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Dynamics of quantum vortices in superfluid ‘He
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T. LIPNIACKI (WARSZAWA)

THE DISSIPATIVE motion of quantized vortex line, after reconnection, is studied within
the localized induction approximation. The numerical simulations of vortex line evo-
lution help to determine the rate of the line-length changes. In the absence of coun-
terflow, the vortex line shortens after each reconnection and line-length reduction is
calculated as a function of friction parameter a and reconnection angle . The ob-
tained results sugest that the decay of quantized vortex tangle is due to line-length
reduction which occurs after each reconnection of vortex lines. In the presence of
the counterflow, however, the reconnection may initiate a generation of a cascade of
vortex loops. These loops blow up, so the total length of vortices grows up and the
quantum turbulence can be generated.

1. Introduction

THE LANDAU’S two-fluid theory [1] is the basis of our understanding of the
peculiar flow properties of ‘He below the A-point. Acording to this theory, He
IT (superfluid “He) is a sum of the Bose condensate (superfluid component) and
the gas of thermal excitation (normal component). The rotationless flow of the
superfluid component is violated on one-dimensional singularities called quantum
vortices (Fig. 1), (FEYNMAN [3], ONSAGER [2]). The circulation of the superfluid

. (31))

FicG. 1, Vortex line with a triad of vectors characterizing the instantaneous local
configuration of the curve s(,t).
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468 T. LIPNIACKI

velocity about these lines remains constant, k = h/myge = 9.97 = 10~ %cm? /s,
where h is Planck’s constant, and my is the mass of helium atom. The curve
traced out by a vortex filament may be specified in the parametric form s(&,t)
with ¢ and € denoting time and arc length, respectively. Then the instantaneous
velocity of a given point of the filament in the localized induction approximation
is

(1.1) §=Ps' x 8"+ Vi+as' x (Vas—Bs' x ") — s’ x [¢' x (Vs — B8 x 8")],

where prime denotes instantaneous derivative with respect to &, o and o are
temperature-dependent parameters which measure the frictional force exerted
by the normal fluid on the vortex line. V,,;, = V,, — V; is the difference between
normal and superfluid velocities, and

(1.2) 5_—.i1n(—°~) as

4r agp(s")

where & is the quantum of circulation, ¢ is a constant of order one, (s”) is the av-
erage curvature of the vortices in the tangle and ag ~ 1.3¥107% cm is the effective
core radius of a quantized vortex. Although 8 has the logarithmic dependence
on the tangle density since (s”) increases as the tangle density increases, it is
usually treated as a constant. The localized induction aproximation, which de-
scribes vortex motion in a much simpler way than the Biot - Savart law, is well
justified when the local curvature is big enough that term s’ x s” is greater than
the velocity induced by other vortices, or original vortex segments. Here we will
base on the localized induction aproximation because of its numerical simplicity.

When the magnitude of relative velocity (counterflow) Vs = |V,,—V;| becomes
sufficiently large, superfluid laminar flow transforms into superfluid turbulent
flow in which the quantum vortices form chaotic tangle.

The pioneerning studies of superfluid turbulence were conducted by VINEN
(4], who proposed the mechanisms of vortex generation and decay. He observed
that in the presence of the counterflow velocity V., the vortex ring can blow
up, and that line-line reconnections (predicted by Feynman) can give rise to new
rings. Since then considerable progress has been made and the new methodology
based on careful analysis of the motion of quantized vortices using extensive
numerical simulation has been developed.

ScHWARZ simulated [6] the evolution of a vortex tangle basing on Eq.(1.1)
describing vortex motion in the localized induction approximation, and on the
assumption that vortex lines reconnect when they get close enough. Although the
obtained results are in general agreement with observation, the problem is not
yet sufficiently understood. The vortex tangle is characterized by its line-length
density L and anisotropy coefficients. Knowing those coefficients, one can calcu-
late the rate of vortex density growth or decay (Vinen equation). Schwarz has
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DYNAMICS OF QUANTUM VORTICES IN SUPERFLUID ‘HE 469

found those quantities for various « (friction parameter) as the result of numer-
ical simulations, and so has deduced the coefficients in the Vinen equation. It
is still interesting to calculate the growth and decay rates in a “simpler” way —
without time-consuming simulations of the whole vortex tangle.

The most important process which governs the vortex tangle evolution is the
line-line reconnection (Fig. 2). Schwarz simulations confirm the observation that
the density of vortex tangle depends dramatically on the assumed reconnection
probability. To see why the reconnections play a crucial role in quantum turbu-
lence, let us consider the simple evolution of a single circular vortex ring.

F1G. 2. Line-line reconnection configuration.

According to Eq. (1.1) we have:

! dR _  aof
(1.3) i ) + aVyps cos O,
de aVis .
(14) E = — R sm@.

where R is the vortex ring radius and © is the angle between V;,; and normal to
the surface containing the vortex ring. Dividing (1.3) by (1.4) and multiplying
the resulting equation by sin®, one gets:

dR . 8
(1.5) Eé—s;n@ = —Rcos@ + Voo
d(Rsin®) 3
) de " Y
_ BO+C
(-5 e Vs sin®

The line R = fO/(V,,sin @) in (@, R)-plane starting at the singular point (R =
B3/ Vns, @ = 0) separates the solutions in which R tends to infinity, from the
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solutions in which R tends to zero. Namely, if

pe
(L8) R> Ro(6) = s,
the ring will blow up and die on the boundaries, and if R < Rp(@), the ring
will contract to a point. The picture is not very different when instead of rings,
one considers ovals. This simple example shows that to sustain turbulence, the
reconnections are needed to produce new kinks which can develop into new loops
(arc segments).

The aim of this paper is to consider the vortex evolution after an idealized re-
connection, in the absence and in the presence of the counterflow V,,. In the first
case we calculate the line-length reduction resulting from a single reconnection
as a function of friction coeficient & and reconnenction angle .

The analysis of Eq. (1.1) can be done in two steps (Schwarz). First, the factor
[ is absorbed into reduced time and velocity scales 7 = ft, v = V/[3 to yield

0
(1.9) a—i =8 x 5"+ v, +as' x (vps— 8" x ") — s’ x [s' x (vps — &’ x "))
Second, this equation is invariant under the transformation in which spatial
dimensions are multiplied by a scale factor A, time by A2, and velocities by A~
If a vortex line evolution subject to the same particular velocities v, vy, 18 (€, 7),
then

(1.10) S*(Af,/\z‘r) = As(&,7)

is the solution appropriate to the imposed velocities vs/A, v, /A. It means that,
if all coordinates are magnified by a factor A, and all applied velocities divided
by A, then the vortex motion will look the same, except that the time of the
process increases by the factor of A%,

The instantaneous fractional rate of change of the line length at some partic-
ular point on a vortex is equal to §'-§8' = (s'-v;)" — §-5". Consequently, a given
element of length A¢ obeys the law (SCHWARZ [6])

1. 94k

(1.11) T Qfvns- (8" x §") — |8' x 8"|%] — @'vps- ",
T

provided v, is constant in space. As a result, line-length of vortex filament [ =
[ d¢ satisfies the equation

(1.12) g—i = /[vns-(as' x &" — a's") — afs")?] de.
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2. Line evolution after reconnection

For the sake of simplicity we consider the reconnection problem of two infinite
straight vortex filaments (Fig. 2). After reconnection two angles are formed. We
analyse the evolution of a vortex line formed at the initial state (7 = 0) angle 2.
In fact the dynamical equation (1.1) can be used after a small time interval when
the characteristic radius of curvature at the vortex vertex becomes larger than
the radius of vortex core which is of the order 1-2 A. To study the reconnection
event on a macroscopic scale (1A) one has to use equations which model the
vortex core (eg. Ginzburg-Landau) - but such a problem is far from being
solved.

2.1. The case V,,; =0

With v, = v, = 0 Egs. (1.9), (1.12) simplyfy to

83_ I 7 " "
(21) a—T—(l—a)s X s +as,
al
2.9 o "2
(2.2) v afts |“ dg .

According to our previous considerations, Eq.(2.1) is invariant under the
transformation (1.10). Since the initial conditions are also invariant under that
transformation, the vortex configurations for times 7 and A\?7 will be similar,
with similarity scale A. In other words, the vortex line for all times will have a
similar shape, whose spatial scale D is growing as /7. It leads to the result

A
(2-3) At = A’rlf:zl [1'5”'2 d€ = ﬂ T_lfzw

where Al is the line reduction and A = A(a, &, p).

The numerical simulations where performed for various angles ¢, and for
5 sets of (a,a’) [(0.01,0.005), (0.03,0.0125), (0.1,0.016), (0.3,0.010), (1, —0.270)]
corresponding to 5 different temperatures from 1.07K° to 2.15K°. (See also
ScHWARZ [5], where line-line and line-boundary reconnections are considered.)
Also the dependence of line-length reduction on parameter o’ (with & = 1) has
been examined. The vortex line evolution for ¢ = 7/4 and a = 0.1 is shown in
Fig. 3, the subsequent plots correspond to the vortex position at 7 = 701 where
70 is arbitrary time constant and ¢ = 0,...,7. Figure 4 shows the vortex shapes
for ¢ = m/6 and two various a: 0.01 and 1. One can see that for smaller v the
vortex line is more wavy.

The simulations revealed that for realistic values of @ < 1, |@'| < 1, with
surprising accuracy, (see Fig.5)

Al - does not depend of o’ (to within the accuracy of 1%) *)

http://rcin.org.pl



472 T. LIPNIACKI

F1G. 3. Vortex line evolution after reconnection for reconnection angle ¢ = 7 /4, and
friction coefficients a = 0.1, @’ = 0.016. The line positions are shown at 7 = 1%7.

F1G. 4. The shape of vortex line for reconnection angle ¢ = 7/6 and two various
friction coefficients a; left — o = 1, right — a = 0.01. The smaller is «, the more
wavy will be the vortex line.

and
(24) A=B(p)a'?,  Al=B(p)(ar)/?

The relations (2.4) are a simple consequence of observation (*); If line-length
reduction does not depend on o' one can put &’ = 1, then the vortex evolution
equation (2.1) simplifies to

(2.5) =g
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Al
N

0.2 0.4 0.6 0.8 i &
Fia. 5. A = Al/\/T as a function of /a for two reconnection angles: p = 7/6 — upper
line and ¢ = 7/4 — lower line.

For such an evolution equation spatial dimension D and the line-length re-
duction Al are proportional to \/aT.

The observation (*) and relation (2.4) can be justified as follows. Let us ap-
proximate the vortex line by the set of circular vortex segments. The line-length
of the circular vortex satisfies the equation

(2.6) Ly = el

or R :
and is independent of . It suggests that the rate of line reduction of the whole
vortex is approximately independent of o'. Moreover let us notice that for a = 0,

the vortex evolution equation (2.1) reduces to the nondissipative one,

(2.7) ﬁz(l—oz")s"x.«;"'.
or

During the evolution governed by Eq. (2.7), the following quantities are con-
stant in time:

(2.8) | = const, [ls"|2d{ = const.

The first fact is the consequence of Eq. (1.8), and the second one can be proved
as follows: from Eq. (2.7) one obtains

« I
(29) § = SH’ % Sm + SJ % SHH f

where the dot denotes now the instantaneous derivative with respect to 7% =
(1—a')7. Now

(2.10) 8?‘* f 1s"|2 = 2/3"-.&" - 2[5"-(3’ 8 )
(211) /S"'(S’ % Smr) =4 /SH'(S, w@ sm)r o _/SH.‘_(SI % Sl‘ﬂ')‘
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provided that
2
(2.12) s"(s' x 3"’)|1 = 0.

Now, one can evaluate the vortex line step by step using the method of frac-
tional steps. In the first half of time step we solve Eq. (2.7), in the second one
we solve Eq. (2.5) using the previous result as an initial condition. The evolution
governed by nondissipative Eq. (2.7) does not change the line length and does not
change the squared curvature — which determine the rate of line-length changes
(see Eq. (2.2)) during the evolution under Eq. (2.5). Roughly speaking, although
the first term in Eq. (2.1) significantly changes the evolution of the vortex (line
shape), it does not significantly influence the rate of the line-length reduction.

If we want to calculate only the length reduction, the simplified Eq. (2.5) can
be used which is much simpler because the vortex line remains on a plane. Also
numerically Eq. (2.5) is much more stable than Eq. (2.1), so the simulations can
go faster.

F1G. 6. The vortex line is approximated by the circle arc plus two semi-straight lines
to calculate the rate of line reduction.

Therefore, function B(y), and the line-length reduction, can be estimated as
follows; let us approximate the vortex line by the sum: a part of a circle tangent
to the initial angle arms plus the rest of the angle (Fig.6). As a result, we get a
relation between the distance H and the radius of curvature R.

_ Hsin(yp)
(2.13) =1—sn(o)’
and from Eq. (2.5)

0H «
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After some algebra one gets

(2.15) By = 2?(!(;;(31(@)) g

and

s A= (ar)2B(p),

with

(2.17) B(y) = [%] i (ctg((p) Y g)

Figure 7 compares the above relation with the numerical results obtained for
Eq. (2.1).

B 1o,

8

g 0.25 0.5 0.95 1 ° 1.26 "L

F1G. 7. Value of B(yp) approximated by relation (2.17) (line) and calculated
in numerical simulations (dots) (line reduction Al = B(y)\/aT).

3_L °
8t dec i

[T S o AT < « B o ¥
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0.2 0.4 0.6 0.8 i\/E

FiG. 8. a-dependence of the decaying term [OL/8t]gec in Vinen equation (Schwarz
simulation) - dots, and square root a dependence of line reduction after reconnection.
The line is fitted to first four points, i.e. for a < 1.
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2.2. The case V,,; = const # 0

The absolute value of coefficient o' is smaller than o and unity, and the
preliminary simulations show that the last term of Eq. (1.9) does not play any
significant role in the vortex line evolution. In further analysis, for the sake of
simplicity, we put o’ = 0.

In the superfluid reference frame with v, = const # 0, &/ = 0, Eq. (1.9) reads

(2.18) §=8xs"+as"+as' x vy, .

According to the scaling properties of the above equation for each configura-
tion, the characteristic dimension D and also the line-length change Al are given
by some functions f, g.

(2.19) p = {r*tmanp)
. Uns ,

2
(2.20) Al = B(7 * v50, @, )

Uns

The quantity 7 * v2, plays the role of an effective time.

Immediately after the reconnection, when the characteristic curvature is large,
the vortex line evolution is dominated by the first 2 terms of Eq. (2.18). After
some time, when the characteristic curvature gets smaller, the last term domi-
nates the motion of a vortex.

We consider 6 characteristic configurations (Fig. 9).

%’ i S(6.1

3!

1‘

F1G. 9. Six characteristic configurations. Arrows show the direction of counterflow
velocity for each configuration.

In the configuration 1 and 1’ the counterflow velocity is perpendicular to the
initial vortex plane. In the first case, component as’ x vy, of the vortex velocity
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FiG. 10. The vortex evolution in configuration 1 (counterflow velocity perpendicular
to the initial vortex plane).

s (g
@
/ /

FiG. 11. The vortex evolution in configuration 2 for a = 0.3, a) 7 * v, = 32,
b) T *v2, = 64, ¢) T *v2, = 96, d) 7 x v, = 128. The separated vortex ring
is seen at the bottom.

[477)

http://rcin.org.pl



F1G. 12. The vortex line just before reconnection in configuration 2 for three different
reconnection angles. The vortex ring separates at 7 * v2, = 57, 79, 198 for reconnection
angles 30°, 45°, 60°, respectively.

AL-v,, ©° 30° [ 45° 60°
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AL vy 4 30° 45°
3
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0 " . A
25 30 T,
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F1G. 13. Line-length changes in configuration 2 for 3 various reconnection angles 30°,
45°, 60°. Lower figure — the same functions for small 7 * v2
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is directed outwards and the vortex lengthens (Fig. 10), while in configuration 1’
the vortex line shortens.

The vortex evolution in configurations 2,2’,3,3' is much more interesting.
The magnitude of component as’ x v, of the vortex velocity depends on the
relative angle between the direction of the counterflow, and the local tangent to
the vortex, and so it varies along the vortex line. As a result, some parts of the
vortex line move faster than the others - this starts the vortex loop formation.

In the configurations 2 and 2' the counterflow velocity lies in the initial vortex
plane and is parallel to the axis of symmetry. The self-induced velocity directs the
vertex above the initial vortex plane. If the velocity component as’ x v, is also
(initially) directed above that plane (configuration 2), the loops form easily. After
the loops are formed, the vortex reconnects with itself and vortex ring separates
(Fig. 11). The time of ring separation increases with growing reconnnection angle
¢ (Fig. 12). Figure 13 illustrates the time dependence of total line length (with
separated ring) of the vortex. Immediately after the reconnection, as we can

a)

b)

c)

F1G. 14. The vortex evolution in configuration 3. a = 0.3, a) 7 * v, = 50,
b) T*xv2, = 104, ¢) 7 *v2, = 144.
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expect from the previous section, the vortex line shortens (Fig.13b), but for
longer times the line-length increases. The smaller is the reconnection angle, the
faster increases the line length (Fig. 13a).

The configurations 3 and 3’ are symmetrical each to other. The instability
propagates from the vertex of the filament onto one of angle arms on which loops
are formed (Fig. 14). Even for reconnection angles ¢ close to /2, the instability
produces the cascade of loops (Fig. 15). For reconnection angles close to /2, the
loops lie (roughly speaking) on a cone with axis parallel to v,s. The as’ X vy
velocity component directed outwards the cone increases the loops. Because of
this mechanism, the lines parallel to counterflow velocity are very unstable, even
a small kink on a line can initiate the cascade of loops. The line-length changes
are growing with the growing reconnection angle up to the angle of roughly 60°,
and then get smaller for larger angles (Fig. 16). The last result is due to the fact
that for reconnection angles closer to 7/2, longer time is needed to initiate the
cascade of loops.

a)

b)

¢)

F1G. 15. Loops generation after reconnnection in configuration 3 for 3 different
reconnection angles: a) ¢ = 60°, b) ¢ = 75°, ¢) ¢ = 85° for a = 0.3, 7 * v, = 81.
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F1G. 16. Line-length changes in configuration 3 for 4 different reconnection angles:

30°, 45°, 60°, 80°. Lower figure — the same functions for small 7 * v2,.

3. Conclusion

Equation (2.16), confirmed by numerical simulations, describing the line re-

duction Al(a, @, 7) is the main result of the first part of the paper. Besides, we
found that

B
84 "2t = ,
(31) [l = 5
with B given by Eq. (2.17) with a resonable accuracy.
To interpret the main result of the first part, let us recall the Vinen equation
with Schwarz coefficients

(3.2) % = aljVp,L¥? — adL?,
where is Ij(c) an anisotropy coefficient, and
"2
" o el
(33) (o) =
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measures the average curvature of the vortex tangle. SCHWARZ [6] measured
I; and ¢3 in numerical simulations performed for 5 various values of . Now
assume that the reconnection rate does not depend on a which seems to be
resonable, at least for < 1, when vortex dynamics is dominated by the first
term in Eq. (2.1). If so, the dependence of the line-length reduction on \/a after
reconnection should correspond to a dependence of the second term in Vinen
equation describing decay of the vortex tangle. Namely

(3.4) csa = Cva.

The best fit (shown in Fig.7) to four points (with o < 1) gives C = 1.1. The
good fit (for o < 1) assures that the line reduction after reconnections plays the
key role in decaying of the vortex tangle.

In the second part we have presented the mechanism of loops formation initi-
ated by a reconnection, which probably plays an important role in rise of quan-
tum turbulence when spacing beetwen vortices is relatively big. In a dense tangle,
the reconnections occur so frequently that time of undisturbed evolution after
each reconnection is too short for loops formation. As one can see from Figures
13 and 16, there is a characteristic time (fo for a given configuration and re-
connection angle) for which the net growth is equal to zero. For the equlibrium
density, the characteristic time spacing between vortex segments reconnection
should correspond to average value of £.

Acknowledgments
This work was supported by the KBN grant 7T07A03412.

References

—

. L. Lanpau, J. Phys., 5, 71, 1941.
. L. ONSAGER, Nouovo Cimento, 6, 249, 1949.

3. R.P. FEYNMAN, [in:] Progress in Low Temperature Physics, Vol.I, p.17, C.J. GORTER
[Ed.], North-Holladnd, Amsterdam 1955.

4, W.F. VINEN, Proc. R. Soc. London, A 240, 114, (240, 128), (242, 493), 1957.
K.W. ScHwARz, Phys. Rev., B 31, 5782, 1984.
6. K.W. ScHWARZ, Phys. Rev., B 38, 2398, 1988.

%]

o

POLISH ACADEMY OF SCIENCES
INSTITUTE OF FUNDAMENTAL TECHNOLOGICAL RESEARCH
e-mail: tlipnia@ippt.gov.pl

Received November 7, 1997.

http://rcin.org.pl




