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On generalized parallelisms
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I. KOLAR (BRNO)

M. EPSTEIN AND M. DE LEON defined the second order non-holonomic parallelism
on a manifold and applied it to a geometric description of generalized Cosserat con-
tinua. We explain that the underlying geometric idea is the concept of generalized
parallelism on an arbitrary principal fiber bundle. Some properties of generalized
parallelisms are characterized in terms of induced connections or from the viewpoint
of the theory of generalized G-structures.

1. Introduction

THE STARTING POINT of the present paper were some recent results by M. Ep-
stein and M. de Leé6n [3, 4], which describe geometrically generalized Cosserat
continua in terms of the second order non-holonomic frame bundle P2M of a
manifold M. In particular, they introduced a second order non-holonomic par-
allelism on M as a section M — P2M and deduced several geometric properties
of this parallelism. Taking into account that P?M is the first principal prolon-
gation of the first order frame bundle P* M of M, [5], we demonstrate that an
interesting geometric situation appears even if one replaces the first order frame
bundle by an arbitrary principal fiber bundle P over M. That’s why we intro-
duce a generalized parallelism on P as a section M — WP of the first principal
prolongation W!P of P.

In Sec.3 we show that the functoriality of W' makes possible a simple con-
struction of a prolongation p(s, B) : M — WP of every section s : M — P
and every classical parallelism B : M — P'M. In Sec.4 we deduce that ev-
ery generalized parallelism on P induces two connections on P and one con-
nection on P*M with analogous properties to the special case of second order
non-holonomic parallelisms by Epstein and de Leén. Then we apply our theory
of generalized G-structures, [5]. In Sec.5 we describe the local flatness of gener-
alized parallelisms from such a point of view. In the last section we prove that
the generalized parallelism can be characterized in terms of its structure func-
tion similarly to the case of classical parallelisms. All manifolds and maps are
assumed to be infinitely differentiable. A connection means always a principal
(i.e. right-invariant) connection in the terminology of the book [6].
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416 I. KOLAR

2. Prolongation of principal fiber bundles

Consider an arbitrary principal fiber bundle P(M, G) with projection 7 : P —
M, dim M = m. The first principal prolongation WP of P is the space of all
1-jets at (0,e) € R™ x G of local principal bundle isomorphisms ¢ : R™ x G — P,
where e is the unit of G, [6]. It follows that WP is a principal bundle over M,
the structure group of which is WG = W{ (R™ x G) (= the fiber of W!(R™ x G)
over 0 € R™), where both the multiplication in W} G and the right action of
W1G on WP are defined by jet composition. Since ¢ is a principal bundle
morphism, it is determined by the restriction ¢ = @|R™ x {e} : R™ — P. The
composition @9 = mo @ : R™ — M is a local diffeomorphism, so that we can
construct locally the inverse map (@) ~!. Then @ o (i)' is locally a section of
P. Passing to 1-jets we find that WP coincides with the fiber product over M

(2.1) WP = PM xp J'P,

where P'M is the first order (= linear) frame bundle of M and J' P is the first
jet prolongation of P, [6]. Every manifold M can be identified with a principal
bundle M (M, {e}), whose projection is the identity of M and the structure group
is the one-element group {e}. In this case we have W!M = P'M. Further, if
P itself is the first order frame bundle of M, its first principal prolongation
W1!PM coincides with the second order non-holonomic frame bundle P2M of
M, [3, 4, 5].

Consider another principal fiber bundle P(M, G) satisfying dim M = dim M.
Every principal bundle morphism f : P — P such that its base map fo : M — M
is a local diffeomorphism is extended into a map W'f : WP — WP defined by

(2.2) Wf(j6®) = jo(f o @),

where @ : R™ — P is the above map generating an element of W!P. Clearly,
W1 is a functor. In particular, every section s : M — P can be interpreted as a
principal bundle morphism M (M, {e}) = P(M,G). Hence we have the induced
map Wls: WM = P'M — W'P.

The adjoint bundle of any principal bundle P(M, G) is the associated bundle

(2.3) LP = P[g, Ad],

whose standard fiber is the Lie algebra q of G with the adjoint action. According
to [6], p. 161, LP is identified with the vertical tangent bundle V P of P factorized
by the induced action of G on VP, i.e.

(2.4) LP=VP/G.

In general, the first jet prolongation J'Y of any fibered manifold Y — M is an
affine bundle over Y, whose associated vector bundle is VY & T*M [6], p.125.
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Let m} : J'P — P be the target jet prolongation. Using the identification (2.4),
we obtain immediately

LEMMA 1. Let s1,82 : M — J'P be two sections satisfying TGOS = Mgosy:
M — P. Then s; — s is a section of LP ® T* M. O

3. Generalized parallelisms

The classical parallelism on a manifold M means an m-tuple (B;,..., B,,) of
vector fields on M, which are linearly independent at every point. Clearly, this
parallelism can be interpreted as a section B : M — P'M. We recall that B is
said to be locally flat, if for every € M there exists a neighbourhood U ¢ M
and a local coordinate system z' on U such that the restrictions B;|U are the

" a .
coordinate vector fields =it =1,0..,m
T

As mentioned in the introduction, Epstein and de Ledn_defined a second
order non-holonomic parallelism on M as a section M — P’M = W!P!M.
We are going to study the following general concept (the classical parallelism
corresponds to the case P = M(M, {e})).

DEFINITION 1. A generalized parallelism on a principal bundle P(M,G) is a
section A: M — W'P.

Since WP = P'M x )y J' P, generalized parallelisms on P are identified with
pairs A = (A;, Az) of sections A; : M — P'M and Ay : M — J'P. Applying the
projection 7} : J'P — P, we obtain an induced section Ay = 7§ 0 A3 : M — P.

For every section s : M — P, we have constructed W's: P*M — WP.

DEFINITION 2. For every section s : M — P and every classical parallelism
B: M — P'M, the generalized parallelism p(s,B) := (W's)oB: M — WP
on P is called the prolongation of s with respect to B.

This construction leads to the following important concept.

DEFINITION 3. A generalized parallelism A : M — WP is said to be decom-
posable, if A = p(Ao, A1).

By Lemma 1, the difference
(3.1) D(A) = A — p(Ao, A1)

is a section M — LP ® T*M. This is the obstruction for decomposability of A.
We remark that in the case P = P'M we have LP'M = TM ® T*M.

PROPOSITION 1. Generalized parallelisms on P are in bijection with triples
of sections Ag: M - P, Ay: M - P! Mand D: M - LP®T*M.

Proof We set (Au,Al,D)=p[A[),A1)+D. 15l

Clearly, A = (Ap, A1, D) is decomposable, if and only if D = D(A) = 0.
We remark that a similar result for connections on W' P was deduced in [8].
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4. Induced connections

Every section of a principal bundle P induces an integrable connection I" on
P, which is determined by the tangent spaces of the right translations of the
section. In the case of a classical parallelism B : M — P'M, a classical result
reads that B is locally flat, if and only if the connection I' is torsion-free [3, 4].

In the case of a generalized parallelism A : M — WP, the underlying section
Ag: M — Por Ay : M — P'M induces an integrable connection Iy on P or
It on P'M, respectively. Another connection I'; : P — J'P on P is defined by
prescribing its values along the section Ag by

(4.1) I»(Ap(z)) = Az(z)

and by using the right-invariance condition. The following assertion generalizes
the results by Epstein and de Ledn about the second order non-holonomic par-
allelism.

PROPOSITION 2. A generalized parallelism A : M — WP is decomposable,
if and only if Iy = I's.

Proof. If we use the product formula (2.1), we have p(4p, 4;) = (A1, 51 4g),
where j1Ag: M — J'P is the first jet prolongation of A. Hence A is decompos-
able, if and only if Ay = j'Ay. By (4.1), Iy = I'; means Az(Ag(z)) = j*4o(2)
for all z € M. This is equivalent to Ay = j' Ay. )

5. Generalized G-structures

Let G ¢ GL(m,R) be a subgroup. We recall that a classical G-structure
on a manifold M is a reduction Q of the frame bundle P'M to G, [9]. For a
classical parallelism B : M — P'M, B(M) is an {e}-structure on M, where e is
the unit of GL(m,R). In [5] we introduced the following generalization (which
was motivated by the theory of higher order G-structures). Let H C WL G be a
subgroup.

DEFINITION 4. An H-structure on principal bundle P(M,G) is a reduction
Q of WP to H.

We also say that @ is a generalized G-structure.

We have W(R™ x G) = R™ x W})G. The product R™ x H, which is an
H-structure on R™ x G, is called the standard flat H-structure.

Write P|U for the restriction of P(M,G) over an open subset U C M.

DEFINITION 5. An H-structure Q C WP is said to be locally flat, if for every
z € M there exists a neighbourhood U C M and a principal bundle isomorphism
f:R™ x G = P|U such that W) f(R™ x H) = Q|U.

For every generalized parallelism A : M — WP, A(M) is an {e}-structure
on P, where e is the unit of W},G.
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DEFINITION 6. A generalized parallelism is said to be locally flat, if it is locally
flat as an {e}-structure.

PROPOSITION 3. A generalized parallelism A : M — WP is locally flat, if

and only if A is decomposable and the underlying classical parallelism 4; on M
is locally flat.

Proof Assume that A is decomposable and A is locally flat. Let U C M
be an open subset and h : R™ — U be a diffeomorphism transforming the
_E:‘?"”’Bxim) on R™ into A;|U. Define a
map f : R™ — P by f(z) = Ag(h(z)). Then AU = W!f(R™ x {e}) follows
directly from the proof of Proposition 2. The converse assertion can be proved
by the same argument. o

classical standard flat parallelism

Proposition 2 and 3 imply the following result, which compares our approach
with the research by Epstein and M. de Leén [3, 4].

COROLLARY 1. A generalized parallelism is locally flat, if and only if Iy = I
and I7 is torsion-free.

6. Semiprolongable generalized G-structures

In [5] we have established that the most interesting generalized G-structures
are the semiprolongable ones. Consider the jet projection 7} : WP — P. For
every H-structure Q C WP, Hy := n}(H) is a subgroup in G and Q := 7§ (Q)
is a reduction of P to Hy. By Sec. 2, the injection ¢ : Q@ — P induces an injection
Wli: W'Qp — W'P. The following concept was introduced in [5], where the
reader can find a justification of the terminology.

DEFINITION 7. An H-structure Q C WP is called semiprolongable, if Q C
WQy.

If we apply this concept to a generalized parallelism on P, we obtain, as a
direct consequence of Proposition 2, the following assertion.

COROLLARY 2. A generalized parallelism A : M — WP is semiprolongable,
if and only if A is decomposable.

7. The structure function

From the viewpoint of the theory of generalized G-structures, it is interesting
that the local flatness of generalized parallelisms can be characterized in terms
of the structure function, analogously to the case of a classical parallelism.

On the linear frame bundle P M, we have the canonical form ¢ : TP'M —
R™, [6, 9]. For a classical G-structure Q C P'M, a horizontal tangent space
means any m-dimensional linear subspace in T'Q which is complementary to the

http://rcin.org.pl



420 I. KoLAR

vertical tangent space. The structure function 7 of @ is defined by restricting
the exterior differential di to the horizontal tangent spaces of @, [7, 9]. This is
amap 7:Q — H%?(g), where H%?(q) denotes the Spencer cohomology class of
bidegree (0,2) of the Lie algebra q of G. In the case of a classical parallelism B :
M — P'M, the structure function of B(M) is a map 7 : B(M) = R™ ® A2R™*.
By the definition of 1, the structure function of B(M) coincides with the torsion
of the integrable connection I' determined by B. Hence B is locally flat if and
only if its structure function vanishes.

On W!P, we have a canonical form 6 : TW!'P — R™ & g, [6]. Proposition 2
of [5] reads that an H-structure @ C WP is semiprolongable if and only if the
values of the restriction of 8 to TQ lie in R™ & by, where by is the Lie algebra
of Hy = n}(H) C G. In particular, for a decomposable generalized parallelism
A : M — WP the values of the restriction of @ to T(A(M)) lie in R™@&{0}. For a
semiprolongable H-structure ), we defined its structure function 7 by restricting
the exterior differential dd to certain distinguished horizontal tangent subspaces
of Q, [5]. By [5], 7 is a map 7 : Q — H®2(t), where [ is the Lie algebra of the
kernel K of the jet homomorphism =} : H — Hy. In particular, the structure
function of a decomposable generalized parallelism has values in R™ ® A2R™*.

PROPOSITION 4. A decomposable generalized parallelism A : M — W'P is
locally flat, if and only if its structure function vanishes.

P roof The bundle projection WP — M identifies A(M) with M. This
identifies T(A(M)) with TM. By definition, the restriction of # to T'(A(M))
corresponds to the restriction of the canonical form 3 of P'M to T'(A1(M)).
Then our assertion follows from the above mentioned classical result. O
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