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THE PAPER deals with the nonlinear theory of thin shell structures in the presence
of irregularities in geometry, deformation, material properties and loading. The ir-
regular shell is modelled by a reference network being a union of piecewise smooth
surfaces and space curves, with various fields satisfying relaxed smoothness, dif-
ferentiability, and regularity requirements. Transforming the virtual work principle
postulated for the entire reference network, the corresponding local field equations
and side conditions (boundary and jump conditions) are derived. It is shown that no
more than four static and work-conjugate kinematic jump conditions can correctly be
formulated whenever the shell deformation is assumed to be entirely determined by
deformation of the reference network capable of resisting to stretching and bending.
This assumption includes various special formulations of the Kirchhoff-Love type
theory of elastic shells, as well as their substantial generalizations accounting for
finite strains and inelastic deformations.

1. Introduction

THE NONLINEAR theory of thin shells is well developed for an idealized shell
structure defined through a reference surface consisting of a single, smooth and
regular surface element (see [1] and references given there).

Real shell structures usually contain folds, stiffeners, branches, self-intersec-
tions and additional design elements which make some fields non-smooth or dis-
continuous along specified curves on the reference surface. The shell deformation
itself may not be smooth along some curves, and stiffeners, branching regions or
technological connections may possess their own mechanical properties. All such
problems of thin shells are referred to in this paper as irregular ones. In order to
model and analyze such irregular shell problems it is not enough to formulate the
local equilibrium equations, kinematic relations and boundary conditions supple-
mented by appropriate constitutive equations. In addition, we have to provide
some jump conditions along the singular curves.

In an engineering approach to the problem [2-5] the irregular shell structure
is first divided into regular parts, and each part is modelled separately by various
known analytical or numerical methods. Then the regular parts are assembled
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back into the whole shell structure by adjusting boundary conditions of the ad-
jacent regular shell parts along the junction, with account of possibly different
mechanical properties of the junction itself, if necessary. Such an approach re-
places the problem of modelling and analysis of the whole irregular shell structure
by another problem of an assemblage of its regular parts analyzed separately. In
this alternative approach any particular assembling technique (which may de-
pend upon the solution method applied) should be regarded as an additional
mechanical postulate and can lead to different forms of the jump conditions. It
is not apparent under which assumptions, or whether at all, both the problems
are mechanically equivalent. Take the very popular finite element method as an
example. Various shell finite elements can be used to model regular parts of the
shell structure, and several techniques can be applied to assemble the regular
parts modelled by the finite elements into the whole irregular shell structure. A
critical review of various assembling techniques [6, 7] suggests that each of them
is element-dependent and applicable to a limited class of shell problems.

The aim of this paper is to reveal the general structure of the jump conditions
appropriate for the nonlinear theory of thin irregular shells. The irregular shell
structure is modelled here by a material surface-like continuum, called a shell
reference network, capable of resisting the stretching and bending. Such a model
includes the classical Kirchhoff-Love type linear and geometrically nonlinear
theories of thin elastic shells [1], finite strain theories of rubber-like shells [8, 9]
and the theory of elastic-plastic shells undergoing finite strains [10]. The network
is composed of piecewise smooth surfaces and space curves. Each space curve in
the network may represent a singular surface curve, but also a one-dimensional
continuum endowed with its own mechanical properties. Then the principle of
virtual work is postulated in the entire reference network, with various fields
in principle satisfying the relaxed smoothness, differentiability and regularity
assumptions. The non-standard transformation of the principle leads to the lo-
cal Lagrangian equilibrium equations and boundary conditions known from the
theory of thin regular shells, [1]. Additionally, along the singular curves we ob-
tain the general form of four jump conditions appropriate for the theory of thin
irregular shells. The jump conditions do not depend on the solution methods
or assembling techniques applied, and are valid for unrestricted displacements,
rotations, strains and/or bendings of the reference network.

2. Basic postulates

A consistent formulation of field equations and side conditions (boundary and
jump conditions) for thin irregular shell structures can be based on the following
two postulates:

1. The deformation of the entire thin irreqular shell structure is determined,
within a sufficient accuracy, by the deformation of a distinguished material sur-
face-like continuum, called the shell reference network.
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II. The equlibrium conditions of the entire thin irreqular shell structure are
determined, to within a sufficient accuracy, by the principle of virtual work for
the network capable of resisting the stretching and bending.

The first of these postulates is kinematic in nature and can be regarded as
definition of the thin irregular shell structure. The second one should be regarded
as the basic dynamic postulate of the theory. Both postulates are independent
of specific constitutive equations needed to model particular classes of materials.

Let us denote by M an undeformed configuration of the reference network
referred to in the Postulate I. Then, formally, the principle of virtual work for
the irregular shell structure modelled by M can be written in the form

(21) g = gint by gext = gf‘ =0,

where Giy: stands for the internal virtual work, Geyx; denotes the external virtual
work, while the term G has been included in (2.1) to account for an addi-
tional virtual work due to generalized forces and moments at the shell junctions,
multiple-shell intersections and other singular curves denoted jointly by I'.

Within the classical theory of smooth shells, the undeformed configuration
M c & (€ denotes the three-dimensional Euclidean point space, i.e. the physical
space, and E denotes its translation space) of the shell reference surface is as-
sumed to be a connected and oriented regular surface of class C? or higher, with
a piecewise smooth boundary dM. A typical point of M is then identified by the
position vector relative to the origin of a fixed Cartesian coordinate system in
the space. For simplicity, we shall use the same symbol Y for points on M and
their position vectors. A deformation of M is described by a map x : M = €,
which carries each surface point Y € M into its spatial place

(2.2) y =%x(Y) =Y +u(Y)

in the deformed configuration m = x (M) of M, where the spatial vector field u :
M — E denotes the associated displacement field. In the classical theory of thin
smooth shells one also assumes that the deformation map % is globally invertible
(on the codomain m = x(M)), is of class C* or higher and admits the extension
of the same class to the boundary dM. Thus, the surface deformation gradient
F = P Gradyx, where P is a perpendicular projection [11] on the tangent plane
Tym, is well defined at each point of M including the boundary, is continuous
at all interior points of M and has continuous extensions to the boundary.

In this paper all concepts, including surface differential operators relevant to
the smooth surfaces, are understood in the sense defined in [11, 12]. Additionally,
we assume that M can be described locally in the parametric form Y = Y(£P),
where (¢7, B = 1,2) are surface coordinates chosen in any convenient way. Then
the natural base vectors A, and the unit normal vector A,, at each interior point
Y € int M, the metric tensor A and the curvature tensor B are defined in the
usual manner [1].
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The regularity assumptions stated above for the smooth surface M are too
restrictive if various geometric, material and kinematic irregularities are to be
admitted. These regularity assumptions may be relaxed in many ways. For a
wide class of shell structures it can be assumed that the undeformed reference
surface M is only piecewise smooth of a suitable class (the relevant mathematical
definition can be found in [13]). Parallelly, we may also admit the deformation x :
M — & of the reference surface to be only piecewise smooth of a corresponding
class. Therefore, the theory of irregular shells developed here relies on concepts
of piecewise smooth surfaces (and some generalizations thereof) and of piecewise
smooth surface fields largely based on our paper [12].

3. Geometry and deformation

Various irregularities encountered in the analysis of irregular shell problems
can be grouped into three broad classes, [12]: 1. The undeformed configuration
of the shell reference surface is not smooth (thus it may contain folds) or it
is not a surface in the classical sense (for example, two smooth intersecting
surfaces do not form a surface as the whole). Such irregularities may be called
geometric. 2. Deformation of the shell reference surface (smooth or not in the
undeformed configuration) fails to be smooth. We may refer to this kind of
irregularities as kinematic, since they are associated with the deformation. 3. The
shell structure cannot be considered as a single shell (smooth or non-smooth and
undergoing smooth or non-smooth deformation) but rather as a union of some
number of single shells interconnected along junctions. This type of irregularities
may be called mechanical, because the junctions may have their own mechanical
properties possibly quite different from the properties of the adjacent shells. The
basic assumption made in the three cases is that all irregularities are restricted
to distinct curves and points (i.e. to sets of zero area measure) on the shell
reference surface-like continuum. Under this assumption, all the three classes of
irregularities can be considered at once as follows.

In the most general case, the undeformed configuration of the reference sur-
face-like continuum can be defined to be a network M C & consisting of a finite
number of surface elements M*), k = 1,2, ..., K, with the following properties:

1. Each M*) is a bounded, oriented, connected and smooth surface of class
C", n > 2, whose boundary dM (%) consists of a finite number of closed Jordan
curves oriented consistently with M) that do not meet in cusps.

2. No two distinct surface elements M*) have common interior points.

3. Two or more distinct surface elements M*) may have a spatial curve rt
as a common part of the boundaries. Such a curve is defined by

31) '@ =aM*E)nomM*In...naM*)  if ki #Fka# .. kn.
4. Two or more distinct curves I'®) may have in common only single isolated

points.
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el We then define the network M as the union of all closed surface elements
M®*) = M® yaM®*) and by I' we denote the union of all curves '@, Tt is
clear that I' C M. Moreover, the boundary @M of M, defined now by

K
(3.2) oM = ( U BM(”) \T,

k=1

consisis of a finite number of Jordan curves (not necessarily closed).

Each M™®) can be regarded as the reference surface of a regular shell part.
Each I can be regarded as representing a geometric surface curve (e.g. a fold or
a curve in M across which some fields fail to be smooth), but also a reference axis
of one-dimensional continuum (e.g. an axis of a rod-like element) representing
a multiple shell intersection, a technological junction, etc., whenever they are
assumed to have mechanical properties of their own. In the former case we call
I'®) a geometric singular curve, and in the latter case — a physical singular curve.
Because geometric curves are just a special case of physical curves, no distinction
will be made in the general considerations and the two cases will be considered
at the same time. The geometry of each smooth surface element M*) and its
boundary OM*) hence the geometry of the curves '@} can now be described
by the methods of classical differential geometry.

In general, any deformation of the reference network M is described by two
maps X : M\I" = € and X : I' = £, since the singular curve I' may be admit-
ted to follow its own deformation. We shall assume that the deformation x is a
continuous function over each smooth surface element M*) and differentiable of
class C? in the interior of M*) (in the relative topology). Under these assump-
tions the surface gradient F exists at every point Y € int M%), However, we
shall not assume a priori that the deformation % is continuous across the singu-
lar curve I" or some parts thereof. Accordingly, we regard x as being defined for
all points of M except possibly for points belonging to I". We shall then assume
that the deformation map x has a finite limit at every point Y € I,

(33)  y® =x®(Y)= lim x(Z) =Y+ Jim u(z), ze M),

whenever I is a part of the boundary 9M*). However, in many cases the function
x may be defined on an entire M and the deformation x - is then the restriction

of x to I', i.e. Xr =Xr-
4. Virtual work expressions

Within a formal (axiomatic) approach, the internal virtual work Giy, is as-
sumed to be a real-valued, additive set function over measurable subsets of the
reference network and an absolutely continuous function with respect to the area
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measure (line and area measures are understood in the sense of Hausdorff mea-
sure). Under these assumptions the internal virtual work Gi,; can be written as
the sum of virtual work expressions over all mutually disjoint smooth surface
elements M ().

(4.1) Gint = ,‘3;3 - Z f / WidA,
V0]

where W; denotes the internal virtual work density per unit area of the unde-
formed reference network M.

Similarly, the external virtual work Geyt can naturally be written as the sum
of two parts, which account for the virtual work of the external surface forces
and moments and the virtual work of the external boundary forces and moments,
respectively:

(4.2) A fow dA,+ [ w.ds.

k pky oMy

Here W, denotes the virtual work density of external surface forces and moments
measured per unit area of the undeformed reference network M, while w, denotes
the virtual work density of external forces and moments applied to a part dMy
of the boundary oM.

Consistently with the postulate (I), each regular part of the undeformed irreg-
ular shell structure is modelled by a smooth surface element M (k) the deformed
configuration of which m*) = x(M®)) is determined by the position vector
y = x(Y) and the field n(x(Y)) of unit normal vectors specifying its orienta-
tion. Moreover, by virtue of the classical theorem of differential geometry, two
symmetric surface tensors [1, 8-10]

1
[ = (FaF-A) =[pA*® A%, Lup= (005~ Aas)
(4.3)
K=~ (FTbF = B) = KogA @ AP,  Kop=—(bag — Bap)

provide the Green-type measures of the local strains (stretching and bending) of
the reference surface element M*). Here a and b denote the metric and curvature
tensors of the deformed surface element m®*), respectively.

When dealing with virtual deformations of the shell reference network, we
may consider a one-parameter family of deformations y = x(Y,t), where t is
a scalar (time-like) parameter. We then denote by v =y = 1 and w = n the
virtual displacement of the reference surface and the virtual change of the unit
normal, respectively. The virtual changes of the local strain measures (4.3) are
r=r apA® ® AP and K = K(,gA“ ® AP. It is now obvious that the simplest
expression for the internal virtual work density W; must be of the form

(4.4) W;=N-T + M-K = N*T" .5 + M*’K .3,
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where N = N*A, @Az and M = M‘f‘ﬁA@JAﬁ are the symmetric stress resultant
and couple surface tensors of the 2-nd Piola- Kirchhoff type.
The virtual work density of the external surface and boundary loads can be

represented by invariant expressions as in the classical theories of thin smooth
Kirchhoff - Love type shells [1]:

(4.5) W.,=pv+hw, we =T v+ H"-w.

Here p and h are the external surface force and moment resultant vectors referred
to the undeformed surface element M%), while T* and H* are the external bound-
ary force and moment resultants referred to the undeformed boundary M.

5. Equilibrium equations and boundary conditions

Derivation of the local equilibrium equations and boundary conditions for
thin regular shells may be found in many papers (see e.g. [1, 8-10]). The same
procedure, under suitable regularity assumptions, can essentially be applied to
each smooth surface element M*). Accordingly, we present below only the main
steps of this derivation.

The virtual strains can be obtained by varying the components of the strain
tensors (4.3). At each internal point of M*) the field of unit normal vectors n can
be expressed in terms of first derivatives of the displacement field, n = n(ug),
since it must satisfy the three geometric constraints, ag-n = 0 and n:n = 1,
where ag are the natural base vectors of m*) = x(M*)), Variations of these
constraints lead to w = —(n-v g)a’. Then, it is not difficult to show that the
internal virtual work density (4.4) can be written in the form [1]

(5.1) Wi=T vz + (H W),
where the generalized stress resultants T# and couple resultants H? are defined by
(5.2) % = N%aq + M*Pn o + (M%) 0-a"|n, B = M*Pa,.

Here ()|, denotes covariant differentiation in the undeformed metric A,g3.

The tensors T = TP ® A and H = H? ® A4 are assumed to be of class C1
in the interior of each smooth surface element M*) and to have extensions of
the same class to the boundary 9M®) with finite limits T*)(Y) and H*)(Y) at
each point Y € 9M*). Then the surface divergence theorem can be applied on
each smooth surface element M*) to give

(5.3) f] W;dA = —f/(DivsT)-vdA—i- f (2)-v® 1+ BE . w k) as,

M%) M k) aM(k)
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where Div,T = Tﬁw at every interior point of M) Ty‘} = T®ly(k) and HE,M =
H*y(*) at the boundary point Y € aM*), with v(¥) denoting the unit outward
normal vector along M ¥).

In the same manner, the external surface virtual work density (4.5); can be
rewritten in the form

(5.4) We=l-v—[[h-a§]n-v]|3‘ lEp—l—[(h'a’g)n]]_g

and

(5.5) [f (p-vth-w)dd = f/ Iy dA — ] ((6®-p®)n®) .v®) as,
M) Mk) oM (k)

where p = a’v;.

Along the boundary M ¥) of each smooth surface element M¥)| the surface
gradient Grad,u of the displacement field can be decomposed into tangential
and normal derivatives (under the assumption that Gradsu admits a continuous
extension to the boundary M *)):

Gradu=u,Qv+u ®T,
(5.6) ki v

u_,, = (Gradsu}v = u,ﬁyﬂi 'I.I.III = (Gradsu)‘l‘ = u'ﬁ'r'gv

where T is the unit tangent vector of 3M*). From (5.6) it follows that the field
of unit normal vectors n along dm*) = % (dM*)) can be regarded as a function
of uy, and v/, i.e. n =n(u,,u'), subjected to only two independent constraints

(5.7) yn=(r+u)n=0, n-n=1.

As a result, n = n(u,,u’) along M *) is expressible through u’ and a scalar
function ¢ = ¢(u,,u’) describing the rotational deformation of the shell lateral
boundary surface. The structure of the function ¢(u,,u') was discussed in [14,

15], where the general expression for w = n in terms of ¢ = d; and v’ was derived
in the form

(5.8) w=qp+Lv, q(¢,u)=0sm, L(¢,u)=0dun

Explicit expressions for the vector-valued function q = q(u,,u’) and the tensor-
valued function L = L(u_,,u’) depend on the particular definition of the scalar-
valued function ¢ = ¢(u,,u’) employed.

With the help of (5.8), the second term in the line integral of (5.3) can be
transformed further to

(5.9) f HY.wlk) 4§ = f (=£®. (v + HOH®) ds,
oM (k) aM k)
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where
(5.10) £f6) = _1TH®  HE = q.BHF,

Along each 9M*) there may be singular points (e.g. corner points) Py, a =
1,..., A, described by § = S,, at which the field f¥).v(*) is not differentiable. At
such points we assume the existence of finite limits of f ¥) and v(¥) defined by

(5.11) flk)E = Aix%f(k}(sa +h), vE= lim vi¥)(S, + h).
- —0

Then the line integral (5.9) can be transformed by applying the integration by
parts leading to

(5.12) [ W;dA = -f (Div,T)-vdA + /(PL*’-V“" + H®) pk)) g8

M (k) M (k) aM (k)
bY (O ),
PaedM(k)
where
(5.13) P =1k 4 (g Ry,

By virtue of (5.12) and (4.1), the internal virtual work for the entire reference
network M can be written in the form

B G / (Div,T) vdA+f(P v+H(,o)dS+/ [P, -v]+[H¢]) d

oM
+ Z [f-v]; + Z [£-v]p.

F;el’ P,edM;y

Here the jump [P, -v] at each regular point Y € '@ = '(1.2--m) of the common
curve for n > 2 adjacent surface elements M*) is defined by

(5.15) [P-v] = 2P .v(V) £ P .y(D) 4 4 pP(n).y(n)

with the jump [ Hy] being defined in the same way. The signs in the definition
(5.15) must be chosen consistently with a fixed orientation of the curve I'(®).
If the orientation of I'(*) coincides with the orientation of the boundary curve
OM™*) | then the sign “—” must be chosen for the corresponding term and the
“+" sign otherwise. If we denote by T the unit tangent vector specifying the
orientation of the curve F(“), thenv(®) = +TpX AS{‘), and the sign must be chosen
in such a way that the boundary &M *) be consistently oriented with M(¥).
The jumps at all singular points of M have been divided in (5.14) into the
jumps [f+v]; at the internal points P; € I', i = 1,..., I, and the jumps [f-v], at the
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boundary points P, € M. At each internal point P; being the common point
of m > 2 adjacent branches ' of I', and at each boundary point P; being the
common point of ¢ > 2 adjacent parts dM®) of AM and adjacent branches I"(¢)
of I' approaching P, from inside of M, these jumps are defined by

(8 R Al R S A

, a4
(5.16)  [f-v], = 2EMEGDE L gOF OE 4y glOF SO

B At S AL S R S AL

VE2 m}:l:.vgm]:i:,
V(2

Similar transformations can be applied to the external virtual work, which gives

B G =//l-vdA—/[[(h-p.)n-v]]dS+ f ({P* = (h-p)n}-v+H*p) dS
5 i

M\T aM;

- [ mwmevds+ X (v,

aMd P;,EBM;
where OMy = OM\OM;y is the complementary part of 9M, and
(5.18) f=-1L"W* H'=qgH, P'=T"+().

The jumps [(h-p)n-v] along the common curve I'“) for n > 2 adjacent
surface elements are defined analogously to (5.15). However, the jumps [f*-v];
in (5.17) take into account only those limiting values which are obtained by
approaching P, along branches of the boundary dMj;. If the boundary point P,
is a common point of ¢ > 2 adjacent parts IM(?) of 9M and ¢ adjacent branches
of '@ of I', then

(5.19) [£5-v]p = £ 0 GUE 4 po@)E (0% 4 4 gl O

Introducing (5.14) and (5.17) into the principle of virtual work (2.1) we obtain

(5200 - f/ (DivT +1)-vdA

M\T
+ f ({(P, —P* + (h-pn}-v+ (H—Hp) dS+ 3 [(E—£)-v]s
oM; P,edM;
+ f ({P, + (h-p)n}-v+ Hp) dS + Z [f-v]y
aMy PyedMy
+ [ @Py + (ewn}-v] + [Hol) dS + ¥ [f:-v)i = Gr = 0.
! i el
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For arbitrary but kinematically admissible virtual deformations, the fields v
and ¢ vanish identically along 9M,. Then, from (5.20) we obtain the Lagrangian
local equilibrium equations

(5.21) DiviT+1=10 at each regular Y € M,
and the static boundary and corner conditions

P,—P"+(h-pn=0, H-—H"=0 alongregular parts of dMy,

(5.22) )

f—f, =0 at each singular point P, € dMj .
Correspondingly, the work-conjugate geometric boundary conditions take the
form

(5.23) =1 ¢=¢" along dMy.

As it has been expected, the local equilibrium conditions for thin irregular
shells are the same as in the classical nonlinear theory of thin smooth shells [1].

6. General form of jump conditions

The new aspects of the theory of thin irregular shells, as compared with
regular ones, lie exclusively in the concept of jump conditions needed, besides
the constitutive relations, to obtain the complete formulation of the boundary
value problem. The considerations of the previous section have shown that if
the equilibrium equations and boundary conditions hold, then the principle of
virtual work (5.20) asserts that

(6.1) /([[{PU—I— (h-p)n}-v] + [He]) dS+ S [f-v)i — Gr = 0.

I Pel

Equation (6.1) expresses the most general form of jump conditions in the
weak form, and all considerations leading to (6.1) provide an unambiguous in-
terpretation of the final results. No other results or consequences can be obtained
when one applies the two hypotheses from Sec. 2, on which the whole theory of
thin irregular shells is based. The weak form (6.1) of the jump conditions must
hold for all cases, whether the irregularities are of geometric, kinematic or static
nature, and (6.1) is entirely independent of the mechanical properties assigned
to the curve I' and the points P;, P,. Of course, so far we have not said any-
thing about the possible physical meaning of the curve I" and the points P;, P,
because our aim has been to include as many special cases as possible within
this general framework. Moreover, at the beginning of the analysis, no a priori
information about the form of Gr has been at our disposal.
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In general, the I'(®) are either geometric or physical curves embedded in the
shell reference network M. In the first case, each I"'®) represents simply a geomet-
ric curve on M, across which some surface fields fail to be continuous or smooth
of the required class. In the second case, each I'®) is said to be a physical curve
in the sense that it can be equipped with specific physical properties possibly
quite distinct from the mechanical properties of the regular shell parts. Such a
I'®) can model various physical situations encountered in real shell structures.
The same applies to points P; and P,. In either case, it becomes obvious that the
most general form of the virtual work expression Gr allowed within the theory
of thin irregular shells is

(62) 6r= [or(¥)ds+ ¥ i,

I P,err

where op is the virtual work density along regular parts of the curve I', and o;
is the virtual work at any singular point of I". The functions oy and o; must be
specified in each particular case of the irregularity.

In view of (6.2), and taking further into account that the equation (6.1) must
hold for each curve I'(®) as well as for every part of it, we obtain the corresponding
local form of the jump conditions:

(6.3) [{P,+ (h-p)n}-v]+[He]—or =0, atregular points of I,
(6.4) [f-v]; —o; =0, at each internal singular point P; € I

The jump conditions (6.3) and (6.4) constitute the additional set of local relations
for thin irregular shell structures to be satisfied along the singular curves I'.

The jump conditions (6.3) and (6.4) are valid for unrestricted displacements,
rotations, strains and/or bending of the reference network M. Their general form
depends neither on the assembling techniques nor on the solution methods ap-
plied. For special types of irregularities, the jump conditions can be considerably
simplified and presented in a more explicit uncoupled form. Such particular forms
of the jump conditions appropriate for only geometric irregularities (folds, inter-
sections, rigid junctions) and for some simple kinematic irregularities (elastic and
visco-elastic junctions) will be discussed in [16].
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