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A THERMODYNAMIC framework of a deformable continuum is developed in which
the conservative state variable vector is enlarged by adding the spatial gradient of
a scalar thermal internal state variable responsible for the description of thermal
history effects. The theory leads to a modified model of thermoelasticity with in-
ternal state variables and with a wave-type heat conduction governed by a system
of quasi-linear hyperbolic equations. In a general non-deformable case, the observed
material properties such as specific heat, quasi-equilibrium thermal conductivity and
speed of thermal (the so-called second sound) waves, all regarded as functions of 1,
lead to a particular specification of all material functions and the evolution equation
for the scalar internal state variable. The short review of the heat pulse experiment
is made. Main assumptions of the present approach are formulated and some ar-
guments referred to the rate-type description are presented. A set of remarks and
comparisons with another modification of the Fourier law characterizes the model.
An analysis of hyperbolicity of thermoelasticity by propagation conditions of weak
discontinuity waves is performed.

1. Introduction

MANY physical experiments at low temperatures and technological situations
at moderate and high temperatures show the necessity of taking into account
the wave structure of the heat transport. Those experiments performed at low
temperatures dealt with

e second sound in dielectrics, e.g. [29, 30, 52, 61, 63], and

e second sound in solid helium, e.g [2].

On the other hand, those technological situations at moderate and high tem-
peratures are related to

e the distribution of temperature around propagating (*) cracks [68, 69, 73],
and

¢ temperature distribution in solid materials due to laser pulse train of a very
short duration (in the picosecond range), e.g. [26].

The aim of this paper is to build a modified framework of thermomechanical
theory of heat conducting and deformable materials in which the structure of the
set of governing equations is of hyperbolic type; it means that both disturbances:

(') For continuum damage mechanics bibliography and its trends, compare [10].
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mechanical and thermal ones propagate with finite speeds. Moreover, our fur-
ther aim is to model quantitatively the observed wave phenomena in solids and
fluids.

The organization of the paper is as follows. In Sec. 2 a typical experiment per-
formed at low temperature for solid crystals will be shortly presented together
with its results. In Sec. 3 the rate-type approaches most often used in the litera-
ture of thermodynamic theories with hyperbolic-type heat conduction equation
will be discussed. Then in Sec.4 some arguments supporting the internal state
variable approach in the case of a non-deformable continuum will be given. From
them general forms of evolution equation for the scalar internal state variable and
heat flux constitutive equation, both based on the thermal history effects, will
be more evident. Some particular forms of the evolution equation are presented.
Then the developed model is characterized by a set of remarks and comparison
with the extended thermodynamic approach of Morro and Ruggeri. In Sec. 5 the
thermomechanical framework will be outlined. Then in Sec. 6 the hyperbolicity of
the thermoelasticity is analysed with the help of weak discontinuity wave. Prop-
agation conditions are formulated together with the general form of the system
of governing equations suitable for the analysis of strong discontinuity waves.

2. Heat pulse experiment

According to the authors of [18], the heat pulse experiment was first intro-
duced into crystal physics by GUTFELD and NETHERCOT [25]. The experiment
was intended to detect second sound. The possibility that under certain condi-
tions, a temperature wave might propagate in a good thermal conductor was first
considered in detail by WARD and WILKS [71], following an earlier suggestion
by PESHKOV [64]. The authors of [25], however, failed to see the evidence of the
second sound.

Finite speed thermal waves, known collectively as second sound, distinguish-
ing them from generally faster propagating mechanical waves, were first detected
in *He, ([2]), and then in high purity dielectric crystals of sodium fluoride, NaF,
[29], and bismuth, Bi, [61].

For heat pulse experiments the NaF and Bi single crystals of high chemical
and isotopic purity were used (cf. [30, 52, 61, 66]). Since both crystals have
a particular symmetry, the authors performed experiments for several different
samples geometries with path lengths varying between 3.6 and 13 mm, and for
pulse propagation direction along < 100 >, < 110 > and < 111 >.

The heat pulse experiments were performed in a simple metal cryostat [66].
The sample was mounted in a vacuum on stainless-steel post anchored to the
helium bath which could be pumped to 1.8 K. A heater on the post allowed the
sample temperature to be raised above the bath temperature, a carbon resistance
thermometer mounted on the crystal provided a measure of its temperature.
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Two opposite surfaces of the crystal were covered by an evaporation technique
with thin metallic films, which serve as heater and bolometer, respectively. The
distance between those surfaces varied from 3.5 to 13 mm.

Pure Pb was chosen for the bolometer film. The lead detector was biased
with a constant current so that resistance changes gave rise to signal voltage
across the film. The change of the resistance of the metallic film at the other
side of the crystal was taken as a measure for the temperature. A current pulse
generator supplied the impulse to the crystal heater; its duration varied between
0.2 and 0.5ps. The signals from the lead detector were usually of a sufficient
amplitude to allow their direct display on an oscilloscope after some wide-band
preamplification. The temperature rise of the bolometer never exceeded 1 K [52].
Signals were recorded graphically. The arrival time of the leading edges of the
pulses were measured. At low temperatures (i.e at 12K for NaF and 1.38K for
Bi) the fastest peak, denoted by L, travelled with the speed of a longitudinal
sound wave. The peak which arrives next, denoted by 7', travelled with the speed
of a transversal sound wave (cf. Fig.1).

This behaviour is interpreted theoretically as the ballistic phonon effect:
phonons (?) representing eigenvibrations of the atom of a crystal lattice, travel
through the crystal without any interaction. On the other hand, in the frame-
work of thermoelasticity this behaviour can be viewed as a thermomechanical
coupling in acoustic wave propagation: due to the plane strain condition, two
sound waves: longitudinal and transversal, may propagate under such condition.
They were initiated by the temperature rise at one end (side) of the crystal, while
the temperature measurement on the other end (side) reported the arrival signal
of thermomechanical wave, propagating with those sound speeds. No mechanical
variables, like strain, stress or particle velocity were measured in the heat pulse
experiments.

The experiments were repeated at different bath temperatures, and no par-
ticular dependence of those sound speeds were reported. However, in some range
of temperature, an extra peak following those two already observed peaks were
detected (cf. Fig. 1). That third peak has been interpreted as partially developed
second sound. It is interesting that the second sound peaks in Fig. 1 are followed
by long tails; they could represent the diffusive part of the heat pulse ([18, 61]).

In the case of the NaF crystals it seen from the plots of heat-pulse arrival time
vs temperature, that the so-called ballistic longitudinal and transverse pulses
denoted by L and T, respectively, occur at the lowest temperatures, and that
the second-sound pulse begins to appear at 10 K.

(*) In the phonon model the actual crystal is replaced by a box containing a gas of phonons:
i.e. a gas of quasi-particles bearing energy and momentum. Transport processes in the crys-
tal are treated analogously to transport processes in the gas. Phonons may interact among
themselves as well as with lattice imperfections and with boundaries of the crystal. In the
so-called N(normal)-processes phonon momentum is conserved, in contrast to the so-called
R(resistive)-processes, that do not conserve the momentum.
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FiG. 1. Heat pulses in a pure NaF sample (a — [ = 7.9mm, b — [ = 12.7mm), after [29]
and [52]. L and T mark the peaks of the longitudinal and transverse ballistic pulses,
respectively. The third distinct pulse (second sound) appears at higher temperatures.
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It was there observed (cf. Fig. 2, and figures from [16] and the review article
(18]), that in the range of low temperature at which experiments have been
performed, the time of arrival of the third heat pulse is approximately a linear
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FIG. 2. Arrival times versus temperatures for leading edges and peaks of longitudinal
ballistic pulse, the transverse ballistic pulse, and the second-sound pulse for the sample
of Fig. 1, after [29] and [52] (I = 12.7mm, »,, = 2 x 10° cms™?).

function of the reference (bath) temperature. However, near the upper limit of
the measured bath temperature values, the arrival time of the leading edge of
heat pulses rises rapidly with increasing temperature. The latter corresponds to
a very fast decay (with respect to temperature) of the second sound speed. We
can repeat after the authors of [52]: “Eventually a temperature is reached at
which this pulse disappears into the diffusive signals”.
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Experimental investigations with the second sound reported by the authors of
(29, 30, 66] have been preceded with steady-state thermal-conductivity measure-
ments. Figure 3 shows thermal conductivity versus temperature data for several
samples of different purity. For the heat conductivity a very strong temperature
dependence has been observed. Even more: for both crystals NaF and Bi, there
is a particular temperature at which the conductivity of the material reaches a
peak. The thermal conductivity is highest for purest NaF fourth-regrowth sample
A (cf. Fig.3.)
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F1G. 3. Steady-state heat conductivity of NaF crystals of different purity, after [30].

Comparing those experimental results on the second sound and heat conduc-
tivity, one could derive a possible conclusion, that the second sound phenomenon
appears more strongly close to a particular temperature at which the conduc-
tivity of the material reaches a peak [30]. In our model developed further in
the paper, motivated by the experimental data, and trying to fit experiments
for the second sound speed in NaF, we make in [43, 67] the hypothesis that the
temperature of maximum heat conductivity coincides with that below which sec-
ond sound appears. Above this temperature value the heat conduction becomes
purely diffusive, obeying a general nonlinear Fourier law. We have called this
critical temperature 9.

There is an additional possible explanation why in the first range of low
temperatures, the thermal pulse of the second sound were not observed. Namely,
at that range of temperature, the speed of the second sound is very close to
the speed of the transversal wave, and both the peaks are reported at the same
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time as a rather big peak (cf. Figs.2, 3 for NaF for temperature values 8.1K,
11.1K, 11.9K).

3. Rate-type approach to thermal waves

The above cited experimental facts contradict the results of phenomenological
approach to the heat transfer based on a proportionality law between the heat
flux and the temperature gradient, called the Fourier law. That law incorporated
with the balance of energy leads to a parabolic equation for the temperature field,
in solutions of which heat pulses are transmitted with infinite speed. Even includ-
ing mechanical fields leading to thermoelasticity, the final system of equations is
hyperbolic only in a mechanical variable - the displacement vector, being still
parabolic in terms of the temperature field. Consequently, only ballistic thermo-
mechanical wave propagation could be described in such a model. No possibility
exists for describing the second sound, i.e. thermal wave (i.e. the third peak in
experimental results) then exists.

There are several phenomenological approaches aimed at the new heat con-
duction equation, that could describe that phenomena. Some of them are re-
viewed in the papers [31, 32].

In order to give more reasons for the present approach, we start with refer-
ring to the rate-type methods leading to a kind of telegraph equation for the
temperature field, which is the second order hyperbolic equation.

Let us start our short presentation with the following

OBSERVATION.

Assume that a non-deformable material is characterized by its energy function
e that depends on the thermodynamic temperature 9. If for the heat flux q one
incorporates a classical Fourier proportionality law

(3:1) q=—k(9)VY
then, as a consequence of the balance of energy
(3.2) pée(9) +divq = or,

where p represents the mass density and r — the body heat supply, per unit time,
one gets a parabolic nonlinear heat conduction equation

(3.3) 0co(9)D = div (k(O)V) + or  with c,(9) = %,

which turns out to be a diffusion equation

(3.4) oc,d = kAY + or,
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for constant coefficients, i.e. thermal disturbances propagate with infinite speed.
The same is true if additionally one introduces the dependence of the free energy
function ¥ = £ — 95, where 7 is the specific entropy, on ¥ and on its gradient
V4. This is due to the second law of thermodynamics.

Hence, to incorporate a wavelike phenomenon (hyperbolicity) in the heat
transfer, one needs to enlarge the set of thermal state variables (¥, V¥) in the
energy constitutive function by additional quantities. Such an enlargement will
cause of course an additional source of dissipation.

There is the well-known method which can lead to a wavelike heat conduc-
tion, namely a rate-type approach, in which the Fourier law (3.1) is modified by
adding to (3.1) a term in which the time derivative of the heat flux is multiplied
by a coefficient 7; the latter is called a thermal relazation time. Then the govern-
ing equation of this approach called the Maxwell - Cattaneo — Vernotte - Kaliski
equation, is
(3.5) 7q + q = —k(9) VY,

where 7 is a thermal relazation time.
If 7 is constant then the 2-nd order dissipative wave equation follows for the
thermodynamic temperature

(3.6) 72 (ocu (9)D) + 0cu(9)9 = div(k(9)V9),

which occurs to be a telegraph equation
(3.7) Tocyd + ocyd = kAY,

for constant coefficients, and is hyperbolic if ¢,k is positive. The prototypes of
this modification one can find in [1, 8, 9, 11, 33, 53, 70] for non-deformable (rigid)
conductors (cf. also [54]). The thermoelastic developments of this modification
in the earlier stages of development one can find in [5, 19, 51]. For more recent
development we refer to the review paper of IGNACZAK [28].

Another method had been proposed by Bogy and Naghdi, and the McCarthy
approach: a dependence of the specific entropy n on 9, Vi and temperature

rate 19: ;
(3.8) n=n(9,VY,?d).

They arrived at an equation similar to (3.7) with additional term V4. In [6] and
[55] thermodynamic derivations of the heat conduction equations can be found
with the temperature-rate dependence of free energy and entropy. Thermome-
chanical developments of that approaches in the earlier stages one can find in
(19, 23, 51].

In both the above approaches based on the rate-type method, the final equa-
tion is a kind of telegraph equation for the temperature field, which is the second
order hyperbolic equation. Such a formulation has the main drawback, namely
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the order of the equation, for which the initial conditions in terms of the time
derivative of the temperature field have to be given additionally to the temper-
ature itself. Moreover, thermal shocks in the form of temperature pulses cannot
be described. In the approach we are going to present, this inconvenience will be
omitted.

Almost parallel to the rate-type methods, a history approach was developed
by GURTIN and PIPKIN [24] and NUNZIATO [62]. In their papers the heat flux
vector was assumed to depend on the summed history of the temperature gra-
dient g

T d
(3.9) [— s)g(t — s)ds,
d
0
where

gt—s)= /gl'ad 9(t — A) dA, with g = grad 9.

NUNZIATO in [62] assumed a more general dependence on the actual value of the
temperature gradient. That assumption changes drastically the type of the final
heat conduction equation. Under the isotropy assumption concerning the tensor
function A, the derivative of which appears in (3.9), took the form A(s) = a(s)1,
with a differentiable scalar-valued function a(-) defined on [0, 00) with a(cc) = 0;
the authors of [24] wrote the heat flux constitutive equation (3.9) in the form

oo

(3.10) gty =— /a(s)g(t =) s
0

It is interesting to notice that the Maxwell - Cattaneo - Vernotte - Kaliski equa-
tion (3.5) can be obtained from (3.10) under rather weak smoothness assump-
tions about the function g(t — s) and the following kernel representation a(s) =
exp (—t/7) k/T.

There are some drawbacks in applying the equation (3.5) to the thermody-
namic theory of thermomechanics, especially because of the internal dissipation
inequality. It was pointed out by MAzILU in [54], MORRO and RUGGERI in
(58, 59], by the authors of review papers [18, 31, 32] (cf. also (7, 50, 56, 60]) and
by others.

Due to the lack of space we only mention two other approaches which make
use of the phonon gas for the wave phenomena in heat transport, namely those
of LARECKI and PIEKARSKI [48], and the authors of [18] that make use of
many-moments model of extended thermodynamics.

4. Internal variable as a thermal history of material

The present author with PERZYNA in [40] (and latter in [34] in a more general
setup) calculated for the first time finite speeds of thermal (and thermomechan-
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ical) waves in the framework of a thermodynamic theory with internal state
variables. The results of those derivations were applied to 3D thermoelasticity
in [57]. Further generalizations for more complex materials (cf. [47], and [72])
have been partially reported in the monograph [35]. Later on COLEMAN et al.
[15] repeated the first results of KosiNsk1 and PERzZYNA from 1972 in a slightly
different set-up, without referring to the internal state variable approach and to
the original paper [40].

In [36], the material gradient of an internal, scalar state variable was intro-
duced as a fundamental state variable in the response functions of thermoelastic
materials. In the course of obtaining the consequences for the laws of thermo-
dynamics, a modified Fourier-type law was found leading to finite speeds of
propagation of thermal and thermomechanical waves. This model differed from
an earlier one, ([40]), in the form of the evolution and constitutive equations.

In the model proposed by the author in [36], a different procedure for the
derivation of a wavelike heat propagation equation was proposed. In that model a
scalar internal state variable [ has been introduced to represent at the same time
a history of the thermodynamic temperature and the potential for its gradient.
That gradient appears in the heat flux constitutive equation. The model has been
mostly applied to heat conductors in 1D and 3D cases and to thermoelastic solids
(cf. [3, 12, 13, 14, 17, 41, 42, 37, 38, 39, 43, 67]. Its numerical implementations
are discussed in [4, 20, 21, 22].

In the present section we are going to give additional arguments for the model
initiated in [36] and developed further in a dozen of publications.

Let us look once more at the Maxwell - Cattaneo - Vernotte - Kaliski equation
(3.5). At each material point X this equation is regarded as an ODE for the heat
flux vector q. For any time instant ¢ > 0 its solution under homogeneous initial
conditions for g and V9 at ¢t = 0 will be

(1) alt) = —jﬁexp(s;t
0

) Vi(s) ds.

In the linear case one assumes that the heat conductivity coefficient % is constant
as well as the relaxation time 7. Then one can write the gradient operator in
front of the integral to get

(4.2) q(t) = —kV Oj ;_]Lexp (ST_t) J(s) ds.

If we denote the whole integral by /3

(4.3) B(t) = oj %exp (3 R ‘) 9(s) ds,
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then the last equation can be written in the form
(4.4) q(t) = —kVA(2).

On the other hand, let us notice that the variable 3 satisfies the following ODE
: 1
(4.5) B ==(9-p).
T
From this point it is not difficult to arrive at the more general evolution equation

(4.6) 8 =F(9,B),

which could be accompanied by the more general heat conduction constitutive
equation
(4.7) q=—a'()Vp

in a particular quasi-linear case, instead of the previous (4.4).

Further on, this extra thermal variable 3 (called in [12] a new semi-empirical
temperature) will be regarded in this more general set-up (instead of the previous
way (4.3)), as a solution of the evolution equation (4.6) with a thermodynamic
temperature nonlinear, in general, dependence on the right-hand side (RHS).

This short derivation has been performed to present the role of the variable
/3, and its interpretation as an internal state variable. The derivation shows that
this variable has been introduced in order to represent a thermal history of the
material. The fact that a scalar internal state variable can represent a history
of the temperature (while its gradient can represent the history of the tempera-
ture gradient) and in this way, influence the response of the material at hand, is
compatible with the general framework of the internal state variable approach.
As it was shown in several publications (cf. for example [44]), the internal state
variable approach and the theory using constitutive functionals with a past his-
tory dependence have some common points. Those two approaches are to some
extent equivalent as far as the description of memory effects of the material is
concerned. The difference appears in the very far past: in the internal state vari-
able approach one has to give an initial value of the internal state variable at
time ¢ tending to minus infinity, on the other hand in the constitutive functional
description one has to assume some value of the history at that far past.

Coming back to the main stream of the paper, we would like to point out that
in some applications analyzing the propagation of weak discontinuity waves (cf.
[41, 42]) we have used the linear evolution equation (4.5). However, in more ad-
vanced problems related to the temperature-dependence of the speed of thermal
waves (i.e. the speed of the second sound), such linear equation is not suitable
and we had to look for a nonlinear one. It was the case discussed in the recent
papers [43, 67] where, based on low temperature experiment data in solid di-
electric crystals NaF, the present author together with the Saxtons used in the
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evolution equation (4.6) the function F of the form F = Fy () + F»(8), with

(4.8) Fi(z) =a(l2f""'2)., 1<p<2,
where a is a positive constant, and the subscript “_"means that when z > 0, F}
is taken to be zero. For the second function Fy, they put

(4.9) Fy(z) = =blz|*12,  h> 2,

where b is another positive constant. In the first case z represents 1) —19, where 1,
denotes the critical temperature at which the heat conductivity of the material
reaches a peak. The model developed in [43, 67] based on the general framework
developed in [45], is intended to admit wavelike propagation of heat below — and
diffusive conduction above — a particular temperature value ¥,. This is mainly
due to the fact that the range of temperature for which the second sound (thermal
waves) is detectable is in fact quite small, and normal diffusive propagation takes
place above it.

5. Foundation of thermodynamics with modified Fourier law

The aim of this section is to list fundamental assumptions concerning the
thermodynamics with modified Fourier law as well as its main features. The
present consideration will be restricted, for simplicity of the presentation, to
a non-deformable continuum, while in the next section a thermodynamics of
deformable, elastic continuum will be shortly presented.

To this end we formulate an alternative, gradient model with internal state
variables to describe thermal wave phenomena, with a possibility to pass to the
Fourier model of heat conduction. Then we propose, in the next section, the full
thermomechanical coupling with wave phenomenon.

Based on that as well as on other physical observations, the main assumption
of the model developed by the author in [36] can be summarized in the following
assumptions (cf. [13]):

ASSUMPTION 1

Memory effect is introduced by a scalar-valued function £ that plays the role
of a potential in the heat conduction law, i.e. 3 is a solution of an initial value
problem

(5.1) B=F®,8), Blt)=7po-

In one of our previous papers [12] we have called j a semi-empirical temperature.
However, this term is not essential for the development.
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ASSUMPTION 2

Gradient V3 appears in constitutive equations instead of the gradient of the
thermodynamic (absolute) temperature 9,

Y =9*(9,Vp),
(5.2) = n*(9,Vp),
q=q'(9,V3).

ASSUMPTION 3

Fourier law is necessary to obtain in the limit transition, called a quasi-equi-
librated (or steady-state) case, when the left-hand side of (5.1) tends to zero.
In other words, we suppose there exists an invertible quasi-equilibrated relation
between ¥ and £, i.e. a differentiable homeomorphism B(«}) such that when the
left-hand side of (5.1) vanishes then F(9,3) = 0, and under the assumption of
the local monotonicity of F one gets [ as a function of 1. Hence in terms of the
function B, we get

(5.3) if 3—0 then 8= B(9), with F(9,B(d))=0.

This function will appear in the representation of the steady-state thermal con-
ductivity coefficient. Let us present this for the case of the quasi-linear propor-
tionality constitutive law (4.7). Namely, admitting that in general dynamic case,
the heat flux vector q is proportional to the gradient of 3 (cf. (4.7), then under
the quasi-equilibrated condition (or steady-state) (5.3), the heat flux turns to
be proportional to V9 itself, as it is in the Fourier law (3.1), however, with an-
other heat conduction coefficient k*, called now steady-state thermal conductivity
coefficient, and given by

(5.4) q=-k'Vd with k*:= a‘(a)d—%ﬂ.

Now, let us make the derivation of the thermodynamic consequences for the
general case of the constitutive equations (5.2) if we employ the 1-st and 2-nd
laws of thermodynamics in the form:

(5.5) eée + divq = pr,
(5.6) en +div(q/d) 2 er/?,

where the specific internal energy e = ¢ + nd. If we require that each Lipschitz
continuous solution of (5.1), (5.2), (5.5) satisfies the thermodynamic inequality
(5.6) then we get
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REMARK 0

The necessary and sufficient conditions for satisfying the second law of ther-
modynamics by each Lipschitz continuous solution to (5.1), (5.2) and (5.5), are:

q = —d(OF/39)(dY* [0V ),
(5.7)
n = —0y*/0Y,

and the residual internal dissipation inequality

(5.8) (OF/0pB)/(90F|d9)q- V3 > 0.
Moreover, one gets the next consequence

(5.9) F(9,8) = F\(9) + F2(B).

In the present paper we will follow the internal state variable approach based
on the evolution equation (4.6). Now we list some most fundamental observations
concerning the developed model.

REMARK 1
If Eq. (5.7) for q is linear in V3, i.e.

(5.10) q=—-a"(9)Vgs,

then, two functions ] and 13 should exist such that

(5.11) % =11 (9) + 0.593 (9)| V|,
where
(5.12) o" (9) = I F{(9) 93 ().

Notice that the assumption on the linearity in the heat flux constitutive equa-
tion (5.7)2 is equivalent to the splitting of the free energy function % into two
terms, with quadratic dependence on V3. Moreover, the first term 2] (¢) is rather
classical. In [37] 3D thermal weak discontinuity waves were investigated. It was
shown there, for example, that in the rigid case with (4.7) and (5.11) the gov-
erning system of equations for determining 8 and ¥ is composed of (5.1) with F
given by (5.9), and

(5.13)  pc,(9)B — ' (9)VS-VB — o (9) Fi(9)AB
— 0cy () F3(B)B + o' (9) Fy(B)VB-V B = orF{(9).

Since 9 can be expressed in terms of § and /3 from (5.1), the equation (5.13) can
be solved independently for 3. The speed A of a pure thermal wave is given by

(5.14) ¢y (D)X2 — o (9)V -0 — a* (9) Fi (¥) = 0,
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with n as a unit normal to the wave front. We can see that the wave propagation
is not symmetric if V3 differs from zero, and the hyperbolicity condition is

(5.15) (@) (D F{(9) 20  or e, (9)I(F(9))*¥3(9) >0,

where the second equivalent form is due to the representation (5.12).
Let us check the consequences of the residual dissipation inequality (5.8) in
the present form of Eq. (5.10) for q. Substituting it into (5.8) we get

(5.16) = oF3(B)y3(9) 2 0.

Let us make the additional requirement on the asymptotic stability of solutions
3 of the evolution equation

(5.17) B = Fi(9) + Fa(B).
Then due to the classical Lapunov stability result we can require
(5.18) F3(B) <0.
This implies
P3(9) 2 0.
Hence in view of the (5.15) we may formulate the proposition:

REMARK 2

Under the assumption of Remark 1 and the asymptotic stability requirements
(5.18), the hyperbolicity condition (5.15) is satisfied if ¢,(J) > 0.

REMARK 3

Under the assumption of Remark 1, if the internal energy ¢ = 9 + nd is a
function of ¥ only, then for the constitutive functions 3 and a* we obtain

(5.19) Y3(9) =939  and  o*(¥) = eP3gd*Fi(9),
with a positive constant 13, that could be written as

Toko

o = —=
093’

where the dimensions of material constants kg, 79, 'L‘»‘ﬁ are obvious and follow from
the dimensional analysis (cf. [36]). Then the specific free energy, entropy and heat
flux are given by

W = P}(9) + 0.5¢39| VB[,
(5.20)  7*(9,VB) = ne(¥) — 0.5¢20|VA%,  with np(d) = —¥i'(9),
q = —oPs9*F{(9) V3,
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and the principle of maximum entropy at equilibrium (g = 0) holds, for ¢ > 0.
Let us notice that the first term ng(?9) is rather classical and can be called the
equilibrium entropy.

REMARK 4

If in the thermodynamic inequality (5.6) one assumes a more general form of

the entropy flux, namely

a
'9+h

then in the derivation of the consequences one gets the potential relations (5.7)
with the same residual dissipation inequality together with the requirement
h=0.

REMARK 5

With the representations (4.8) and (4.9), it can be shown (cf. [67]) that in that
model, an expression for the second sound speed, Ug, (the speed of temperature
rate waves propagating in an undisturbed region) is given by

2 _ @ (O)F{(9) Y20 22,9 o \2p-1)
(5.21) UE___——QC»(‘IS’) —cm?ap (9 —9y)P~H.

At the same time, in the steady state case, for which Fy(d) + F2(8) =0, (i.e. 8
is a function of ¥) the heat flux (4.7) now reduces to (cf. (5.4)) and

(5.22) q = —(c20?|(9 — 9)_[PIH/M=2) v,

where ¢ depends on a,b,p and h.

We note that the obtained expression for the second sound propagation speed
in undisturbed region described very well the experimental results reported in
Sec. 2. Moreover, the solid curve in Fig. 1 in [43] fits very well the experimental
curve of Coleman and Newman. On the other hand, the expression (5.22) predicts
a peak in heat conductivity as 9 tends to ¥, from below, followed by a sharp
drop. At the same time, in particular if p is close to 1, Eq.(5.21) delivers a
sudden drop to zero of the wave speed Ug, where it could be expected that we
were entering the range of temperature of purely diffusive heat conductivity in
which parabolic heat conduction equation holds.

If we look once more at the general expression (5.21) for the second sound
speed Ug(?), then using (5.12) we get

IF{(9))*h3(9)
cu(9) '

From this expression and the form (5.4) of the steady-state heat conductivity
coefficient k*, we can get the following conclusion:

(5.23) UE(9) = (
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REMARK 6

The model is determined, i.e. all its constitutive functions can be determined,
if the following quantities: specific heat ¢,(V), steady-state heat conductivity
coefficient k* and speed of propagation of thermal second sound wave Ug, all in
terms of the absolute temperature ¢, are known.

REMARK 7

One can get the model of extended thermodynamics developed by MORRO
and RUGGERI [59] with the following evolution equation for the heat flux:
V(9
( )q,
k()

; 9 ( aq I
(5.24) i (E("ﬂ) +grad v(J) = —

under the identities
a(W)F(W)=1/a*(¥) and v = Fi(9),

and F5(f) being linear in 3. Similarly one can get a particular model with internal
state variable developed by KOSINSKI and PERZYNA [40].

REMARK 8

There is a parabolic thermodynamic development [45, 46] of the present ap-
proach in which the additional dependence on the actual value of the temperature
gradient is allowed. In a particular isotropic, linearized case one gets for the heat
flux the equation (cf. (43, 67])

(5.25) q=—k(®)VI —a*(9)VB, with B=F(,p).

That development can play two roles: the first role is a thermodynamically con-
sistent parabolic regularization of the present hyperbolic model, the second one
~ a full model that can be used in order to describe the whole regime of the heat
conduction: the wave-type and diffusive parts (cf. [43, 67]).

A new (non-hyperbolic) nonlinear model has been recently developed by HET-
NARSKI and IGNACZAK and used in [27] in the analysis of soliton-like waves in a
non-deformable heat conductor. Their model could be regarded as a particular
case of (5.25) in which they are not introducing (formally) the scalar internal
state variable 3, but its gradient, as a vector field B. However, it could corre-
spond to the present case with a scalar internal state case, however, the function
F in the RHS of the evolution equation for 3 will not depend on 3, having the
form F(¥,3) = A In ¥ with A = const (cf. Eq.(11) in [27] and substitute their
B with the present V).

In the recent papers of LARECKI [49] the analysis of the phenomenologi-
cal model of a non-deformable conductor of heat with a vector-valued internal
state variable has been performed. There its comparison with the present model
as well as its relations to other models based on some generalizations of the
Maxwell - Cattaneo - Vernotte - Kaliski equation have been broadly discussed.
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6. Thermomechanics

To present shortly the case of thermomechanics we notice that at finite strains,
the referential (Lagrangean) description is used. Then pg(X) is the reference mass
density, known for each X in the reference placement B and related to the actual
mass density o by the mass continuity law g9 = Jp, with J = detF and F as
the deformation gradient tensor. If T is the symmetric Cauchy stress tensor then
it is related to the first Piola- Kirchhoff stress tensor S by the identity § = J
TF 7. Here v is the particle velocity, b — the body force, q - the heat flux vector
related to the reference heat flux g, by the identity q. = JqF ™7, ¢ - the specific
internal energy per unit mass, r — the body heat supply, n — the specific entropy,
9 — the absolute temperature. By E we shall denote the sum of internal and
kinetic energies. The dot - denotes the scalar product operation.

In the recent paper of the author with Arcisz (3], two formulations of a
thermomechanics with a vector-valued internal state variable at finite strains
have been presented incorporating a wave-type heat transport. The authors have
made the fundamental assumption concerning the dependence of the Helmholtz
free energy and the heat flux vector on thermal variables and concerning the
limiting quasi-equilibrated case. In the case of finite strains the classical Fourier
proportionality law can be written in two non-equivalent forms. Those two forms
are crucial for the isotropic case mainly. Hence the question appears: is the
proportionality isotropic law between the actual heat flux vector q and the spatial
gradient of temperature valid or rather the proportionality isotropic law between
the referential heat flux vector q, and the Lagrangean gradient of temperature
Grad ¥ 7 The authors of that paper answer “yes” to the first part of the question.
For those and the present cases such an answer has implied that the free energy
should depend on the spatial gradient of the scalar internal state variable 3.

Now following [3, 38] we state the main assumption:

(6.1) Y = ¢*(F,d,grad 9, h),
with
(6.2) h = grad S,

where 3 is the solution of an initial value problemn

(6.3) B=F®,0), Blt)="7o,

where t; is an initial instant and [y is an initial distribution of 3, assumed to be
given at ty for each X of B.

Incorporating (6.2) into (6.1) we obtain, as it was required above, the spatial
gradient grad 3 = V3 in the constitutive equation for the free energy

(6.4) Y = ¢*(F,9,V9, V).
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For the other constitutive quantities
n = n*(F,9,VY9,Vp),
(6.5) S = §*(F,9,VY,Vp),
9 = Q*(F,9,Vp).

Notice that the independence of the heat flux of the actual value of the temper-
ature gradient is crucial for the development of the hyperbolic model.
Now the second law of thermodynamics

(6.6) 00(n9 — ) +S-F — 9~ 1q,-Grad 9 > ggr/9,

will be in use. To derive its consequences let us put the form of v into (6.6).
Then if we perform the (material) time differentiation in (6.4), use the chain
rule property and insert the result of these operations in (6.6) then we get, after
grouping the terms standing in front of the appropriate time derivatives of the
components the state variable vector F, 9, V1, V3,

(6.7) (000" /OF — 8)-F + o(d* /00 +1*)d + (Qoaw*/t‘)Vﬂ)-V_}?
+ 00(9* |0V B)-V B + qx-Grad¥/d < 0.

Now, taking the gradient of (6.3) calculated in the actual configuration and
observing that the material time derivative does not commute with grad, we get

(6.8) V3 = grad F(9, 8) — VAFEL.
The latter enables us to express the product q.-Grad in the last inequality
(6.7) as
qx-Gradd = (9F/89) " {qFT-VP — (9F/98)a<FT -V + (VA ® qx)-F}.
Hence, owing to this, the last inequality can be represented as
(6.9)  {00dy"/OF — S + (9OF/09) ™ (VB ® q}-F
+ 00(09* /09 + 1) + (00dy" /0V9)-TT
+ {000y" [0V B + (99F/09) " a.F"}-V B
— (9OF39)~ ' (0F/dB)q.F* -V < 0.

Due to the independence of the time derivatives of the components of the (re-
stricted) state variable vector (F,d, V9,V 3), the inequality (6.9) leads to iden-
tities

0 = 8y* /v,
n = —oy*/Y,
(6.10) S = pgdY* /OF + (9OF/09) 1 (VB ® qs),

ax = —0o(VOF/30)(9y" [OVA)FT,
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and to a reduced inequality
(6.11) (VOF/39) 1 (0F/3B)q.FT -V > 0.

The independence and three other potential relations in (6.10) have particular
meaning. The identities from the first three lines of (6.10) are well known, the
last relation is rather not typical. The stress potential relation in (6.10)3 con-
tains two components: the first component is rather classical and appears in all
stress potential relations, while the second one represents the direct coupling
between mechanical and thermal fields in which extra stresses appear. The po-
tential relation for the heat flux can be obtained in some models with internal
state variables (cf. [34]). Eliminating qx from (6.10)3, (6.10)4 and (6.11) we get
a new potential relation for the Piola-Kirchhoff stress and a residual inequality

S = po0y* /OF — po(VB ® 8y* /OVB)FT,

(6.12)
0o(OF/0p)(0y* /0VB-VE < 0.

Using (6.10) and (6.12) we can write the final form of the constitutive equations
for the Cauchy stress and the actual heat flux vector in a general anisotropic
case, as

T = 0dy* /OFFT — oV ® d* [V,

(6.13)
q = —od(9"/0Vp)(9F/a9),

respectively.
The general constitutive equations (6.13) can be investigated for the partic-
ular case of a free energy with a general law between q and (F, v, V)

(6.14) q=—o’(F,9,Vp),
with a material tensor function (in a general, anisotropic case) a* given by

o oF oy*
— ST 89 VB

(6.15)

The linearity and the isotropy of (6.14) in V3, on the other hand, will be reached
iff the free energy function is of the form (cf. Remark 1)

(6.16) Y =91 (B,9) + 0.5¢3(B,9)VE-V},

where the factor 0.5 has been assumed for convenience only, and the tensor o*
is spherical, i.e. * = a*1, with

(6.17) q=—-a*(B,9)VA with a*(B,?) = gddF/d%y5(B,9).
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It is worthwhile to point out, that the above linearity assumption is compat-
ible with the following observation. As discussed in [13], it becomes reasonable
to make the following assumptions remaining consistent with classical thermo-
statics, at the same time making it straightforward to use experimental results
to identify the material functions needed:

o the free energy is independent of 8 and quadratic in | V3 |,

e the coefficient o* may depend on B and on 4.

REMARK 9

In the present thermomechanical case, the independence of the free energy
function of 3 leads to splitting (compare (5.9) of the function F(¥,3) into two
independent terms

F(9,8) = F1(9) + F2(B).

Moreover, in the linear and isotropic case of the heat flux constitutive relation

(6.17) if the proportionality material coefficient a* is independent of strain, i.e.
a*(B,?¥) = a*(9), then

(6.18) q=—a’(d) VB,
and due to (6.17)
(6.19) ¥3(B,J) = 93, (9)J,

where, as before, J = detF = pg/p, and %3, is a nonnegative material func-
tion (). In this case the final form of the Cauchy stress constitutive law (6.13);
due to (6.16) expression will take the form

(6.20) 20(8v7 /OB)B + o3, (9)J (0.5|VB['L - VB & V),

or equivalently, by using (6.18),

¥ (9)J

(6.21) T =20(0¥1/0B)B o= somr

(0.5|q)*1 — q®q).

Let us notice that even in this simplified case the stress-strain relation has
an extra term due to the thermomechanical coupling; this term can be called an
extra thermal stress. This extra contribution is similar to that already known in
the Landau’s superfluid model of liquid helium at low temperature [65]. It seems
to us that this contribution can have a substantial meaning in describing the
damage phenomena in deformable materials due thermomechanical coupling.
The thermomechnanics with damage effects introduced by the internal state
variables has been developed in the last paper [39].

(*) If the internal energy * is independent of V(3 then the function 3, is linear in 9,
cf. (5.19).
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7. Hyperbolicity of thermoelasticity

In order to check the hyperbolicity of the model, let us discuss shortly the
propagation of weak discontinuity waves. On the surface of discontinuity (*) of the
second derivatives of the displacement function u and the function 3, we have at
our disposal the classical kinematical and geometrical compatibility conditions.
A jump discontinuity in the field is denoted by a bracket [-]. Here u, is called its
(intrinsic) normal speed of propagation and n is a unit normal to the wave front,
regarded as a 2D surface in 3D Euclidean space ([35]). Hence for derivatives of
the fields v, F,9J and [, we have the following relations:

[gradv] = -Us®n,
[erad (88/0t)] = —unvn,
[gradF] = s@ FTn®n,
[0v/0t + grad vv] = [v] = U?s,

(7.1)

where we have used the following notations for the relative speed U and the
amplitudes of jumps

U = uy, — v-n, [grad vn] = —Us,

& [grad grad 3 n] = vn,

together with the continuity of the first order derivatives of 3. On the other
hand, for the second derivatives of the thermal variable 3, in view of (6.3), and
its prolongation (6.8), we get

(7.3) [grad 9] = —~Ur(9)(v + VB-s)n,  [d] = —U[VY]-n,
where we use the following short denotation

(7.4) 7(9) = 1/F}(9).

For further calculation we need the local form of the energy

(7.5) Oo(e + 0.5v-v) /0t + div(Ev +q—vT) = pr + pv-b,
and the motion equation

(7.6) dov /ot +div(pv®v —T) = pb

in the spatial description. Now performing the differentiation of the stress con-
stitutive function T* in the equation of motion (7.6), and of €* in the reduced
energy equation, written below as the consequence of (7.6) and (7.5),

(7.7) o€ + div q — T-gradv = pr,

*) Such a surface of discontinuity represents geometrically the thermo-acoustic wave front.
Y Tep B Y
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and taking the results across the wave front, we obtain

(oU?1 - Q+ tUPn® Vf)s = (=7UP + (Gn))vn,
(7.8) (oU%c, 7V B + U (9)VB-nV ) s
= (—oU%c,7 + Ut:n—1Ua”(9)VB-n+ a*)v,
where we have assumed the following abbreviations:
aT*(F,9,Vp
Q= 45 85 ( aF :
P := 9T*(F,9¥,Vp) /99,
G := 9T*(F,9,V3)/3V},
(7.9) a* = da*(9)/09,
t := 9¢*(F,9,V3)/0V},
¢y = 0¢*(F,9,Vp)/09.

@F n@n,

Here the symbol ( 1;;r5 ) denotes the operation of the simple saturation (composi-

tion) of the third index with the fifth one of the tensor following the symbol.

Let us notice that in 3D case we have a system of four homogeneous equations
for two amplitudes: the vector-valued mechanical amplitude s and the scalar
thermal one ». To get a nontrivial solution, the determinant of the system has
to vanish. This gives us the so-called characteristic (or dispersion) relation for
the speed U in terms of n and values of state variables at the wave front.

The hyperbolicity of the governing system of equations (6.3), (7.6), (7.7) will
be guaranteed if for any normal vector n eight real solutions for U and four linear
independent amplitude vectors (s, ») exist.

We are not going to write this relation, restricting ourselves to some particular
cases. If the wave propagates in the state with the vanishing heat flux, i.e. V3 =
0, then the system (7.8) is simpler and the characteristic relation will take the
form

(7.10) det(pU%I — Q)(pU%cym — ax) = 0,

giving three symmetric mechanical wave speeds, provided the acoustic tensor Q
is positive definite, and also one symmetric thermal wave speed, provided the
specific heat ¢, is positive. In the general case, with nonvanishing V3 we can
have coupled thermomechanical wave speeds.

We will conclude this section with the governing system of equations of the
modified model of thermoelasticity written in a 4D divergence form. Such a form
is necessary in order to discuss strong discontinuity waves and weak solutions,
that are piecewise continuous and Lipschitz continuous with jump discontinuities.
The system should be written as a first order one for the following fields: u —
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displacement vector, F — the deformation gradient tensor, # - internal state
variable, v — particle velocity vector, n — the specific entropy, p — the spatial
gradient of 3, where for the E (total specific energy), the following relationship
has been assumed: E = ¢*(F,n,p) + 0.5v-v with the thermodynamic (absolute)
temperature 9, given by the potential relation ¥ = 9¢* /9n.

=,
l:"—Div{v®1]=lJ,

B = Fi(9) + Fa(B),
(7.11) oov — DivS = pgb,

QOE + Div (qc — vS) = por + gov-b,
PF — Div (F(9)1) = F§(6)pF.

Let us notice that the last equation in this system is the differential consequence
of the evolution equation (6.3) (compare also (6.8)). Moreover, from this equation
the jump condition follows

(7.12) ~ o[pF] = [P ()N,

where o denotes normal component of the strong discontinuity wave (shock
speed) while the unit vector N is normal to the wave front in the reference
placement (configuration). This jump condition is compatible with the condition

following from the evolution equation (6.3), namely [3] = [F; (9)] and the differ-
ential compatibility conditions for the first and second derivatives of 3, namely

Grad 3 = pF and pF = Grad ﬁ

8. Conclusions

The extensive discussion of possible propagation conditions will be given in
the next paper. Now we can refer to [41, 42], where some particular 1D cases were
considered, while in [37] 3D thermal weak discontinuity waves were investigated.
The reader is referred to the recent paper of FRISCHMUTH and CIMMELLI [22],
where 1D thermomechanical case with linearized constitutive equations has been
numerically treated. There two waves have been calculated: one corresponding to
longitudinal ballistic phonon propagation and the other, the second sound wave.
That paper is the first one in which the present model has been successfully ap-
plied in the linear case for numerical treatment of coupled thermomechanical and
second sounds waves observed in the heat pulse experiments described shortly
in Sec. 2 of the present paper. In the next paper we will be concerned with the
numerical simulation in 1D nonlinear case.
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