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FIFTY YEARS OF THE ARCHIVES OF MECHANICS

Pseudomomentum in relativistic continuum mechanics
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IN CLASSICAL continuum mechanics the balance or unbalance equation of pseudomo-
mentum reflects the material invariance of the system under study. It relates the time
derivative of pseudo-momentum and the flux of the Eshelby stress. It is legitimate
to inquire whether this structure is conserved in a relativistic four-dimensional back-
ground. We examine here the relativistic definition of pseudo/material momentum
using simultaneously variational and direct approaches (the latter using the canon-
ical projection of space-time onto the material manifold). It appears that the truly
material entities, just as those in a proper frame, should be the basic ones, being
independent of the relativity framework used.

1. Introduction

THE NOTION of pseudomomentum in a continuum is so much intriguing that
Sir Rudolph Peierls, a sharp observer of the physical scene, recurrently came
back to that subject matter [1-3]. In nondissipative continua described in the
usual Newtonian background, pseudomomentum is none other than the canonical
momentum of analytical continuum mechanics [4-6]. It has thus an ontologial
status which equals that of energy, i.e. it is the spatial part of a four-dimensional
vectorial object or, equivalently, the mixed space-time part of a four-dimensional
second-order tensor known as the canonical energy-momentum tensor [7]. The
remarkable facts about pseudomomentum are that (i) unless the considered body
is rigid, it is different from physical momentum (the “quantity of motion” in
classical mechanics), (ii) one part of it plays a fundamental role in crystal physics
under the name of crystal momentum (8], and in electromagnetic optics and
wavelike phenomena under the name of wave momentum whether in optics or
acoustics [1, 9, 10], (iii) it does play a role in the discussion of the notion of
electromagnetic momentum in the electrodynamics of magnetized and polarized
bodies [9, 11-13], and (iv) in global form its conservation or nonconservation
plays both a theoretical and computational role in the dynamics of fracture in
elastic [14, 15] or inelastic [16] solids and in the dynamics of perturbed solitonic
structures [17]. Its role in elastic solids was also recognized by other authors [18,
19]. Syntheses emphasizing the last two aspects are given in book form [20] and
in two more recent review papers [21, 22].
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The balance or unbalance of pseudomomentum of the Newtonian mechanics
of continua is related to the invariance with respect to material coordinates, i.e.
it expresses the material homogeneity or inhomogeneity of the material, while
the balance of energy relates to the invariance with respect to time, and the bal-
ance of physical momentum (momentum in the current configuration) relates to
the homogeneity of physical space (and not of the material). As shown in previ-
ous papers, all material inhomogeneities, whether of inertial, elastic or inelastic
origins, are captured by the balance of pseudomomentum. Although pseudomo-
mentum is naturally defined in a Lagrangian - Hamiltonian variational context
[6, 20], it can also be given an intrinsic differential-geometrical definition (it is
the natural pull-back of physical momentum to the material manifold, up to a
sign, or: it is the material covector associated, via the deformed metric, with the
inverse-motion velocity). These definitions were first given by one of the authors
(6, 11]. Because of the intimate relationship between the notions of pseudomo-
mentum and invariance, it is a natural move to look at the notion of pseudomo-
mentum in the relativistic framework. In doing so we will essentially build on the
approach to relativistic continuum mechanics advocated by GROT and ERINGEN
(23] and MAUGIN [24, 25] - see also Chapter 16 in Ref. [26] - while recognizing
our debt to pioneering works by ROGULA and KURLANDZKI [27, 28].

2. Inverse-motion description

As we know in relativistic continuum mechanics, the kinematics is best de-
scribed in terms of the inverse motion, that is: if 2% o =1,2,3,4, 2% timelike, is
the actual placement of a material point X in the Riemannian physical spacetime
V! with metric go5 of Minkowskian signature +2, then the matter deformation
is described by the (here supposedly) regular mapping [23 — 26]

(2.1) XK =X%@=%, K=1,23,

where XX designate the local coordinates of the material point X on the material
manifold M3, the set of material points. The latter has a geometry which in
general is part of the solution, i.e., it is induced by the space-time metric. World
lines Cx of material particles X in V* are given by the parametrization

(2.2) Cx:x°=E“(XK,T),

where 7 is the so-called proper time of X. Local spatial sections of ViatxeCx
are defined by means of the projector or spatial metric

(2.3) Pag = gop + ¢ 2uqug = Pgo,
a symmetric idempotent operator, where u® is the four-velocity, a field tangent

to Cx and normalized in such a way that g,su®u®+c* = 0, where ¢ is the velocity
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of light in vacuum. Obviously, P,3 and u® satisfy the orthogonality condition
P,su” = 0. Any space-time geometric object which admits u as a null vector is
said to be “essentially spatial’. The main ingredient of deformation theory is the
inverse motion gradient F~1 defined from (2.1) by

(24) Fl={VX}={XF=x%; K=1,2,3; p=1,23,4)

which is such that

(2.5) uF!1=D,X=0, Dy i=u®V, = o y

Dt
In Egs. (2.5) D,, denotes the invariant directional derivative or gradient in the
u®-direction.

In essence (2.5); means that 7 and the X* are good independent time and
space coordinates in the parametrization (2.2). From F~! one constructs the
following space-time invariant which acts as reciprocal deformed metric on M?
(T - transpose):

(2.6 cli=F1 (F), ie C = xKxhge — xKxLpas
(AL a ‘g

This establishes the canonical projection of V* onto M?3. General relativistic
elastic materials were first described by means of this procedure in Ref. [24].

3. Balance equations for elastic materials

In a nondissipative relativistic background these balance laws consist a prior:
of the law of conservation of mass and energy-momentum. Let po(X) be the mass
density at X on M* and p(z®) the matter density at z® in V*, where X and z®
are related by (2.1). These two densities are related by [26]

(3.1) 0(z%) = po(X) (det C_l)”2 5

For a purely elastic material body the other balance laws can be derived from a
Hamiltonian - Lagrangian variational principle. To that purpose we consider the
following Lagrangian density per unit volume of V* at = [27)

(3.2) L=T(X,V,X),

where, for the sake of simplicity, we do not envisage metric-dependent effects.
The Lagrangian (3.2) describes the response of elastic materials, irrespectively
of their anisotropy and material homogeneity, as an explicit dependence on the
“particle” X through X obviously indicates material inhomogeneity. The only
restriction present in (3.2) is that elasticity manifests only through the first
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gradient of X, and this materializes interactions of a local type involving no
dispersion (i.e. no characteristic length). In (3.2) according to (2.1), the X* are
the fields and the z* are the parameters. Thus the field equations are given by
the following evident Euler - Lagrange equations:

aL

5L oLc

) X (ax)expl v"a(v s

v oL oL

3.4 vV, S = fink where SF:= ——— finh .= ( )
34) " > TN 0X ) expl

For all practical purposes S* is a four-vector in space-time V* and £inb 35 a
co-vector on M?® (whose components in V* are pure scalars!); but 3*, just like
V,X but with opposite variance, is a good example of a two-point tensor field,
SO tha.t Eq. (3.4); is indeed a co-vector equation on M?.

Through Noether’s celebrated theorem, the variation of the parameters @ of
the description (3.2), yields the conservation law of energy-momentum as

(3.5) V,T% =0,

with a canonical stress-energy-momentum tensor classically defined by (compare
to [7], Sec.32)

oL
o Bo__ 3
(3.6) T (cay vk a(va)) ,

where the dot indicates summation over the K's of X.
On account of (3.1) that is already in integrated form, and the fact that £
must be at least Lorentz-invariant, there follows that

oL
2 (VsX)

(3.7) Py, V X+ =

where square brackets indicate skew-symmetrization. Equations (3.4);, and (3.5)
exhaust the list of available balance equations. A natural question is whether
these last two equations are independent. The answer is negative. Indeed, mul-
tiplying (3.4); scalarly on M*® by V, X, integrating by parts and noting that
X hxw = X Ifm (remember that the X are just scalars in so far as space-time
transformations are concerned), we obtain that

(3:8) (VoX) - (VS =~ £50) + (VuT%) , =0,

where the symbol (..) ;| means the space-like part obtained by full projection, i.e.
in the present case

(3.9) (VT8 = PPV, TS, (VT4 =0
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Equation (3.8) means that (3.4); entails the spatial part of (3.5). The reciprocal
statement is true although its proof is more tedious. Equation (3.8) is a rela-
tivistic dynamical statement that generalizes the Ericksen identity known for
classical finite-strain elastostatics [29]. The timelike complement of (3.8) is none
other than the energy equation which obviously reads [23]

(3.10) u'V,Th =0,

so that, instead of (3.8) and (3.10) we could as well write the generalized Ericksen
identity:

(311)  (V,X) - (V8% — ) + ¢, (u2V,TH) + V,T% = 0.

While Eq.(3.5) is properly written in covariant form with space-time param-
eters and operations, we notice that the same is not true of Eq.(3.4); on the
material manifold because S* still is a two-point tensor field whereas one would
certainly prefer to have at hand an entirely material equation, i.e. a truly canon-
ical equation fully independent of the space-time representation. That equation
in classical continuum mechanics is the balance of pseudomomentum or canonical
material momentum [11].

4. Balance of pseudomomentum

This equation should involve a Lagrangian density per unit volume in material
space M?* at X and material time and space differentiations. Let

-1/2
(4.1) Vs =PfVp=Va+cuDy, J:=(detC™?) <

Multiplying (3.4); by J we obtain

(4.2) J (V& +c2u,D,) -8 =,
where or

= inh - et
(4.3) Lo=JdL, f; ( X )exp].

This should be the equation looked for. This goal is reached by integrating by
parts and rearranging terms. We note that

(4.4) Vi=XiVy, Vy=d/oxt, v (Jx[)=o.

On account of (4.3); and the fact that J depends on F~! through C!, we let
the reader prove that
K 6.60

(4.5) JViL- St =Vgbi, bof =X} BXE Lodk .
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Notice that the material object b defined by (4.5); is formally the material
analogue of T% (but the latter is not essentially spatial). This is indeed the
material energy-momentum tensor called Eshelby stress. Furthermore, with the

= 0, we show that

obvious condition that u, 5 (%CUX)
p

oL oL
-2 = -2 0
(46) cC JUF_DH (W) = —C (W — )Cga:‘:.) Duup 3

where 2% is such that

v
dzx u

(47)  af=Plooz,  ohuu=0, Pi, XE3¥=0F
e oL oL

as a result of (4.7)3. Thus Eq. (4.2) reads in components

(4.9) V¥ — 28k Duw = (£5™) -

Because of (4.7)2 this can also be written as

(4.10) Vibk +c 2K u,Duzly = ( f&“h)b.
This is the fully material equation of linear momentum looked for, in which
we identify the materially co-variant inhomogeneity force f{™* and the Eshelby
material stress b. The material or pseudo-momentum, being of inertial origin,
is not obviously present in this formulation without expliciting the Lagrangian
density.

5. Explicit forms

The Lagrangian density should account for the rest and internal energies since
kinetic energy is not “apparent” in the relativistic framework. For a generally
anisotropic, materially inhomogeneous elastic solid, the internal energy per unit
proper mass reads €= € (X; V,X) or, in objective form, i.e. as a form-invariant
expression in space-time V4,

(5.1) €=€(X;C_1) :

As a matter of fact, this is an integral of the first-order system provided by
the Lorentz-invariance condition (3.7). The result is purely material, and is thus
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invariant by all means in so far as transformations of physical space-time are
concerned, that is. whether the latter is Galilean, Minkowskian or Einsteinian
(i.e., accounting for general relativistic effects). Such a general invariance was
perceived by pioneers of “good” relativistic continuum mechanics such as OL-
DROYD [30].

The Lagrangian densities £y and L are given by

—p00(X)c? (1 55 %) ;
L = —pc (1+ {%) = —po(X)c? (d.etc:-l)”2 {1 —15 (x e )}

In an inertial frame (noted by the equality sign =) at the nonrelativistic limit,
expression (5.2); yields

Lo

(5.2)

(5.3)  Lo= eo(X)gapu’n” (1 T E%) = —00(X) (1 + ) (1- 62)1/2

where 3% = v2/c? if v is the physical velocity of matter. For small 3 this yields

2 2
= ) .c-1) = i .o-1
(5.4) Lo=eo(X)5 — 00 € (X:¢71) = 20(X) 2 w (x;c7Y),
which is a possible Lagrangian density per unit volume in the reference config-
uration in classical finite-strain elasticity [14, 20]. In the same approximation
where

gap = diag(+1,+1,+1,-1),

(5.5)
u® = (yv,7c), =123 4= (1 —{32)

-1/2

as 3 goes to zero we find that Eq. (2.5) reduces to
(5.6) v+F,.- V=0,

where F, is the nonrelativistic direct-motion gradient and V is the so-called
material velocity. With a general motion now described by either x = x(X, ) or
X = x~!(x,1), respectively in the direct and inverse-motion descriptions, v, F,,
V, F7! and C;! are given by (compare [14, 20])

_ Ox 0 %,
el | =
(5.7 5y 3
2 -1 _ p-1 -1
F, = = ; ol = {E)
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We readily check that

(58) Cl'=Ci'-c?VeV, detCl(1-4)det(F) 20

The nonrelativistic pseudomomentum, a material co-vector, is usually defined by
(5.9) P = —oo(X)F]-v = go(X)C-V,

where V is such that (cf. Eq. (5.6)) V= —F;!.v.
We easily check that (cf. Eq. (5.8))

1
(5.10) C=C,+—55P®P.
opc

The closest we can come to the definition of a relativistic (material) pseudomo-
mentum is

(5.11) p _Lru 22

czﬁoua'gi'— 3

where 2% and £ are given by z® = T%(X, 7) and Eq. (5.2);. This, indeed, re-
duces to the classical definition (5.9); in the nonrelativistic limit. This can be
complemented by a fourth — timelike — component Py such that P4 = gg (*+ €),
ie., the total energy density and then both this and (5.11) enter a unique
four-dimensional definition (A = 1,2, 3,4)

2 = % 0z A_ (vK o 0z
(0.12) PA - —Ez—ﬁn‘uaax—a, XK= (X ,‘T) y u —C,)T .

Returning now to the relativistic expression (5.2) we immediately show that

oL gg oC! 1 _1\-3/2 0 (detC?)

(5.13) 5XK = 0561 ' oXK + 500 (detC ) oXF
But

alo™"

(ax—“l = (s¥ x2 + oK x}1) Po,
e a(d t.“C'l)
€ B =N

—XE— = 2 (detC™) 2k,

from which it follows on account of 65 — P = —c~2u%ug that
=

(5.15) Th=o(1+5)wu -1,
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wherein

oz ,
(5.16) = S o XEXEot, =0,

_2QW n
The latter quantity is the relativistic stress per se (an essentially spatial tensor)
for a description based on the inverse motion [23, 24, 31|, while the energy-mo-
mentum tensor (5.15) admits the standard space-time decomposition which, in
the absence of heat flow, microstructure, and electromagnetic fields, presents no
mixed space-time and time-space elements. From (5.16) we see that the spatial
relativistic stress is none other than the “push forward’ of the covariant mate-

rial stress Ty, defined thermodynamically by (Note: this is not the second Pi-
€

ola - Kirchhoff stress, which is materially contravariant) T = —2p
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