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FIFTY YEARS OF THE ARCHIVES OF MECHANICS

Some properties of connections on iterated tangent bundles

Dedicated to Prof. Henryk Zorsk:
on the occasion of his 70-th birthday

M. KURES (BRNO)

PossIBILITIES of a generalization of the original Grifone's approach to connections are
studied. Semisprays associated to connections and torsions on the iterated tangent
bundle TTM are described.

1. Introduction

MANY PAPERS dealing with the theory of connections, semisprays and mutual
relations are motivated by mechanics, especially by Lagrangian dynamics. GRI-
FONE [5], gave a new definition of the connection on a manifold M as a certain
special (1,1)-tensor field on TM. There is a semispray with the same paths as-
sociated with each such connection. The converse is also proved; with each semi-
spray we can associate a connection and hence we are provided with connections
attached to regular Lagrangians. DE ANDRES, DE LEON and RODRIGUES |2,
3], generalized Grifone’s results to tangent bundles of higher order 7" M. The
applicability of their construction in higher order mechanics is known.

We study the case of iterated tangent bundle T'T M, especially the possibilities
of a further generalization of Grifone's results. A nice discussion of the structure
of the bundle 7T'M is presented in the monograph of ABRAHAM and MARSDEN
(1], where it is also possible to find mechanical interpretations. Furthermore, we
present torsions of connections on TTM defined by the Frohlicher - Nijenhuis
bracket of the associated horizontal projection and natural affinors on this bun-
dle. The torsion is also a subject of interest for mathematical physics. It plays
an important role in the Einstein- Cartan theory of gravitation, in modern de-
velopment of field theories, etc. Our approach makes use of the theory of natural
operations in differential geometry. The techniques of finding the natural objects
are studied in the monograph of KOLAR, MICHOR and SLOVAK [7].

2. Natural affinors and natural vector fields

In general, by an affinor A on a manifold M we mean a (1,1)-tensor field, i.e. a
linear morphism A : TM — T'M over idys. A natural affinor on a natural bundle
F' over m-dimensional manifolds is a system of (1,1)-tensor fields Ay; : TFM —
TFM for every m-dimensional manifold M satisfying TFfo Ayy = Ay o TFf
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for every local diffeomorphism f : M — N. Analogously, a natural vector field
on a natural bundle F over m-dimensional manifolds is a system of vector fields
Em : FM — TFM for every m-dimensional manifold M satisfying TF f o £y =
En o TFf for every local diffeomorphism f : M — N. The natural vector fields
on F' can be interpreted as the so-called absolute natural operators C*TM —
C*®TFM transforming vector fields on M into vector fields on FM. Now, let G
be another natural bundle such that 7 : FM — GM is a fibered manifold (it is
possible that GM = M). We denote by V" FM C TFM the vertical bundle with
respect to the tangent projection T'r. If A is an affinor such that im A € VTFM
and rank A = dim V™" FM, then we call it the w-affinor. Analogously, if £ is a
vector field such that im¢ € V" FM and rankim§ = dim V™ FM, then we call
it the m-vector field.

WEIL bundles, [13], which we can see as generalizations of bundles T} of
k-dimensional velocities of order r, play an important role in the theory of natural
operations, cf. [5]. We call reader’s attention to KOLAR’S papers [6, 8], in which
all natural affinors and all natural vector fields, respectively, on an arbitrary Weil
bundle are described. In the case of TT'M, we obtain these natural objects in a
geometrical way here. Because the iterated tangent bundle is the Weil bundle,
our results are included in Kolat’s classifications for ' = T'T" and represent their
geometrical interpretations.

We denote by 7! : TM — M the tangent bundle of a smooth m-dimensional
manifold M. The (second) iterated tangent bundle TTM = T(TM) obtained
by the additional application of the functor T' disposes of the following bundle
structures: n2 : TTM — M, mn} = why : T(TM) = (TM), ot = Tn}, :
T(TM) — T(M) (for more details see e.g. [14]). Given some local coordi-
nates = on M, let us denote by zt, y{ the induced coordinates on TM and by
z', ', X', Y the induced coordinates on TT M. Then 72 : (z',y', X', Y") = (2'),
w3 (2,9%, X5 YY) = (28, 4%), amt o (2%, 0, X5, YY) — (2, X°).

Firstly, we shall construct canonical affinors on 7T M. We have the following
exact sequence of vector bundles over TT'M:

0 — V'TTM -3 TTTM - TM x 3 TTM —» 0.
Because there exists the canonical isomorphism
h: a2 TTM = TM x 3 TTM — V' TTM,

the canonical affinor is defined A™ = io h o s. Similarly, if we take the exact
sequences of vector bundles

0 — VITTM — TTTM — TTM xgy TTM — 0,
0 — V™' TTM —s TTTM — TTM x7p TTM — 0,
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and isomorphisms

'PTM = TTM xgm TTM — VITTM,
m*TTM = TTM %y TTM — V™ TTM,

we obtain the canonical 7}-affinor A™ and the canonical yr!-affinor A" respec-
tively. Furthermore, let Ag denote the identical affinor. All ua.tural a.fﬁnors on
TTM constitute a 4-parameter family linearly generated by A, A, AT A“z

Secondly, we shall construct canonical vector fields on TT'M. For the prOJec-
tion 72 let & := 7] X pridpras, B := 1! X pridprar, be two canonical sections of the
vector bundle T'M x yy TT M ; the canonical vector fields are defined 5’1’2 = iohoq,
5“2‘? = i 0 ho (. Similarly, for the projection m} (ym!, respectively) we take the
canonical section v := idyrrym XTM ldTTM, and by the analogous composition
we obtain the m}-vector field f“l (irt-vector field E“’ , respectively). All natural
vector fields on TT'M constitute a 4-parameter family linearly generated by 5“1
& &1 vt -

REMARK 1. The Weil algebra for TT is Dy = D ® D (D is the algebra of
dual numbers) with generators 1, §;, d; and with relations 67 = 62 = 0.

REMARK 2. It 1*-3 easy to verify identities AT o AT = A7 o ATI = AT
Ao g = €77, A o™ = ¢, ete.

3. Grifone’s connections

Trying to follow the original Grifone's procedure, we must put necessary
general questions. A Grifone’s semiconnection on an arbitrary fibered manifold
Y — M means any (1, 1)-tensor field FonY satisfying

Jall= S,
I'Jg = -Jg,

for any chosen natural affinors J4, Jp on Y. A Grifone's semiconnection T is said
o P e
to be the Grifone’s connection, if the (1,1)-tensor field ¥ = —(id+I") corresponds

to the horizontal lifting v : Y x ;s TM — TY of the general connection I" which is
defined as a section I' : Y — J'Y of the first jet prolongation of J'Y — Y of Y,
see [12]. In this case J4 and Jp are called A-affinor and B-affinor, respectively.
Let us study conditions of their existence.

PROPOSITION 1. An A-affinor exists on an arbitrary Weil bundle.

Proof We denote by z' the local coordinates on M, i =1,...,m, and by
yP, the fiber coordinateson Y, p=1,...,n,andz=1,.... mym+1,...,m+n.
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The corresponding horizontal lifting of a general connection I" has the coordinate
form

dyP = I'Pda’.

By a direct application of the definition of the A-affinor we obtain the coordinate
form of J4 as

d d
e ) (Al
AJ@ ®da:3+A i ogp ® dz'.

Moreover, the rank A7 must be maximal, i.e. it equals m. Really, if rank A7 < m,
than there exists at least one zero column A or it is possible to obtain it after
linear transformations. But it means dz*® = F;“dxj +1I ;"dy” , where we can take
I ;“, J & ;0 arbitrarily.

Further, elements of Weil algebra are sums of monomials of the form

P1 Pk
apy.pp01 - 0

where a are real numbers and § are generators. There exist so-called maximal
monomials, i.e. non-zero monomials, which vanish after multiplication by an
arbitrary ¢;. For any such maximal monomial

P1 Pk
0.51”43*51 e ‘Jk f

we put ap,. 5, = 1 and all other numbers a = 0. Natural affinors correspond to
the multiplication by the elements of Weil algebra. Multiplication by our special
element provides an affinor satisfying conditions for the coordinate form and for
the rank, too. O

PROPOSITION 2. B-affinors are just natural m-affinors (with respect to the
investigated projection 7).

Proof As in the proof of the previous proposition, we make sure that the
coordinate form of Jg is

a d
Bfﬁ@d +qum®dyq

and rank B? must be maximal, i.e. it equals n. O

REMARK 3. A-affinors and B-affinors also exist on T* M, TT* M, higher order
cotangent bundles 7"*M and higher order frame bundles P" M, cf. (8, 4, 9, 10].
The A-affinor exists on TT'M, it is the affinor A™ . But we immediately see, that
B-affinor does not exist on TT'M.

We can state that using of the definition of the general connection I' as a
section I' : Y — J'Y of the first jet prolongation of J'Y — Y of Y, removes the
problem of the incidental non-existence of Grifone’s connection.
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4. Connections and associated semisprays

We denote by I'™ a connection with respect to the projection 7. So, we have
connections ', '™, '™ on TTM. But we confine ourselves to connections
with respect to the projection 72 it this chapter, because the cases TTM — TM
represent, roughly :-.peakmg, the case TM — M descr:bed by Grifone. We shall
call tensions of '™ the (1 1)-tensor fields H’r H2 on TTM given by Hl =
g™, '), Hy' [5" F“l

Vector fields o'l , 05" on TTM are said to be semisprays 1f A™ o§1 = U’l A
A™ o 62 = 02 , respectively. We shall call dematwn of 01 (03 ) the vector
field o7°" (61°") defined by oF" = [&™',0T"] — 07" (0 = [gﬂ%,gg*] ~ of’,
respectively).

A (1,1)-tensor field L on TTM, with | > 1, is said to be semibasic, if

(1) L(&1,..-,&) € V™ TTM, for every vector fields &;,...,& on TTM, and

(2) L(&y,...,&) =0, if & belongs to V"' TTM.

Let L be a semibasic (1,l)-tensor field. We call potentials of L the semibasic
(1,1 — 1)-tensor fields LY, LU given by LY =i ,zL 13=i 5,a.nJD.

Let c:r1 ; 02 be arbitrary semisprays. We denote the horizontal projector
of I'™ by the same symbol. Let us consider the semisprays o, o2 given by
=I"o 01 yoa=1T " o 05‘2, respectively. These semisprays are said the first

and the second associated semisprays to ) i

PROPOSITION 3. For any connection I" ™ on TTM — M and their associated
semisprays o1, dg, the identities

= (Hl ’
( 2

are satisfied.

Proof If
dy' = F;dmj,
dX* = Gidr’,
dY' = Hjda’,

are the local equations of I'™  then a direct evaluation gives the following coor-
dinate expression of (H{ x? %

OF} OF}
v = vtk + Y o - v
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y’y 375’
BH OH} ;
k A FONEAREL KT
y’y +Y £V y"Hy, .

If we evaluate the deviation of the first associated semispray

9 Py m
oxi Y @ gy

2 J

of =y ®é—+FyJ® +G“y~’®
we come directly to the same expression. The procedure is the same for the
second associated semispray. Application of local coordinates is not necessary,
see the proof of an analogous assertion for T72M in [11]. O

A parametric curve ¢: I — M is called a path of a connection I', if j1(5l¢) is
a horizontal curve in TTM. The connection I' is said to be homogeneous if its
tension vanishes. Paths of a homogeneous connection are called geodesics.

A path of a semispray o is a parametric curve ¢ : I — M such that jt(jle) is
an integral curve of o. A semispray o is called spray, if o has zero deviation. If
o is a spray then their paths are called geodesics.

PROPOSITION 4. The paths of a connection I" are the same as the paths of
the first and the second associated semisprays.

P r oo f The paths of a connection r~ satisfy the system of ordinary
differential equations

d2_:ci - Fiftij
dt? s’
d?z ; dz?
3 e
d*z’ ;dzd
T g

If we evaluate the paths of the first (of the second) associated semispray, we
come to the same equations. O

5. Torsions

We recall that the Fréhlicher - Nijenhuis bracket [I', A] of I" and an arbitrary
natural affinor is called the (general) torsion of I', see [8, 10]. The geometrical
interpretation of such general torsions may be complicated and their applicability
may be very questionable. That is why we study only weak torsions as a special
case here: they represent brackets of a type [F of A"] Thus we have three weak

torsions on TTM: ¢ = [I'™, AT, ¢ = P& A, ¢*" = [, A™].
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REMARK 4. We differ from original Grifone’s notations of torsions purposely,
because we prefer the definition from [8].

PROPOSITION 5. The weak torsion £ has the coordinate expression

8F,L p J 3G’k E J E)Hﬁr " d
ade::: Adz* ®3 dYJdi Adz* ®W+6YJO! Adz* ®3Y’5'

Geometrically, we can characterize £ by a bracket expression
" (n,0) = [[™ n,72"0) — [[™ 0,72 5] — n2*[n, )

for every vector fields n, 6 on M.

Proof We obtained the formula by a direct evaluation of the Frohlicher -
Nijenhuis bracket in local coordinates. The idea of geometrization is from [8]. O

Because analogous calculations for t™ and ™ are equally technical, we do
not go into details here.

The strong torsion of I' is the (1, 1)-tensor field T given by H + t°, where H
is the tension of I" and ¥ is the potential of the weak torsion of I'. So we obtain
TF = HF + (™)), Tf' = HI" + (") for I'™". Closing this paper, we view the
coordinate expression of T

. (OFj  OF} OFj OF; G
J : =i Tk o 4,
(y (ayf "oy aw) Y 5y )d ® By

. (0GL 8GL OG; 190G}, KB
+("”J(ayi tovi ~avk ) TV avi | @ ax

. (0Hi OH. OH! OH: , 9
J k K = J (R i s
* (y ( ay) | oY) ayk) T ’°) 4" ® 577

as a show-piece, but we recall that some bundle projections provide to associate
a connection to a given semispray and a strong torsion, and it is the way how
to construct a connection having the generalized Euler - Lagrange vector field as
an associated semispray, [3].

This contribution was presented at the 4th Meeting on Current Ideas in Me-
chanics and Related Fields. The author was supported by GA CR, grant No.
201/96/0079.
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