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A CRYSTALLINE SOLID of Cgp (a fullerene) is expected to be an insulator or a semi-
conductor. However, one of the most striking properties of Cgp — related materials
is the observation of relatively high temperature superconductivity in alkali metal
doped M3Cgo and in various alkaline earth doped compounds. So, the interstitial dif-
fusion of impurities considerably influences the superconductivity phase. The value
of the critical temperature below which the superconducting phase exists, strongly
depends on many other external influences (electromagnetic, thermal, mechanical,
etc.). The paper deals with construction of a phenomenological macroscopic model
of interactions between physical fields in fullerenes, basing on the extended thermo-
dynamics with internal variables and with the use of Liu’s theorem in order to apply
the entropy inequality.

1. Introduction

MATERIALS of specific properties, particularly smart materials very sensitive to
external influences which vary due to mutual interactions between physical fields
and such materials, are of great interest for researchers and engineers. One of
the most spectacular examples of such materials are fullerenes, the allotropic
variety of carbon. Fullerenes have large closed cage polyhedral molecules of car-
bon atoms, the most common fullerene being Cgg. As the molecular crystal they
form a fec or bee lattice. Since each carbon atom has its valence requirements
fully satisfied (each carbon atom has four valence electrons), a crystalline solid
of Cgg is expected to be an insulator or a semiconductor. However, one of the
most striking properties of Cgo-related materials is the observation of relatively
high temperature superconductivity in alkali metal doped M3Cgp and in various
alkaline earth doped compounds. In the synthesis of Cgg, larger fullerenes are
also formed, e.g. Crp, Cz6, Crs, Cso, Cs4, Ca40, Cazp. In principle, the smallest
possible fullerene is Cog though no Cyq fullerenes have been reported experimen-
tally. Thus, Cgp is the only fullerene host for which superconductivity has been
identified. For the physical properties of fullerenes see [1]. There are three ways
to introduce foreign atoms into a Cgg-based solid. One of them involves the ad-
dition of a rare earth, an alkaline earth or an alkali metal ion into the interior
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of the fullerene molecule. However, no superconductivity has been observed in
such doped fullerene and it may remain the insulator or the semiconductor.

The second method is the substitutional doping of an impurity atom in a
different valence state for a carbon atom on the surface of a fullerene molecule.
However, because of atom diameters and distances on the Cgq surface, only boron
and nitrogen might be dopants in that case. And again, no superconductivity
has been observed in the above structure.

In the third method of doping fullerene solids, the dopant is introduced into
the interstitial positions between adjacent molecules. In this doping, a charge
transfer can take place between the impurities and the molecules. That transfer
forms a situation when superelectrons (the Cooper pairs) self-consistently coexist
with each other creating (being) the carriers of the supercurrent. It is known
that within the region of one Cooper pair, there are many centers of the other
pairs. Thus the Cooper pairs (superelectrons) cannot be treated independently
since they form a very complicated interlaced structure, the stability of which
is extremely important for the existence of the superconducting state. There are
numerous examples of superconductivity in such doped Cgp.

The last method is most important for us since the interstitial mass diffusion
processes (the intermolecular diffusion in the fullerene molecular crystal) might
considerably influence conductivity properties of fullerenes; those properties can
vary during such a process. However, not only diffusion of impurities and their
concentration influence the value of critical temperature below which the super-
conducting phase exists. That value and even the existence of superconducting
phase strongly depend also on many other external influences, like the magnitude
of applied magnetic or electric fields, the density of electric current existing in
the fullerene, the thermal conditions and properties (heat flux, temperature, heat
capacity or heat conductivity vs. temperature) which accompany the processes
running in the Cgo as superconductors [2]. :

In nonequilibrium (and even in equilibrium) states of superconductors, in
temperatures different from zero, a part of the pairs is thermally dissociated and
the density of superelectrons depends on the number of nondissociated pairs.
Since the process of the Cooper pairs creation is selfconsistent, any change of
their number produced by external fields, like temperature, electromagnetic field
and diffusion of impurities, strongly influences characteristic properties of super-
electrons. If the quantities characteristic for the above fields reach their critical
values, the continuous transition from superconducting to normal state of the
fullerene occurs.

The dependence of the constitutive superconductor parameters on pressure
or mechanical stresses are also interesting. Great number of various properties
of the fullerenes shown above, strong dependence of material coefficients in su-
perconducting phase on many physical fields, phase transitions occurring during
processes, and the like, indicate that any description of thermodynamical states
and processes is rather very complicated. There exist several attempts to de-
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scribe physical interactions in deformable superconductors in the framework of
nonequilibrium thermodynamical phenomenological models. For the most char-
acteristic ones see [3-9, 15-17].

The paper deals with construction of a model of interactions between physi-
cal fields in fullerenes within their superconducting phase. A specific definition
of the state vector has been proposed. It consists of field controllable variables
and additionally, of internal variables responsible for the electrical conductivity
properties of the M, Cgy material. An extended-like thermodynamical model [10]
with the use of that state vector and consequences of its introduction are pre-
sented. The superscripts N and S concern the “normal” and “superconducting”
states of the fullerene, respectively.

2. Conductivity phases of fullerenes

As we have mentioned before, a pure molecular crystal Cgg is expected to be
an insulator and/or semiconductor when doped. Dopants change its conductiv-
ity properties according to their positions in the lattice. Those positions depend
on the impurity concentration. Doping, for instance, with an alkaline earth im-
purity, e.g. Ca, when two Ca atoms are placed at the tetrahedral sites of the
fee Cgp lattice and the third Ca atom is placed either at an on-center or at an
off-center position of the octahedral interstitial site, causes that CazCgg becomes
a semiconductor. In the case of the superconducting phase, three Ca atoms are
at off-centered positions of the octahedral interstitial site [1]. So, two different
properties of the fullerene depend on the concentration of impurities:

i) the conductivity property — whether it is a semiconductor or a supercon-
ductor,

i) the conductivity property — the existence of the superconducting phase in
the normal semiconducting phase where the former one results from the density
of the Cooper pairs.

Thus, any description of state of the fullerene when the superconducting
phase also exists, seems to be very complicated. For the thermoelastic and doped
fullerene Cgg in which relaxation of thermal field, diffusion and electric current
is observed, the vector of state (the set of independent variables) concerning any
conductivity phase can be generally presented in the form (extended irreversible
thermodynamical (EIT) model)

(2.1) A={e/R,TNT, e, Va1, %3}

where £ is the linear small strain tensor, because it is difficult to expect that
within the superconducting phase existing in the relatively low temperature,
large elastic deformations are possible, R is a vector of electromagnetic field
variables (see comments below), T' is the temperature and q is the heat flux, ¢
is the concentration of impurities and j¢ is the flux of impurity mass (cf. [12]),
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N is an internal variable responsible for the generally understood electric charge
carrier density, and j is the flux of the carrier field, i.e. the electric current. The
vector R is defined as

{€,B}
(2.2) R= { or
{p,A,Vp,VA},

where £ — the electromotive intensity in the moving frame and B - the magnetic
induction, ¢ — the scalar and A - the vector electromagnetic potentials, respec-
tively. They can be equivalently chosen as independent electromagnetic variables
[3-9, 15-17]. Situation with the internal variable R and its flux j is much more
complicated. They can be defined as

{n,p,Vn,Vp} for the normal semiconducting phase [11]
(2.3) N = q and/or
{,9*, Vi, Vip*} for the superconducting phase [4-9],
{j",j?} for the normal semiconducting phase [11]
(24) j= and /or

{js } for the normal superconducting phase [3],

where n and p are the mass densities of electrons and holes in a semiconductor,
respectively, 1 denotes the complex wave function describing the entire ensemble
of superelectrons such that [2]

(2.5) nS =yt = |y?

is the probability density or local density of superelectrons (¥* is the complex
conjugate to v) [2], then j® and j” are the fluxes of electrons and holes in the
semiconducting phase and j° is the flux of superelectrons (the Cooper pairs) or
simply supercurrent. Remark that in R (2.2), either electromagnetic variables or
electromagnetic potentials are responsible for electromagnetic field, contrary to R
(2.3) and j (2.4). ® and j can be taken in their full not alternative forms creating
the set of independent variables (the vector of state) for the semiconducting
normal phase and the superconducting one.

Another comment is necessary to be mentioned here. It deals with the time
evolution of R and j. In a case of the semiconducting phase we have the laws
of conservation of electron and hole as the evolution equations for j* and j*
as related to relaxation semiconductors [11]. For the superconducting phase,
the evolution equation of the wave function ¢ is the generalized Schrédinger
equation, then the generalized first London equation describes the evolution of
the supercurrent j5 [2].
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3. Extended-like thermodynamical model

From now on we confine our considerations only to the semiconducting phase
of a fullerene. The semiconducting normal phase of that material can be described
within one of the existing thermodynamical models of deformable semiconduc-
tors (see [11], for instance). To obtain a description of both the semiconducting
and superconducting coexisting phases of the fullerene, one has to superpose the
model presented below with that proposed, among others, in [11]. We aim at
investigating a thermoelastic (for the reason mentioned before) superconducting
fullerene in which the impurity (mass) diffusion occurs and the relaxation fea-
tures of supercurrent, thermal and diffusion fields are taken into account. The
latter one is included in the model only for formal reasons. Finally, it will be
dropped out by the use of a proper gauging (the relaxation time of the mass
diffusion field is too long as compared to the remaining two relaxation times
concerning the supercurrent and the thermal fields). Electromagnetic proper-
ties resulting from possible electrical polarization or magnetization are excluded
from our considerations. For such a fullerene body, its superconducting state
is described by the following set of independent variables (the vector of state)
selected from (2.1) - (2.4):

(31) = {51‘3';‘19, A;‘-T,T.:"C,C.is‘!/-’sﬁ“,w.i,’»b;sf}isjfvjf}

and all of them are evaluated at the same point and time. Also all the fields
in (3.1) as well as the fullerene are assumed to be continuous. The physical
processes occurring in the above-defined situation are governed by three groups
of fundamental laws. The first group concerns the balances of mass, momentum,
moment of momentum and internal energy.

The balance of diffusing (impurity) mass resulting from the continuity equa-
tions for the constituents (impurities and a fullerene) reads [12]

(3.2) 0é + e = 0.

The superimposed dot denotes the material time derivative.
The momentum balance for nonpolarized and nonmagnetized body with other
electromagnetic interactions takes the form (cf.[13, 15-17])

(3.3) oVk — Ojkj — €kijjiBj — fr = 0,

where vy is the velocity of the body point, o denotes the stress tensor and fj
is a body force density.

The moment of momentum balance is assumed in its classical form that indi-
cates the symmetry of the stress tensor for any spin, and skew-symmetric features
can be omitted in the fullerene crystal entity [1, 13, 14]:

(3.4) €ijkojk = 0.
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However, we must remember about the domain structure of superconductors,
because the conductivity and superconductivity phases coexist. Hence skew-
symmetric features of the fullerene may occur during deformation processes.
Moreover, the vortex properties of the magnetic flux in the superconductors also
give a contribution to the moment of momentum [2]. So, the balance (3.4) is
understood as the first approximation in the description of interactions between
the mechanical and other physical fields in fullerenes.
The internal energy balance is taken in the following form [3-9, 12, 15-17]:

(3.5) oU — 0ivij + Qe — ji€i — or = 0,

where U denotes the internal energy density per unit mass and r is the heat
source distribution density.

The second group of laws deals with the electromagnetic field. The Mazwell
equations are taken in their classical form disregarding the displacement current
and the free charge density [2]:

(3.6) fijkEk,j + % =0,
(3.7) €ijkHy,j — ji = 0,
(3.8) Brx = 0,
(3.9) Dix = 0.

The above laws must be complemented by the relations

(3.10) & = Ei + € B,

(3.11) Gi= g+t +if =3 +3f
(3.12) By =—p)— %%‘

(3.13) By = €ijAji,

(3.14) Dy = €Ey,

(3.15) By = poHy .

7V denotes the normal current which satisfies Ohm’s law in conductors and
additionally in semiconductors, the diffusion law of the charge carriers, € is the
permittivity of the fullerene and g is the permeability of vacuum.

The third group of fundamental laws concerns the time evolution of internal
variables and fluxes. So, we postulate the following equations:

e the evolution equation for the heat flux

(3.16) 4k — Qx(C) =0,
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e the evolution equation for the wave function

(3.17) P —w(C) =0,

and its complex conjugate
(3.18) b —w*C) =0,

o the evolution equation for the mass flux

(3.19) Jk —Ji(C) =0,

and the evolution equation for the supercurrent

(3.20) ik —Ji(€) =0.

The superimposed asterisk denotes the Zaremba - Jaumann time derivative. We
must comment on the relation of Eqs. (3.17) and (3.18) with the supercurrent
density jf , the density of the superelectrons n° and eventually Eq.(3.20). On
using the relation (2.5) and the evolution equations (3.17) and (3.18), we ob-
tain [2]

on’

(3.21) o Jek = N°(C)

which may be treated as the balance of superelectrons, where
(322) Rk~ N5(C) = (¥ + %) — [B"(C) + $2* (C)].

Equation (3.21) is a generalization of the conservation law for the Cooper pairs
[2] to external influences of various physical fields. The source-like term in (3.21)
NS (C) is assumed to vanish if there are no influences of the elastic, thermal and
mass diffusion fields on the state of the fullerene. It means that in such situation
the superelectron charge is conserved. If we want to describe the processes con-
sidered above in a proper way, we must demand that they should be admissible
from the thermodynamical point of view, i.e. they should not contradict the sec-
ond law of thermodynamics. The latter written in local form, takes the form of
the entropy inequality

(3.23) 05 +Brp— 7 20,

where S denotes the entropy density and @y is the entropy flux associated with
the fields of the set C. As a matter of fact, if we define the set

(3.24) Z {04, 1 U, Qu, 0, 0" J, JE, S, &1},
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then we must look for general constitutive equations in the form
(3.25) 2= Z(C),

where both C and Z are evaluated at the same point and time (we ignore hered-
itary and nonlocal effects).

To determine the explicit forms of (3.25), Liu’s theorem [18] seems to be the
most convenient tool to use for the analysis of the inequality (3.23). For the sake
of simplicity the body forces and heat sources will be omitted in our discussion.
1€ will be defined in the sequel.

According to Liu's theorem, where all the balance and evolution equations
are considered as mathematical constraints for the general validity of (3.23), we
must introduce the so-called Lagrange - Liu’s multipliers to account for equations

(3.2), (3.3), (3.5)-(3.9), (3.16)—(3.20). The set of multipliers reads
(3.26) A= {A",A,‘:,A“,A;E,A.,E,Af’,/lf,A?,A‘”,A"”‘,Aﬁc,/lf}.

Calling F°, F?, F*, FE, FE, FB, FB, F3, F¥, F¥*, F{C, F§, the left-hand
sides of equations (3.2), (3.3), (3.5)-(3.9), (3.16)-(3.20), respectively, according
to the second requirement of Liu’s theorem, we rewrite the inequality (3.23) in
the form

(3.27) p%f- + ok Sk + Pk — {A“J'-‘c 4 AFY + ASFY + APFE + ADFE
+ APFE + ARFP + AQFQ + AVFY + A FV + ACFIC + A FE} =0

We introduce now the scalar (free energy density) potential F' and the vector
thermodynamical potential K; [10] as follows:

(3.28) F=U-TS,
(3.29) Ky = ovpF — T®.

The considerations of processes based on the above theorem for which those
potentials hold true, strongly suggest that

(3.30) A= —.

Thus the third requirement of Liu’s theorem with the use of the relations

1

(3.31) &j = 3 (uij + uj;)
aEi'

(3.32) Vji = C%J + wij
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where u; denotes the elastic displacement and w;; is the antisymmetric part of
the velocity gradient, leads us to the following groups of results:
e the multiphers

(3.33) AL=0, AF=0, Af=0, AP=0, Af=
A¢ = —iln,uf A9 = _Lpe AJC = —%Hf,
(3.34) : 11” :
Y — ¥ Sl & (P
A TH i A TH Ay 7k 5
e the laws of state
oF oF oF S oF
335 oy’ B " By M TOEE
oy, 3__6_F B . BE
= aq-.s a'.r‘{ = Ay ,f- = 3c 1
e the affinities
Q@ _ OF c_ 0F s_ OF
1 Qaqi1 1 983::! 1 QBJL )

dF JdF JF oF
), el (i
= % ~ \Poun ) “opr ~ \%39r ),

e the laws of processes

9K 0K 0K OK

b=der O =0 =0, — =0,

b ol e

BKk aKk aKk
3.37 Y5 - e m R ko
( ) dg; & 6; B"b‘i aw.i

0K S k

—_— = TPy = u°d; ol

6j!$ Hi, Ufn 6jf »u’ ik + U’\. i 1

and
o the residual inequality

0K} 0P, ad
(3.38) —a—m+3“s0+TaAAm+Ta,1fT
IP;. 3KL 0Ky . Nip
TG gy A gt RS
= O8Qi-BEIL - mPIf - ﬂ'f"z"’ H'ﬂ*ag; > 0.
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The particular analysis of the above results shows that:
e the free energy density takes the form (cf. [6, 17])

(3.39) F =FN 4 FS,
(340) FN == FN (Eij, T,C, Q!!JICJ;S‘) )
(3.41) Fo=p" (Eij.T, ¢, Ai, 9, 1!".1!%,1%'1) .

e the entropy flux after integration of relations (3.37) with the aid of (3.29)
and the detailed investigations of the inequality (3.27), is as follows (cf.[6, 17]):

(3.42) & = Y + D7,
1 =
(3.43) Py = T (g — KJk) »
1 9 oF
3.44 S = :
(3.44) Py T(Jk+9!!) ¢+Qaw.¢)

Remark that FV and F° as well as (Pf and éf are independent of each other.

We see that the dissipation (cf. (3.38)) due to the supercurrent comes from
the following reasons:

e the changes in time and interactions of the Cooper pairs density with the
fields from the set C (see (3.21),

e the relaxation properties of the supercurrent (cf. (3.20)),

¢ the quantum side of the superconductivity phenomenon.

To this end, the general extended thermodynamical model of superconduct-
ing, elastic and doped fullerenes has been completed. We see that the model
extends the relations obtained in [3-9, 15-17] on the influence of impurities on
conductivity properties and includes, consistently with the theory, the relaxation
of the supercurrent.

If we, however, decide that the gauge can be chosen such that the scalar
electrical potential vanishes (see (3.22)) [9], then we follow the experimental
observations that the supercurrent exists reasonably long in time and we assume
the local density of Cooper pairs to be constant (this approach is true in many
practical situations where the local fluctuations in density of superelectrons in
steady state are of such length and time scales that are too small to be of
engineering interest [2]), the residual inequality (3.38) can be approximated by

9D, 0P, 0Py,

(3.45) TaAiA k+TaTTk+T3—ck+Jl £&—H3Q;—mPIE >0,
That situation leads to the following relations (cf. [2, 6]):
oF oF
(3.46) A ( _) =10
931/) Qaip’k k
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JdF oF
3.47 oS 1l R
Ml “oy* (93 :-‘C),k
(3.48) 38 =i,
IK}. a 0K} B
(3-49) F 0, ot 0
and
oF
3.50 — = 0.
= o5~

The latter result indicates that when the relaxation of the supercurrent fluid is
not taken into account, the classical nonequilibrium thermodynamical model is
sufficient to describe a superconductor. However, the extended - like thermo-
dynamical model is, in general, much more complete. It includes all the basic
equations dealing with the physical interactions in superconducting fullerenes
described in the paper, i.e. when the proper constitutive theory in particular
situations is developed, we obtain

e from (3.3) — a generalized form of the equation of motion,

e from (3.5) — a generalized form of the heat conduction equation,

e from (3.2) and (3.19) - a generalized form of the mass diffusion equation,

e from (3.6) - (3.9) — a generalized form of the equation of electromagnetic
field distribution,

e from (3.17) - a generalized form of the Ginzburg- Landau equation,

e from (3.20) - a generalized form of the first London equation,

e from (3.20) and (3.6) — a generalized form of the second London equation
(cf. [2]) that is consistent with the Meissner effect.
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