effects leads to qualitative complica-
tions in the balance of angular momentum. Therefore, in what follows, only the
last term will be introduced into the balance of energy equation.

In order to predict the final form of energy balance equation and balance of
linear momentum, it is assumed that dissipation is introduced by adding and
then subtracting the same term in the balance of energy equation (5.7).

(5.9)  Tiinm + D finwan — Thadim — ) finan
A A
= —Thimi+ D finan + (Tiydi) m — Ti&im — D Fintan -
A A
Let F = py and e = ¢ + sT. We assume that i) depends on higher gradients
of deformation and, furthermore, on some internal state variables g which will

be discussed in what follows. Then, taking into account the above discussion, the
energy balance equation (5.7) is modified and assumes the form

; 2 ;
(5.10) / l{—T,-M,M + 0% —bi)i + Y _(fan + or WAN) AN + 9(6_?“ + s)T
Y

x(B)
o M o, .1,
+ 08T — T{p2im — Z INWAN + Giji —Te + Qa_#_f—‘i v
A 1
G-1 )
+ > Einty...Mpini — titty..My)Ei My My + (T Tj )05
ax(B) Lo=0
H=A
+ 3 D> (FANN...Nyi™5 = FANN..Ny)WANN, N, | da =0,
A5 =0
where
. d ap d
Tim = Tim + Bing + Ty Hn=07—+Fwmm + N

dwn
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and furthermore

Timy =

Ma

§

0
{ .T;‘M]I‘HMJ My...Ma

Bim = ZimnWméEnijTum,j,

H
Fvy, = ) (-1)° ( —L) ,
Ny . N2

B =

= WAN,N;...N,
G

fiM;,,,Mﬂ = E (_l)s—¢+1 (Q_L

s=¢+1 axi'Ml”'M’) MeMy_1.. My 2

7 - s—g-+1 311)
s=¢+1 AN,Ny...N, tNaNa—-l---No+2

$j1M¢+1 1

Assuming the processes in Eq. (5.10) to be time-independent, the balance of
linear momentum is expressed by

(5.11) —Timm+0Z; —b;i=0
in the body B, and

(5.12) tiMy..MyiTG = tiMy.. My

on 9B, where ¢ = 0, ..., G — 1. Furthermore, the term #;5, is modified by adding
T,-‘ful to the above defined expression. The remaining equations are

(5.13) Iav + o) wany=0
in B, and By
on dB, A € A.

If the above linear momentum equations are fulfilled then the local form of
energy balance equation is given by

. ’ . o .
(5.15) 03T — TS 2 m — Z fiNWaN + i — e + Qa—j#i =0.
A 1

Let us consider the balance of angular momentum which can be expressed in
the well-known form

(5.16) f [ijkTj (Emk,m + bk — @ k) + €ijutji] dv =0,
x;,(B)

http://rcin.org.pl



78 J. KACZMAREK

where t;;. = J‘lxk,MTjM. Assuming that the balance of linear momentum is
fulfilled we obtain &;;t;; = siij'I;rk‘MTjM = 0 what leads to

(5.17) EijkTk ML M = —€ijkTk MBjm

where T;pr = Tjnr + TJdM' Consequently, introducing the corrective moment of
inertia density field gives a possibility of taking into account the inertial reac-
tion of the material on the internal forces acting there during the martensitic
transformation.

Equation (5.13) obtained as a result of balance of linear momentum is close
to phonon dynamics and it is difficult to expect that in dynamical case it will
give correct results. Therefore, rather an approximation procedure is suggested
in this place. Equation (5.13) can be discussed in case of slow deformational
processes. In such a case we can assume that w) =~ 0. Then, the relation fyy =0
is obtained. Let us consider the theory with H = 1. It means that only the first
gradients of w) are considered. Then, the discussed equation takes the form

(5.18) - (Q-BL) +0 £y =0
W1

OwaN,N, Owyy

Gradients of w) generate a bifurcation of w) in some neighbourhood occurring
in the same direction.

Equation (5.18) creates a relation w} = wj}(g’), where ¢’ is the part of the
deformation measure which does not contain w). However, this relation is not
a function since bifurcation processes are considered, Therefore, it is difficult to
neglect equation (5.13). This equation in the approximate form (5.18) allows to
eliminate w) but all complications related to modelling the bifurcations remain.
Finally, the variable w) seems to be appropriate for modelling the free energy
even in the simplified version by means of the relation w} = w}(g’).

On the other hand, micrononhomogeneous deformation increases the amount
of dissipation. Then, it is assumed, it would be appropriate to plot an internal
state variable with evolution of w}.

Summing up these considerations we state that equation (5.13) could be re-
placed by Eq.(5.18) and dynamical effects related to phonon mechanics level
could be described by an internal state variable and their evolution equation.

The problem of dissipation is accompanied also by the stabilization of marten-
site. During heat treatment of the material undergoing the martensitic transfor-
mation we obtain considerable differences in temperatures of transformations for
different cycles of this process. Such a phenomenon is called the stabilization of
martensite. Main reason for the changes of transformation temperatures is the
evolution of vacancy density o which can block the interfaces [24, 25]. This is an
important phenomenon from the termomechanical point of view. In general, we
admit thermal processes with miscellaneous time scales. Deformational processes
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are also responsible for defects and dislocation densities. Therefore, in general,
internal state variables g which represent densities of dislocations and defects
should have influence on temperatures of transformations by the free energy.

Let us introduce notations R = {¢, T, fy, s, q}, = {9, T;}, where
g € D was introduced in the previous section. Let a be a group of internal state
variables responsible for dissipation induced by micrononhomogeneous deforma-
tion and phase transformation. Let g be a set of variables for description of the
stabilization of martensite phenomenon. Then, a general form of constitutive
equations is assumed in the form

(5.19) R = R(H, a, o),
(5.20) a = A(#H, a, g),
(5.21) o= B(H, a, 0,

where some equations have been previously discussed in detail.
The introduced constitutive equations have to satisfy the Clausius—Duhem
inequality which in the considered case has the form

. . oY . o .
(622)  Theiin+ X it - @T)/T - 05 0di— ogei 20
N Qy Qi

The last inequality is derived with the help of the well-known Clausius—Duhem
inequality [28] and local form of the balance energy equation (5.15).

Internal state variables are considered in continuum theory in order to take
into account phenomena or effects of a smaller scale. The model is related to small
volume of averaging. Then, the question is what scale is appropriate for justifi-
cation or interpretation of internal state variables and their evolution equations
(5.20), (5.21). Undoubtedly, it has to be a discrete level of description. Thus,
variables a are related to phonon behaviour during micrononhomogeneous de-
formation or jump over an energetic barrier which appears during the phase
transformation. Similarly, micrononhomogeneous deformation given by gis close
to a discrete level.

It follows that the model of the martensitic transformation discussed in the
paper should be supported by discrete calculations.

6. Final remarks

The model with small volume of averaging introduced in the paper can be
used for the description of evolution of microstructure which appears during the
martensitic transformation. In particular, it is referred to motion of separate
interfaces and their behaviour during various forms of loading. Therefore the
model of the free energy is relatively complicated and consists of many constants
and functions. Unfortunately, they are not entirely identified. Some of them can
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be determined by experiments. In general, it is assumed that this model will be
supported by discrete calculations. Consequently, the introduced description of
the martensitic transformation is viewed to be a bridge between more averaged
models and descriptions on atomic level.

Furthermore, the introduced scale of averaging seems to be very convenient

for modelling the interactions between various phenomena occurring in materials
and the martensitic transformation.
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