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Random elastic media:
Why zero mean stress does not imply zero mean strain

Dedicated to Prof. Henryk Zorski
on the occasion of his 70-th birthday

E. KRONER (STUTTGART)

IN THIS NOTE we are concerned with (linearized) elastic media that are heterogeneous
on the microscale and homogeneous on the macroscale. We assume the validity of an
ergodic hypothesis so that we can form ensemble averages such as mean stress (o)
and mean strain (g). We argue that (¢) = 0 does not, in general, imply that also
() = 0 (end of Sec.2). This is the case, for instance, when the distribution of the
stress sources (external forces or incompatibilities) are correlated with the spatial
distribution of the local elastic moduli. It is shown how problems of this type can be
treated.

1. Introduction

IN THIS WORK we are concerned with linear elastic media that are heterogeneous
on the microscale and, at the same time, homogeneous on the macroscale. Many
composite materials and also polycrystals can be, at least approximately, in such
a state. Under certain conditions such a medium can be treated as a so-called
effective medium whose material properties are described by a constant effective
tensor C¢// of elastic moduli. The main interest here lies in the situation where
such a description is not possible. Among others, we pay attention to the follow-
ing problem: If the mean stress in the medium is zero, does it follow that also the
mean strain vanishes? The answer is “No”. I have treated this question previ-
ously [1, 2], but perhaps not convincingly enough, because I continue to receive
remarks of this type: “Many people have claimed that since the average stress
vanishes, the average strain also vanishes.” In the following we show that this is
not generally true. To make our investigations lucid we use a symbolic notation
which is largely free of tensor indices. Various quantities are integral or differen-
tial operators with tensorial kernels. Integral operators are underlined by double
line, such as I or v, differential operators are underlined by a single line, as L.
Instead of specifying positions in the medium by rq,72,73... or ', 7", 7" . .. we
shall indicate them just by numbers, i.e. (1), (2), (3) ... Explanations are often
somewhat short. For a more detailed representation the reader is referred to the
review [3], even though this note goes beyond this review.
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2. Averages of stress and strain

Assume that the medium characterized in Sec.1 be loaded by volume forces
fi(1) and surface forces ¢;(1). Applying the method of Green’s functions, the
displacement (vector) field u;(1) can be represented as

(21) wi() = [(1.2) @) dVa+ [ 1x(1,2) 4(2) dS2.
v S

where the integrations extend over the volume V and the surface § of the
medium. For convenience (1) is abbreviated in symbolic notation as

(2.2) u=7F,

where v is the displacement Green’s operator and F' comprises the volume and

surface forces. (2.1), or (2.2), is the general solution of the traction boundary
value problem of an arbltrary, in general heterogeneous or microhetercgeneous
medium. u,y and F are, in our investigation, random functions of position.
Since we are interested in macroscopic (ensemble) averages (symbol (-))
rather than in the local quantities, we take the ensemble average of (2.2):

(u) = (yF) = ((F) + (' F),
FEP-(E " a=sy=<ty P=0. {)=0

(2.3)

Working with ensemble averages (rather than with volume averages) is conve-

nient because ensemble averaging commutes with differentiating and integrating.

This however requires the validity of an ergodic hypothesis, which essentially

means that the situation is “sufficiently statistical”. The statistics of v is deter-

mined by that of ¢, the (4-th rank) tensor of the microheterogeneous moduli.
From (2.3) it follows that

(2.4) (u) = (P(F),

provided (y'F') vanishes, i.e. if, according to a well-known theorem of proba-
bility theory, the distribution of the forces is not correlated with that of the
(microheterogeneous) elastic moduli. This “no-correlation” is the case n many
applications (see below). In this note we shall admit correlations and give real-
izations below.

The strain tensor derived from (2.1) and from the equilibrium conditions
f = Vo, t = no (n being the external unit vector normal to the surface) by a
routine calculation is

25) gi(l)= fFijkt(lez)o'kl(g)dV% Lk (1,2) = 05 0 ik (1, 2) | a5y k)
J
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which is abbreviated as
(2.6) e=TLo.

Here I is the so-called modified or strain Green’s function, a 2-point, 4-th rank

tensor field, and (ij), (k!) denotes symmetrization in the subscripts concerned.

Note that the abbreviation introduced in (2.2) involves vector and 2-nd rank

tensor fields, whereas that of (2.6) concerns 2-nd and 4-th rank tensor fields.
Taking the average of (2.6) gives us the mean strain tensor

(2.7) () = (Lo} =,(D) (o) + (L' o),

where the primed quantities are again deviations from the mean. In (2.7) (L) (o)

derives from (y) (F') and (I"o’) vanishes when (y'F') does. In analogy to (2.4)

we have B by

(2.8) (€) = (L) (o),

provided that u and F, thus I and o are mutually uncorrelated. By comparison
with (2.6) (L) is then the modified Green’s function of a random elastic medium
with an effective compliance tensor defined by

(2.9) (&) = S%(0), SF = (C*F).

Note that contrary to (I), S is not an operator itself, but derives from the
operator (I") according to

(2.10) S = [(Dgu(1,2)) ava,
‘!

cf. [3], p.265.
In the “no-correlation” case (o) = 0 leads to (¢) = 0 and vice versa. Obviously
this is not so in the more general case of (2.7), when ("o’) # 0.

3. The general scheme

In the frame of linearized elasticity theory the equation
(3.1) u=7yF

with the meaning of F' as defined in Sec. 2 solves the deterministic problem of
finding the displacement field from the knowledge of the external force distribu-
tion in the body. Our interest lies in situations with random distributions. That
means that we have to extract the random information possibly contained in
(3.1). This is usually done with reference to a homogeneous isotropic, but other-
wise quite arbitrary comparison medium that has the same form and load as the
real medium of interest. The named properties of the comparison medium allow
us to calculate its Green’s function, which therefore will be treated as known.
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Let
(3.2) Lu=F, Ll =01

be the (statical) field equations (in volume and on surface) of the real and the
comparison medium, respectively. The displacement Green’s operators are y and

7°; they obey the conditions

P

1=

(3.3) Ly=I, I

(the Green's operators 7 are inverse to the field operators L. This property

defines the Green’s functions.) In (3.3), set L = L° + § L and multiply from the
left by 7° to obtain, after solution for v,

=( lég YLy 6L —2"8Ly°SLy° 6L+~ )"
Here
(3.5) §L=VécV, édc=c-C"°,

¢ denoting the tensor of local elastic moduli, C° - that of the comparison medium.
dc and 4 L are random functions of position. All the quantities appearing in (3.4)
have vector or tensor character. We have used a symbolic notation in which in-
dices and their positions do not occur. They can easily be determined a posterior:.
If so, then the positions of the 4° and 6 L in (3.4) are not important. In actual

calculations one uses indices, their positions follow easily from (3.4). Thus (3.4)
may also be written as

(36) 1=(I-1"0L+

IIQ

POLSL-7" 9P LOLo L+ =)

=2

This equation relates the Green’s function ~y of the, in general, complicated real
medium to the Green's function 7° of the simpler comparison medium. It is an
implicit equation, because 4L (E_L — L°) contains y which is the inverse of L.
If the elastic moduli (the components of ¢) of the real medium are randomly
distributed, then the averaged Green's function ( ) follows from (3.6), since 7°
is nonrandom, as 3

B  (M=U-1"0L) +1°7°(0LIL) ~1° L 1 (SLOILSL) +---—--- )"

To calculate (y) from this equation we need the statistical information in the

form of n-point correlation functions of the elastic operator L, namely (8 L).
(6LSL), (§LSLGSLY, ie. (L"), n=1,...00. Writing a bit more explicitly we
have for instance (6c?) = (d¢(1)6¢(2)dc(3)dc(4)) and a corresponding expression
for (6L%).
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The statistical information is only seldom given a priori in the form of cor-
relation functions. Usually one has to calculate the correlation functions from
some other information such as “spherical or ellipsoidal elastic inclusions are
embedded in a matrix material of other elastic moduli” etc. This calculation is
often a most difficult task, for which the science of mathematical morphology
has been developed [4, 5]. The basic equation (3.6) is sometimes named after
Lippmann and Schwinger, or Dyson (i.e. LSD), who introduced such an equa-
tion into quantum mechanical scattering theory. (3.6) can be transformed into a
relationship between modified Green's functions:

(3.8) L =(I—-I°dc+°L°dcée — L°L°L°8cdede + -+ — - - Vi
To calculate () from this equation we again need the statistical information on
the correlation functions of the elastic moduli, (d¢"), n=1,---, 0.

We have seen in Sec. 2, that (I) is the Green’s function of a medium whose
elasticity is described by a tensor C°% of elastic moduli.

In such a medium the local elastic moduli ¢ are uncorrelated with the dis-
tribution of the external forces F. If this is not true in some random elastic
medium, then we have a more general statistical situation. In fact, to describe
such a situation, we need not only to know correlations between elastic moduli
at different positions, but also correlations between moduli and forces. We see
this as follows: Combining (3.1) and (3.6) gives us

(3.9) u=1°F——1°1°6LF+1{°1°1°5_L_5LF_....+...
and after averaging

(310) (W) =3°(F) = 7" 2" LF) + 7" 2"y (6LILF) =+

=

Since we now treat a situation with (L— F')-correlations (or (v— F)-correlations),
(u) no longer equals v°(F). To calculate (u), we rather need the mixed correla-
tions (§ L" F), n = 1,-- -, 00, where for instance (§ L}F) = (6 L(1) § L(2) § L(3)
F(4)). If we are interested in correlation functions of u such as (u(1)u(2)), or
(u(1) u(2) u(3)), then we need to know the set of correlation functions of the form
(§ L™F™), m,n=0,...,00, wheree.g. (§ L2F3) = (6 L(1) 6 L(2) F(3) F(4) F(5)).
Here we have included the correlation functions with m = 0 (functions among F
alone) and those with n = 0 (functions among d L alone).

A further case: Thanks to the ergodic hypothesis, differentiation and inte-
gration commute with ensemble averaging. This means for instance, that the
average of the strain tensor € is

(3.11) (€) = 3((@)¥ + V{u),

so that for the calculation of (¢) we need the same correlation functions like for
(1), namely (dc™) = (d¢c(1) 6¢(2). .. de(n)). Of course, similar statements can be
made for higher derivatives of u and e.
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Summing up, we have found that for the general situation (but always lin-
earized elasticity theory!) we need to know the full set of correlation functions
among 0 L and F, or §c and F (including the correlation functions among 6L
(or dc) and F alone). Having this information, we can calculate, in principle,
the whole statistical information about the system, again in the form of corre-
lation functions, namely now the functions (u'd L™ F™) (or (¢'6 L™ F™)) where
for instance (u?0 L® F?) = (u(1) u(2)8 L(3) § L(4) 6 L(5) F(6) F(7)).

Its is known in the probability theory, the information about the full set of
correlation functions is equivalent to that of the probability density functional.
That means, given this functional, all correlation functions can be derived by
well-known methods. Therefore we can formulate our general problem as follows:

Given the probability density functional P[dc, F| in terms of dec and F, the
probability density functional P[u,dc, F] or P[e, dc, F)] is sought for in terms of
u (or ), 6c and F [1]. We think, that this formulation holds even in nonlinear
elasticity.

4. Examples of applications

a. In microheterogeneous matter, the constituents which possess different elas-
tic moduli usually are of different mass density (this is not true for 1-phase poly-
crystals). Different mass densities imply different gravitational forces between the
various constituents. The gravitational forces are clearly correlated to the dis-
tribution of the masses, i.e. also of the elastic moduli. To calculate for instance
the macroscopic stress state of such a medium, we need information about the
(c-f)-correlations.

b. Inertia forces, like gravitational forces, are volume forces. In the case of
wave propagation they are correlated with the mass distribution, hence also
with the elastic moduli. To calculate problems of wave propagation, one needs
again information about the (c-f)-correlations, where f are now the inertia forces.
Strongly fluctuating elastic moduli cause a considerable energy flux into the
correlation waves. E.g. correlations like (uc™) participate in the wave motion.
Here (uc?), for instance, stands for (u(1) ¢(2) ¢(3) ¢(4)).

c. To judge the importance of stress and strain fluctuations, their size must
be known. Particularly important for this are the 2-point correlations (g(1) £(2))
and (o(1) o(2)).

d. Internal stresses (eigenstresses) appear when the incompatibility tensor
does not vanish. After plastic deformation this tensor, say 7, occurs as a new
random function. To calculate the macroscopic eigenstress after unloading, one
needs to have information about the (o — n)-correlations. Since, according to a
theorem of ALBENGA [6], the volume average of the eigenstresses always vanishes,
one is inclined to assume that also the average strain, (¢) = (so) vanishes. This
however is not true thanks the occurrence of the (o — 7)-correlations.
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e. A great number of further applications have to do with conditional averages.
For instance, it might be of interest to know the average stress in all grains of
a polycrystal, that have the same lattice orientation or grain shape. Also this
problem can be solved, at least in principle, with the tools discussed in this note.
We renounce further examples since those given already show the power of the
method of correlation functions for the solution of statistical problems in the
(linearized) elasticity theory.

5. Conclusion

For materials which are materially uniform even on the microscale, elasticity
theory has proven to be a tool of extraordinary success. A large part of materials
in practical use, however, are not at all materially uniform but rather heteroge-
neous, often on a microscale. Speaking of microscale we have in mind something
that is very small compared with the scale of our perceptions — the macroscale
— but distinctly larger than the atomic scale whose unit is the atomic distance.
Including the atomic scale into our considerations would mean to discuss the
question, to what degree can the atomic discreteness be neglected in the theory
of the mechanical behaviour of micro- and macro-continuous matter. However,
this topic, which is not at all scientifically exhausted, is beyond the ambition
of the present note. So is also the question of nonlocality in the elastic interac-
tion. The corresponding theory is in a rather good state, but its inclusion would
enlarge this note too much.

The equations of the theory of local and linear elastic media are, of course,
also valid, when the elastic parameters vary on the macro- and microscale. But
the solution of these equations becomes extremely involved when the distribution
of elastic parameter is partially or completely random, the case to which we now
restrict ourselves.

In fact, except in very special situations, it is even impossible to write down
explicitly the elastic field equations, that we had abbreviated as Lu = F. Even
less possible is then to calculate the Green’s function which solves the problem
in the form u = yF'. All the quantities appearing in these two equations are so
complex that we would need an infinity of sheets of papers to write them down.
For this reason there is not even a desire to know these quantities in all detail.

It is in the spirit of probability theory and statistical mechanics, to replace
the functions of the microscale by probability density functionals. These contain
much less information than the original fluctuating functions. In doing this, we
move from the field of continuum mechanics into the field of statistical continuum
mechanics (see e.g. [7]) whose most important tool are the correlation functions.
These relate to one or more random functions and can be extracted from the
pertaining probability functionals. We distinguish 1-point, 2-point, 3-point, - -,
n-point correlation functions, where n extends up to infinity. The great prac-
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tical significance of them stems from the fact that the correlation functions of
low order, e.g. n < 4, carry the most relevant information about the statistical
quantities of the system. Therefore it is often good enough, to consider only a
few low order correlation functions instead of their infinite set or the equivalent
probability density functional.

Since the primary interest in such statistical problems usually relates to av-
erages of relevant quantities such as stress, strain, functions of these, we need
the correlation functions in order to calculate those averages. This can easily be
seen using the method of Green's functions. To calculate e.g. the average strain
(€), we need the modified Green's function I, or sometimes its mean (I"). They
can be gained from the correlation functions of the elastic moduli, as we have
shown.

Strictly speaking we have discussed the traction boundary value problem only.
It is clear, however, that the displacement and mixed boundary value problem
can be treated in an analogous way.

Since the appearing series developments concern multiple integrals, the so-
lution of our problems requires a lot of numerical effort. As far as we know,
correlations of 3-rd order are sometimes tractable. There is a hope that modern
computers will allow us to go beyond the 3-rd order.

This note was a very brief review of an important field within the mechanical
sciences. It is clear that methods analogous to those shown here can be applied
also to fields other than mechanical, e.g. to electric and heat conduction, to
dielectricity, magnetic phenomena and so on. Many questions are still open, in
particular where mixed correlations occur. Almost nothing has been done with
the functional theory of random elastic media.
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