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FIFTY YEARS OF THE ARCHIVES OF MECHANICS

Thermomechanics of forces driving singular point sets

Dedicated to Prof. Henryk Zorski
on the occasion of his 70-th birthday

G.A. MAUGIN (PARIS)

BY TREATING in parallel the balance of canonical momentum and the entropy equa-
tion, both at regular material points and at singular sets such as discontinuity fronts,
it is shown that a consistent thermomechanics of such fronts can be constructed, espe-
cially with regard to shock waves and phase-transition fronts. Within this framework,
two extreme singular cases are that of the classical shock-wave theory which relates
dissipatively two states in adiabatic evolution, and that of the nondissipative phase
transition which relates two generally dissipative states. In both cases, the driving
force on the singular set is made to vanish yielding oversimplifications. This is ob-
viously corrected by showing that if dissipation occurs at all, such a driving force
should not be zero. It is in fact related to the details of what happens within a struc-
tured front and to the noninertial motion of such a front viewed as a quasi-particle.
In passing, the role of a generating (thermodynamic) function for discontinuity fronts
is exhibited.

1. Introduction

A TRUE THERMOMECHANICAL framework involves mechanical and energetical
concepts on an equal footing. In that respect, the energy-momentum tensor due
to relativists is the essential ingredient. Furthermore, on a phenomenological
level where hidden microscopic rearrangement mechanisms reveal themselves in
macroscopic irreversibilities, the second law of thermodynamics must play its
proper role. This is agreed upon by all specialists of modern continuum mechan-
ics, at least at all reqular material points, i.e., those points where the field solution
is smooth enough to allow for required operations of analysis. What is the sit-
uation regarding singular material points, those points where this smoothness
working hypothesis fails? The answer to this question relates to the field theory
of defects. It is observed that such “defects” move under the application of physi-
cal forces to the material body (not to the defect), e.g., the evolution of boundary
data. Accordingly — ef. the principle of virtual power of d’Alembert — “forces” of a
non-Newtonian, non-Lorentzian nature (they do not act per unit mass or charge)
drive such defects and if this motion is irreversible, then the power expended by
such “thermodynamical” forces must be related to the global dissipation in some
way. The present paper aims at presenting elements of this true thermomechan-
ics of defects when the extension sets of these defects are represented by lines
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or surfaces. This includes “defects” such as cracks and dislocations on the one
hand, and shock waves and phase-transition fronts on the other.

Such a thermodynamics was missing at the time when ESHELBY [1] introduced
the notion of “force on a field singularity”, and when PEACH and KOEHLER (2]
proposed their celebrated force on a dislocation. Further progress was much
fostered, in our opinion, by field-theoretical considerations of the Polish school
of theoretical and applied mechanics (in particular ZORSKI [3, 4]), which led
to the notion of material force (ROGULA [5]), i.e., forces which are co-vectors
on the material manifold, and not vectors in physical space. It is the rational
thermodynamics of such forces, which answers the above raised question. That
is, not only is the concept of such forces useful by itself (e.g., the J-integral
or the energy-release rate of fracture), but these forces acquire a true physical
significance in their irreversible thermodynamics. This was only recently fully
realized, essentially by the author and co-workers in a long series of works deal-
ing with the mechanics of material rearrangements (e.g., [6, 7]). In these, it was
finally acknowledged that both canonical balance equations of energy and mo-
mentum must be treated in parallel (as clearly indicated by the inclusive notion
of “energy-momentum”) while duly accounting for the second law of thermody-
namics and the non-commutativity of integration and product of singular objects
in the corresponding algebra. While such canonical balance laws are introduced
in Sec.2 for a sufficiently large class of materials, this noncommutativity, and
the simultaneous roles of the two space-like and time-like canonical balance laws
jointly with the second law, is well demonstrated on the case of fracture in Sec. 3.
Section 4 presents those jump relations which are most useful in discussing the
thermomechanics of two-dimensional singular sets. These include shock waves
and phase-transition fronts, depending on which thermodynamical entities are
continuous across them. The accompanying general formalism yields general re-
sults at such singular fronts through the notion of generating function. In partic-
ular, the formalism introduced is shown to offer a proper framework for treating
shock waves in a consistent manner, which is missing in all theories which hereto-
fore ignored the notion of driving force on such singular sets. Maxwell’s equal
area rule is also an application of the vanishing of such a driving force. Gen-
eralizations pertaining to other problems (solitonics) are mentioned by way of
conclusion.

2. Balance equations at regular material points
For the sake of example, we consider materials whose free energy per unit

volume of a reference configuration Kz reads W = W(F, 8, a; X) with derivatives
denoted:

(2.1) T —9W/0F, S=-0W/00, A=—0W /oe.
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Here F = Vpx is the direct motion gradient, if x = y(X, ) is the direct smooth
motion of the material body of material “particles” X, & > 0 is the thermo-
dynamical temperature, a represents a set of internal variables introduced to
account for dissipation processes such as viscosity or plasticity, T is the first
Piola - Kirchhoff stress, S is the entropy per unit volume of Kr, and A is the
thermodynamical force associated with . The modelling considered is general
enough to include many cases and not only the classical thermoelasticity of con-
ductors (cf. [8, 9]). There is no inertia associated with the a variable. But the
following results (Secs.4 and 5) are practically unchanged if a relates to a true
internal degree of freedom (compare [10]) and it is diffusive (cf. [10, 11]). Fur-
thermore, W could depend on F only through one element of the multiplicative
decomposition of F, so that finite-strain plasticity is also included. We denote by
00, P= 00V, v=0x/0t|x, C=pv?/2, E=W+ S0, H=E+K,L=K-W,
and Q, respectively, the matter density at K, the linear (physical) momentum,
the physical velocity, the kinetic energy, the internal energy, “Hamiltonian” and
“Lagrangian”, all per unit volume at Kg, and the material heat flux.

We assume that the classical thermomechanics of the material is known (e.g.,
in [8]) and, independently of boundary conditions, we list the classical balance
equations valid at any regular material point X in the body at time ¢. This is
done in the so-called Piola - Kirchhoff form assuming that no external body force
is applied and there is no external supply of energy (this is only to place other
effects more vividly in evidence):

e Balance of mass

7]
(2.2) a@ulx =0.

e Balance of linear (physical) momentum

ad :
(2.3) *ggplx — divgT = 0.
e Balance of energy
d
(2.4) SH|x — Va:(T-v—Q) =0.

Equation (2.2) means that gy is at most a function of X. If this is the case,
then the material body is said to be materially inhomogeneous both inertially
through go and thermoelastically (via the assumed explicit dependence of W on
X). The heat equation or, after division by 6, the entropy equation, reads (where
it is assumed that Q goes to zero with Vz0)

(2.5) %f— +V&-(Q/8) = o't + o™,
X
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wherein
(2.6) o = —071Q-Vgr(Ind), o™ =0"14qa.

The second law of thermodynamics requires at any regular point X that the
right-hand side of Eq. (2.5) be non-negative:

(2.7) o(X,t) := o*® 4 '™ > 0.

The symbols Vg and divg indicate the material nabla and the material diver-
gence, respectively.

Three remarks are in order. First, Egs. (2.2)-(2.4) are strict conservation laws,
whereas it is not the case of (2.5). Second, Q and A must jointly satisfy the in-
equality (2.7) where o*® and o™ are the thermal and intrinsic entropy sources,
respectively. Finally, while (2.3) and (2.4) represent the invariance of the physical
system under physical space-time changes (in x and t), we are missing the balance
equation which relates to the invariance or lack of invariance under X changes
(the space-like part of the space-time parametrization {X,t}). This equation has
a status equivalent to that of energy in the sense that it is canonical and it per-
tains to the whole physical system. It is the equation of canonical momentum [6,
7] which, in the absence of dissipation, derives from the application of Noether’s
theorem. As dissipation is present, this equation here is obtained by operating
on Eq. (2.3) and taking account of Egs. (2.1). That is, applying F to the right of
all terms in Eq. (2.3) and integrating by parts, we obtain the

¢ Balance of canonical (material) momentum

(2.8) %‘pfx — divgb = finh Iy fth + fint.r1
wherein the canonical momentum, Eshelby stress, material force of inhomogene-

ity, thermal (material) force of quasi-inhomogeneity, and intrinsic (material)
force of inhomogeneity are defined by

(2.9) P = —p-F,

(2.10) b= —(L1g +T-F),

(2.11) £t = (0L 19X Yespis

(2.12) fth = SVgR0, ™ = AVza.

The explicit material gradient must be here understood keeping the fields v, F,
# and o fixed. Equation (2.8) places in evidence three types of material forces
at X as a result of true material inhomogeneities and quasi-inhomogeneities due
to dissipative processes. The last two forces in (2.8) vanish only once thermody-
namical equilibrium has been established. The first, f ™" has nothing to do with
dissipation and, therefore, has no corresponding term in the r-h-s of Eq. (2.7). It
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should be noted that at all regular material points X, Eq. (2.8) does not bring
any new information, but for the properties just mentioned. The situation is al-
together different at singular points as shown in Secs. 3 to 5. We note that (2.8),
in general, is not a strict balance law although Egs. (2.3) and (2.4) are.

3. The example of brittle fracture

Consider the case of the pure elasticity of materially homogeneous solids.
Thus Eqgs. (2.4) and (2.8), reduce to the following two strict conservation laws at
all regular material points X in the body:

JdH
(3.1) §|x—v3-('r-v) =0,
P ..
(3.2) — |x—d1th — 0.

The question is, how does the field singularity at the tip of a uniformly pro-
gressing straight crack manifest, as this is a paradigmatic problem? We report
the thermomechanical solution obtained by DASCALU and MAUGIN [12] for it
constitutes what we called the analytical mechanics of fracture. Let the straight
crack C of zero opening be the uniform limit of a sequence of notches of end
radius §. Call I'(d) the half-cylindrical front of the notch whose material points
move in the limit at material velocity V. By integrating both (3.1) and (3.2)
around the notch front and taking the limit we show that the global balance laws
corresponding to (3.1) and (3.2) contain source terms, respectively the energy
release rate (per unit thickness of the body), G, and the material force driving
the crack tip, F, such that

(3.3) G = lim f H(V-N)dA,
=0
r(s)
(3.4) F=-lim f {LN-P(V-N)} a4,
rs)

and these two are such that we have the following ezact result as 4 goes to zero:
(3.5) G=V-F,

while the second law requires that G > 0 (since we cannot solder back the faces
of the crack, although they are mathematically indistinguishable). This exam-
ple, although briefly evoked, shows that the (global) material force F driving
the singularity line representing the crack tip, acquires a physical meaning only
through the dissipated power that it expands in the velocity field V. This is also
transparent in the case where the singularity set is a surface (see below).
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4. Jump relations at a singular surface

Assume now that all equations of Sec. 2 are valid at all reqular material points.
To simplify (but this is not essential), we consider that in each regular material
region, the material considered is homogeneous. Such regions, where the energy
and symmetry properties can be different from one region to the next, are sepa-
rated by mathematically idealized surfaces X, so-called singular or discontinuity
surfaces. These may progress yielding a sudden change in the solution properties
and/or abrupt structural rearrangements. The latter, according to EPSTEIN and
MAUGIN [13] are governed by a driving force which necessarily involves the Es-
helby stress tensor (2.10). Depending on the thermodynamical entities, that are
continuous or discontinuous across ¥, we may treat in a unified framework the
cases where X is a shock wave in the traditional sense or a phase-transition front.
The first question to be answered is how do the critical jump relations look like?
According to our comments, these are the jump relations associated with the
non-strict conservation laws (2.5) and (2.8) as, according to the theory of weak
solutions of hyperbolic systems, no problem arises concerning the jump relations
associated with the strict conservation laws (2.2) through (2.4). Indeed, applying
the rule to replace the operators 8/dt|x and Vg by —(V-N) [-] and N[-] where
V is the material velocity of points of X, and N is the unit normal to X' oriented
from the “minus” to the “plus” sign, with the convention that [A] := AT — A~
one writes at once (Vy = V-N):

(4.1) Vnleo] =0,
(4.2) Vlp] +N-[T] =0,
(4.3) V[H]+N-:[T,v—Q] = 0.

We can apply the same rule to Egs. (2.5) and (2‘8) if we add formally unknown
source terms, i.e., we may a priori write down the following two jump equations:

(4.4) V(8] -N-[Q/f] = o5,
(4.5) V[P] +N-[b] = —fx,

in which the surface source of entropy oz must be non-negative. This constitutes
the statement of the second law at X

(4.6) ox > 0.

As to the surface material force — the driving force on £ - its physical significance
can be elucidated only by computing its power in the velocity field V - just like
in Eq. (3.5).
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5. Shock waves and phase-transition fronts

Although we do not give the detailed proof here (cf. [14]), the following re-
sults hold true. Introduce at ¥ the following quantities — which are continuous
according to Egs. (4.1) - (4.3):

(5.1) m:= gV,

(5.2) Ts == m(p/eo) + N-T,

(5.3) mQys = m(H/oo) + N-(T-v —Q),
and the “generating” function M by:

(5.4) M=~ {m(Qx + (L/o)) — Tx-v}.

Then, for any singular surface X:
(5.5) (W] =05 >0

and if Vi = Vg = Vn (where V = —F~!.v, F~! being the inverse of F and
Vn = V-N), we have

(5.6) Py =fs-V= [OM].

That is, the scalar function R defined at X' generates both the surface entropy
source and the power expended by the surface material force. Equation (5.5)
generalizes to the case of deformable dissipative solids in finite strain a result of
P. GERMAIN [15] in fluids. Equation (4.12) is new and clearly shows, contrary to
the classical theory of shock waves, that one must consistently consider a nonzero
driving force on a shock wave when entropy growth is required at 3. That is,
Egs. (4.4) and (4.5) must be consistent, but the second of these is lacking in all
heretofore-proposed approaches to the shock wave theory. As a matter of fact, the
presence of a nonzero fx at X is justified by considering a structured front across
which both the quasi-inhomogeneity forces f'* and f™** contribute, and this is
paralleled by the source term o' and o'™" in the entropy equation. The basic
inconsistency in the classical presentation of shock-wave theory (no structured
front) is that one relates through a dissipative front two regions supposed to be
in adiabatic evolution. It follows from this that on the one hand one imposes the
growth of entropy, while, on the other hand, the driving force vanishes identically.
This driving force is none other than the Hugoniot functional. Indeed, expanding
the trivial identity [7x]-(v) = 0 in the traditional shock-wave theory (no heat
flux, no internal variables «), one obtains that

(5.7) Hugogyy := [E(F,S) — (N-T)-F-N] = 0.
But in our formalism this is indeed a surface material force which should ir-

reversibly drive ¥. Unfortunately, Hugogy -V y = 0 for Vy # 0, hence the
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inconsistency, although Eq. (5.7) is extremely useful in discussing the position of
the Hugoniot curve — which must be such that [S] > 0 — compared to isentropic
curves.

The other interesting general case is that of phase-transition fronts as they
may occur between phases of an allotropic material or between variants of a
thermoelastic shape-memory alloy. In that case, the transition taking place at a
definite temperature when the phases coexist and the variants match at X', the
continuity of temperature, [#] = 0, holds at X' and the coherency condition (no
dislocation) at ¥ makes that [V] = 0. As a consequence of the first condition,
Egs. (4.4) and (5.6) yield the following remarkable result:

(5.8) Pg =f5-V = 0[M] = oz > 0.

As a consequence of the second condition and of Egs. (4.2) and (4.3), it is shown
that

(5.9) Pg = fgVN=0052>0
with
(5.10) fg+Hugopr =0 at X

where fx, a scalar driving force for which we need a kinetic equation, and the
field functional Hugopr, balance one another. The latter is given by (compare
to (5.7); cf. MAUGIN and TRIMARCO [16])

(5.11) Hugopr = [W(F,O{,G} - (N-T}F-N] :

Compared to Hugosw, Hugopr is practically never zero since it must satisfy the
inequality (5.9). However, one may artificially impose the vanishing of Hugopr
for nonvanishing V x. This means a nondissipative phase transition although
we relate through ¥ the phases which are generally in nonadiabatic evolution
(Q # 0). This consideration thus is as much singular as the traditional shock-wave
theory, but at another end of the spectrum. Indeed, the imposed vanishing of
Hugopr for a still progressing ¥ is shown in one dimension to yield Mazwell’s
rule of equal area [14] and, for a fluid, this condition in fact materializes in the
continuity of the chemical potential. The relationship of chemical potential with
the Eshelby stress (sometimes called chemical potential tensor) was noticed by
BoOWEN [17] and GRINFELD [18]. However, there is something more in the results
(5.8) through (5.11): it is that no quasi-static hypothesis was used, although it is
exactly shown that no kinetic energy can enter the final expression (5.11). This
agrees with the perspicacious view of Gibbs and Duhem who indeed foresaw that
only the free enthalpy must govern the local matter rearrangement represented
by a phase transition. Thus only the quasi-static part of the Eshelby stress finally
contributes to the Hugoniot functional Hugopr — in agreement with their vision.
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6. Quasi-particle viewpoint and solitonics

Singular surfaces of mathematically zero thickness do not exist in the real
physical world and they do find their justification only as limits of narrow zones
of rapid, but not discontinuous, changes. Consider then that such a narrow zone
X5 of thickness § < L where L is a macroscopic characteristic length, exists.
We may look at the problem encapsulated in equations of Sec. 2 by looking at
s with a magnifying glass (so-called “zooming”) so that the thickness becomes
of order one. Y5 may locally be considered as flat and the problem is essen-
tially one-dimensional (coordinate X orthogonal to Xj). In this procedure the
boundaries on both sides of X are rejected to minus and plus infinity with field
derivatives — essentially zero — outside the interval 4, in particular at X = +o0.
Henceforth we consider field solutions which are localized at X5. The “global”
and canonical equations that govern the “complex” of fields along the real line
are the space (along X) integrals of Egs.(2.8) and (2.5). On account of limit
conditions at infinities, these read

dlP ds
ikl dt

where P and S are the total canonical momentum and entropy defined by

(6.1) =58>0,

(6.2) P:/'PdX, S:/de,
R

and F is the driving force on X5, and S - the entropy source due to dissipation
throughout Xj:

(63) F=[(finh+fth+fintr) dX, 8= [ ot +Umtr dX.

Here all integrals are summed over R, but in practice over the § interval only.
Equation (6.1) may be viewed as referring to a quasi-particle motion where P
relates to the whole “complex” of fields (and not only the traditional continuum
motion). When F = 0, the “motion” of the quasi-particle is inertial. In the
presence of true or quasi-inhomogeneities, it is not. But it is only when there
are quasi-inhomogeneities that S must simultaneously grow in time. That is,
in this case the varied (noninertial) motion of the quasi-particle is necessarily
accompanied by dissipation. If the “complex” of fields at X5 moves “en bloc”
with velocity V, (assuming then that the localized field solution is a progressive
wave with V slowly varying in time, then in the first approximation we have the
consistency condition

(6.4) — =TF, — =+F.V,
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where H is the total energy. The condition (6.4); is analogous to (3.5). If Xy is
a phase-transition front instead of (6.4), we can as well write

(6.5) B =—(0)"'F-V>0.
dt

The condition is more complicated for a shock-wave when 6 varies rapidly
through Y.

When one studies phase-transition fronts in shape-memory alloys by means
of progressive-wave fronts in the appropriate dispersive - W = W (F, VzF, 6) in
[19] - but nondissipative framework, one then arrives at solitonic solutions which
correspond to an inertial motion of the quasi-particle representing the “complex”
of fields, with zero right-hand side in both Eqs. (6.4) and (6.5). As a matter of
fact, such solutions have been shown to obey the Mazwell rule of equal area,
cf. [19] - in agreement with Sec.5 above - with a vanishing Hugoniot driving
force where the jump is taken between values at infinities in reason of the zoom
operation. Thus, as we know from the soliton theory, the full equations (6.4) and
(6.5) are useful in treating transient motions by means of perturbations. Whether
the wave front is really a solitonic structure or a dissipative structure depends
on the studied system. The nonstrict observation of the conservation of global
quantities P and H in a numerical scheme may also be an indicator that this
scheme is not faithful (not conservative), introducing then dissipation artificially
(cf. Eq.(6.5)). In all, we see that the notions of material force and canonical
momentum play a role at two different levels of observation of two-dimensional
singular sets, whether the latter are seen as mathematical idealizations with
the accompanying necessary oversimplification, or as structured fronts which
generally require accounting for more detailed effects such as dissipation and
dispersion. The general thermomechanics presented in Ref. [8] accounts for both.
A local analysis in the last direction — but not using the notions introduced in
these pages - is due to TRUSKINOWSKY [22].
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