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Dynamic solutions of non-uniform extensional motions
as applied to instability of fibre-forming processes

S. ZAHORSKI (WARSZAWA)

THE cONCEPT of non-uniform extensional motion of materially non-uniform simple,
locally isotropic materials is applied to the case of dynamic solutions of fibre-forming
processes. The approach presented enables discussion of instability problems taking
into account inertia as well as shearing effects. It is shown that small stationary
disturbances may lead to unstable situations while small oscillatory disturbances
grow limitlessly only for certain discrete frequencies. Some comparisons with previous
results are made.

1. Introduction

THIS PAPER PRESENTS further application of the theory of non-uniform exten-
sional motions (NUEM) of materially non-uniform (inhomogenous) media de-
veloped in [1, 2] and applied to kinematic description of steady fibre-forming
processes in [3]. Under the assumption that the filament shape slightly differs
from the cylindrical one, we used a consequent linearization procedure leading
to the relatively simple equations describing also shearing effects.

In the present paper, in a way similar to that developed in [3], we consider
the corresponding approximations of the unsteady governing equations taking
into account shearing as well as inertial effects. Such an approach leads to the
dynamic solutions enabling effective discussion of instability problems of the
stationary and oscillatory types. Certain comparisons of our results with those
obtained so far for the instability problems and draw-resonance phenomena in
non-isothermal fibre-spinning processes (cf. [4, 5, 6]) are discussed in grater detail
at the end.

It is worth noting that certain particular instability problems were also con-
sidered in the case of flows with dominating extension (FDE) in our previous
papers [7, 8]. Apart from formal similarities to the present results, the solutions
obtained for FDE refer rather to the sensitivity problems caused by disturbances
superposed on the corresponding stresses, velocity gradients, etc.

In Sec.2 we remind the concept of steady NUEM of materially non-uniform
media and introduce the additional motions superposed on the quasi-elongational
ones and formulate the relevant constitutive equations. This section is based in
whole on our previous considerations [3]. Section 3 briefly presents the equations
of dynamic equilibrium and the boundary conditions appropriate for fibre-form-
ing processes. The subsequent approximations of the governing equations are
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42 S. ZAHORSKI

considered in Sec.4. The dynamic solutions and the instability problems of the
stationary and oscillatory types are discussed in greater detail in Sec. 5. The last
Sec. 6 summarizes certain conclusions and compares our results on instability
with those obtained previously under different assumptions.

2. Non-uniform extensional motions (NUEM) of materially non-uniform
media

Consider an isochoric, quasi-elongational motion in cylindrical coordinates for
which the deformation gradient at the current time t, relative to a configuration
at time 0, is of the following diagonal form:

XoHA i B
(2.1) EXE=1 % Y 8 detF =1,
0 0 A

where the non-uniform stretch ratio A(X,t), depending on the position X of a
particle in the reference configuration at time 0, is defined as

(2.2) A=V/Vo, A=V'A

where V and V; denote the variable axial velocity and the velocity at the exit,
respectively, and the prime denotes derivative with respect to the axial coordi-
nate z.

It has been shown in [3] that the quasi-elongational motion described by
Eq. (2.1) is consistent with the definition of NUEM and enables determination
of such quantities as the velocity gradient L(X,t), the left Cauchy - Green defor-
mation tensor B(X,t) and the first Rivlin-Ericksen kinematic tensor A,(X,?)
(cf. [9]). For steady NUEM these quantities are independent of time and the
constitutive equations of materially non-uniform, simple, locally isotropic media
can be written in the following spatial form:

(2.3) T(2) = k(V'(2), V(2), e(2); 2),

where k is a tensor function of scalar arguments: the velocity V, the velocity
gradient V', the density p, and the axial coordinate z. An explicit dependence of
the stress tensor T on the coordinate z takes into account the material properties
variable along the axis and caused by the corresponding temperature, crystal-
lization, orientation, solidification, etc. effects (cf. [6, 3]).

For axisymmetric, quasi-elongational motions Eq. (2.3) leads to

Tu = T22 = (J’l(VJ,V, 0; Z),
(2.4) T = o3(V',V,0,2),
T = 0.
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Since for steady flows the pair of variables V, V' is equivalent to the pair ¢,
€ (& denotes the Hencky strain), we may quote PETRIE’S [10] statement that
“... the use of rate of strain and strain as independent variables, was the most
plausible choice. The fact that this choice is appropriate for both extremes of
material behaviour, the purely viscous and the purely elastic, lend weight to the
argument.”

If the inclination of filament surface is a small quantity, i.e. R’ = 0(¢), ¢ =
Ry/L < 1, where R, Ry and L denote the outer current radius R(z), the radius
at the exit and the total length, respectively, we consider the following small
additional velocity field superposed on the fundamental motion characterized by
the axial velocity V:

(2.5) [w(r,2,8)] = | O | = [0(¢)].

w

The above additional velocity field depens on both coordinates r and 2, on time
t, and enables determination of all the linear increments necessary for further
considerations (cf. [3]). We have, in particular,

_w 110w
(2.6) e

Under the assumption that, in the perturbed expressions for stresses, viz.
(2.7) Tz} = Tz)+ AP rz. 1)

only the increments AT may depend on time, we finally arrive at the following
equations:

do doy 0w do ou
*1l _ S TR Wl B bl (W) S
S S S e

do doy Ow  do i
«22 _ 1 L8 el 2
TR =i+ gk 5+ 5507 Py

(28) dos daz Ow  do

W Bz T b

du Ow
w13 el el
i s —?}(az-i-ar)-'rq«u,

T'33 = g3+ AQ,

where a, 3, 4 and 7 are new material functions depending on the same arguments
as o1 and o3.

It has been proved in [3] that for steady fundamental motions for which,
moreover, div.V = 0, the density p is constant and Ap denotes the corresponding
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increment depending on 7 and z. Similarly, from the global continuity condition,
viz.

(2.9) W = orR?V = const,

where W denotes the mass output, it results that for density increments
R
(2.10) [Agr dr =0,

if the additional velocity distribution over the fibre cross-section is such that (see
Sec. 4)

R
(2.11) fwrdrz(}.
0

In what follows, we assume validity of the so-called thin-thread approximation
(cf. [3]) introducing the following dimensionless quantities marked with broken
dashes

(2.12) u = el u, w=Uw, r = Ry t, z=L32,

where U is some characteristic velocity. Therefore, it is a consequence of the
assumption (2.5) that u = 0(e?), if w = 0(g).

3. Equations of dynamic equilibrium and boundary conditions

The axisymmetric equations of dynamic equilibrium can be written in the
form:

*11 *13
oT +l(T‘11~T‘22)+8T __,9(3“ V?E)

or r oz ot s 0z
1) ar1d 1 aT*33 Aw dw
S xl3 = S 1 et !
5 +TT Fot (3t+vv +V80+V )

Introducing the stresses defined by Eq. (2.8), differentiating with respect to
z and r, and subtracting the first Eq. (3.1) from the second one, we arrive, after
integration with respect to r, at

1.8 d do 60 ow Ao
(3.2) q—-m( 3?)+rz(a+3 v 3~+3 AQ)

ow ow B
= c+g(—(¢§+w'+v3 +Vw)—g§(ru),
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where C is an integration constant,
(3.3) o=T T =g5— 0,

and only terms up to 2 have been retained. Here, the symbol d/dz denotes the
total derivative with respect to 2.

For the fibre-forming processes considered in the present paper it is usually
assumed that at the exit (the feeding velocity Vp) and at the end (the take-up
velocity V1), the following boundary conditions are satisfied:

(3.4) VO0)=V, and V(L)=Vg,

respectively. Since by assumption R'(z) = 0(¢), it is reasonable to consider that
the additional velocity field only modifies the uniform velocity profile of the
fundamental motion. Thus, if the mass output W is constant along the fibre, we
should apply the additional condition in the integral form (2.11).

On the free surface of the filament all the forces acting have to be mutually
balanced. For small R’ this leads to (cf. [3])

(3.5) R (Tmss o T-u)r:R — 13

r=R’
or alternatively to
0o do dw Oo ] (8w 8u)
A = +
r=HR

(3.6) R [0‘4-3 WB_ % E+a s

u )
r=R

where only terms of order €2 have been retained.

4. Approximations of governing equations

Assuming on the basis of Eq.(2.5) that the additional velocity field can be
written as

(4.1) w=ew +ewsy..., u=¢euy +€3uy...,
Eq. (3.2) amounts to

12(%1)4— ¢ Cl+g?——1+gvv’,
r dr ar

(4.2) =

for terms of order £, and to

10 dws d (do do Owy, Oo )
= B o o 0 O B Rl
G B (’” Br ) e (av“’”avr bz " 8g °
o ng ' 6‘w1 - 2
—. Cz+g(_“5f, +Vw;+V—-—32) 7ar(ru1),
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for terms of order £2. C; and C, are the corresponding integration constants
for the first and second approximation, respectively, and u; results from the
continuity equation.

Being interested in dynamic (harmonic) solutions of the problems considered,
we postulate that the total additional velocity field consists of steady part @ and
dynamic part w, viz.

(4.4) wy = W) + W expw(t — tp),

where the quantity w may be complex, real or purely imaginary. Equation (4.4)
implies that also

C, = C; + Cyexpw(t —tp),
(4.5) R =R + R expuw(t — to),

Ap = Ap+ Apexpw(t — tp),
where R denotes the surface inclination in a steady-state motion, and R is
the amplitude of dynamic increment. Similar notations are used for the density
increments Ap and Ag.

Under the above assumptions the first approximation of the governing equa-
tions (4.2) leads to

1 6 3_-1 do' ' ——
(4.6) n- B ( o ) + i +oVV' =C,,
for steady-state motions, and to
1 9 [ Ouy o =
(4.7) o (TB_) —owuy = Cy

for dynamic (harmonic) motions.
Of course, the condition (2.11) takes the forms:

R R
(4.8) afwrdr =0, ﬂf =

Similarly, the boundary condition (4.2), after taking into account Eqs. (4.4),
(4.5), gives

\ -~ oy
(4‘9) R g = T} (91" r=§‘
for steady-state motions, and
~ 0wy
=
(4.10) Ro=n o

for dynamic (harmonic) motions. It is worthwhile to remember that Egs. (4.7)
and (4.10) are valid only if the first harmonics are analysed.
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5. Dynamic solutions and instability problems

The governing differential equation (4.6) together with the conditions (4.8);
and (4.9) can be integrated in a straightforward manner leading to the solution

==/ ==2
o R R
5.1 B o e e U] T g s
(5.1) wn o R (T D) )
describing steady-state motions. This is exactly the same result as that obtained
previously in [3].
The governing differential equation (4.7) can easily be solved, leading to the
expression

(5.2) 5 =Bl (1 /ﬁr) E 9,
n ow

where Iy denotes the modified Bessel function of the first kind and order 0, and
D, is a new integration constant. Taking into account the conditions (4.8); and
(4.10), we arrive at

R oR'

5.3 C,=2=, D= )
(5.3) 1 UR 1 \/E_(( _Q_“"_)

n x 3 7
and finally at

7
3 (x_) /

==0 |1 R 1 ow—

3 =9 == — = /=—R,

(5.4) wy R R"? 2% Tilz) | @ 7 R

where I; denotes the modified Bessel function of the first kind and order 1.
Since, in general, the quantity w is complex, viz.

(5.5) w=w) — iwsy,

where both w; and w; are real (the minus sign is a matter of convention), the
result (5.2) can also be presented as

o
o(wy — dws)’

where Jy denotes the ordinary Bessel function of the first kind and order 0. The
corresponding modulus M and the argument ¢ are defined as follows:

(5.6) @y = DaJo(M)e™ —

2
(5.7) M? = Ju? +w} %,
(5.8) tgp = (:i:\fwf + w? +w1) / (iv‘w% +wi — wl) .
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In the particular case of w; = 0, the solution (5.4) can easily be presented by
the real and imaginary parts, viz.

(5.9) w; = Rew, + ilmw, ,
where
Dt
(5.10) Rt B
ow2 R Jy(M(R))
(5.11) Im@; = —2—— 5 M) F‘
ow: R |2 ZH(M(R)V 21

and according to Egs. (5.7), (5.8),
(5.12) M*R) = %Tzz, tg? p = 1.

Although the above solutions resemble those widely discussed in [3], it should
be emphasized, however, that they have different meanings and are based on
different model assumptions.

In the case of harmonic disturbances in the form (4.4) and (4.5), the motion is
said to be unstable, if there exists at least one solution for which the amplitudes
limitlessly increase in time. If we assume that w is written in the form (5.5), the
sufficient condition of instability can be expressed as

(5.13) Rew =w; > 0.

We have the case of “neutral” stability, if Rew = 0, passing from negative
to positive values. Depending on what value is taken by Imw, two types of
the stability loss may be observed: the stationary type when w; = 0, and the
oscillatory type when wsy # 0.

In the motions discussed all the types of instability may occur independently,
and “the principle of exchange of stabilities” (cf. [11]), valid for purely viscous
fluids, cannot be proved in general. Thus, we discuss separately the following
cases.

1. The case of stationary instability
If ws = 0 and w; > 0, the particular dynamic solution takes the form:

(5.14) w = w; expw(t — to),

where the additional velocity amplitude w; is determined by Eq.(5.4) with w

replaced by w;. Since for finite = the quantity w; is also finite, the result (5.14) |
implies that any small disturbances imposed on the additional velocity field either
will be preserved (w; = 0) or will increase limitlessly in time (for w; > 0). In |
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other words, this means that various types of spots, neckings and corrugations
occuring along the filament either will be preserved or will grow limitlessly in
time.

2. The case of oscillatory instability

If w; = 0 and wy # 0, the solution (5.14) is valid with w replaced by —iws,
where the real and imaginary parts of the additional velocity amplitude @; are
given by Eqgs. (5.10), (5.11).

Assuming that only the real part of Eq. (5.14) has physical meaning, we obtain
the implication:

= : Imw
(5.15) Imw=0 = sinwy(t—1t)= Retﬁi coswsy(t — tg)
and finally

~ 12
(5.16) Rew = (Re'tﬁl R (I—;{n;é}l—l)—) cos wy(t — tp)

= 2 (p+ (p_pl)z)coswz(t—tu),

=l =

a
oWz
where

1 J(M) PWy —2

) =2 ME)V 2

and M, M(R) have been defined through Egs. (5.7), (5.12);, respectively.

It is seen by inspection from Eq. (5.16) that the real part of the additional
velocity Rew tends to infinity, if the quantity p, defined in Eq. (5.17), tends to
infinity. This is the case, if

(5.18) Ji(M(R)) =0,

i.e. for M(R) = 3.83, 7.02, 10.17, etc. The above result means that any small
oscillatory disturbances imposed on the additional velocity field will increase
limitlessly only for the frequencies determined from

M?(R)nA - TM2%(R)V,

(5.19) wy = o2 W

1(2)A(2),

where W denotes the constant mass ouput and A(z) = V(z)/V; is the stretch
ratio at the position z along the filament. In other words, this means that various
oscillatory disturbances may grow limitlessly only for particular frequencies. For
given values of the stretch ratio A, the viscosity 71 etc., the least value of the
frequency ws results from Eq. (5.19) for M (R) = 3.83.
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Similar results can be obtained from the analysis of the radial components of
additional velocities &. To this end, we introduce Eq. (5.2) into the local conti-
nuity condition expressed by the corresponding increments (cf. [3]):

o Lol oun V 84p
5.20 d = i S O WY,
() S r Br(ml)+ 0z o 0z

Such a procedure leads to the equation for #;, the solution of which, after
integration with respect to r, and taking into account the conditions (4.8), and
(4.10), amounts to

(5.21) St oft | 1 (\/%_T)

dz E I ( ow ‘E)
n

|
3 |

<

r a r -
ﬁ aﬂfﬂgrdr.

We obtain, moreover, the following results:

(5.22) oA

if Eq.(2.10) is satified for R = R and Ap = Ap. Presentation of the above
solution in forms similar to (5.9), (5.10) and (5.11) immediately leads to the
conditions (5.18) or (5.19).

6. Conclusions and comparisons

The results obtained in the paper enable formulation of the following conclu-
sions.

1. The dynamic solutions discussed in the paper essentially depend on the
material properties of the non-uniform medium: the normal stress difference o
and the viscosity function 7. For purely viscous fluids this dependence can be
expressed by the kinematic quantities: the axial velocity V" and its axial gradient
V'. A change of material behaviour from a fluid-like to a solid-like (freezing
process) can also be taken into account.

2. As a consequence of the first conclusion, the amplitudes of disturbances
depend on the material properties, while their limitless growth does not. In
particular, the stationary type of stability loss (neckings, corrugations etc.) is
always possible for arbitrarily small disturbances distributed in any way along
the filament axis.

3. Contrary to the previous well-known studies (cf.[4, 5, 6]), it results from
our considerations that the hydrodynamic instability or the draw-resonance are
not the only reasons for the appearance of irregular fibres, or for the breakage
of the spinning line. This point of view is consistent with that expressed by
ZIABICKI [6].
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4. The oscillatory type of instability is possible only for certain frequencies
of disturbances, depending on the viscosity n(z) and velocity V(z) distributions
along the filament. The least value of frequency amounts to

(61) wmin = T n(2)V (),

where W is a constant mass output.

5. The above result is similar to that discussed in the previous references [4,
5], in the sense that the oscillatory type of instability arise when the draw ratio
Dr = Vi /V} is greater than some critical value (e.g. Dr = 20.2 for isothermal
Newtonian flow) determined on the basis of the neutral stability curves depending
on certain dimensionless groups. In our case the role of various dimensionless
groups (e.g. Stanton number, Reynolds number, etc.) is replaced by the axial
variability of n(z) and V(2) for any material described by the assumed pretty
general constitutive equation (2.3).

When making various comparisons of the present results with those from
other references, one has to bear in mind the fundamental differences between the
compared approaches to instability problems. In our considerations we assumed,
in particular, that:

e the additional disturbances as well as steady-state solutions depend on the
radius r (or R), not only on the axial coordinate z;

¢ the boundary conditions at both ends of the fibre are quasi-homogeneous,
in the sense that for additional velocity they are satified in an integral form;

e the additional disturbances of the stationary and oscillatory types are fi-
nite as compared with the additional steady-state velocity fields, responsible for
realistic variability of the fibre geometry.
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