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FIFTY YEARS OF THE ARCHIVES OF MECHANICS

Nambu - Poisson dynamics
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SEVERAL PHYSICAL systems can be described by using multibrackets instead of the
usual Poisson or Jacobi brackets. Starting with the original construction of Nambu
we give a brief review on recent results on multibrackets on manifolds.

1. Classical Hamiltonian mechanics

THE PHASE-SPACE in classical Hamiltonian mechanics [1, 2, 3, 4] is the cotangent
bundle T*M of the configuration space M which is provided with a canonical
symplectic structure w. If we consider local coordinates (q',---,¢",p1,-,pn) On
T*M (q' are the position coordinates of M and p; the momentum coordinates),
we have

mn
w = qui A dp; ,
i=t

and the associated canonical Poisson bracket (which is non-degenerate) is given by
" (0f 0g Of Og
{f.9} = Z (——7 5 —;—) .
= \9pid¢'  9q' Op;
Hamilton’s equations of motion are the first order differential equations

_9H  dp; oH

dg* ; =5 5. ot
(11) _“{HeQ}_Tmm dt _{ vpi}_ aqi1

dt

where H is the Hamiltonian energy of the mechanical system. The Hamilton
equations of motion can be expressed in a global way as

(1.2 S ().

However, the study of some mechanical systems, particularly systems with sym-
metries or constraints, may lead to more general Poisson brackets (degenerate
brackets).
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A Poisson bracket [19, 5, 6, 7] on a smooth manifold M is a bilinear operation
{, } on C*°(M,R) satisfying the following properties:

i) {f,9} =—{9.f} (skew-symmetry),

ii) {f,gh} = {f,9}h+g{f.h} (Leibniz rule),

i) {{f,9}.h} + {{h, £},9} + {{g.h}, f} =0 (Jacobi’s identity),
for all f,g,h € C*(M,R).

Given a function H € C*°(M, R), we associate a vector field Xy (called the
Hamiltonian vector field) defined by

Thus, the solutions of the Hamilton’s equations of motion (1.2) are just the
integral curves of the Hamiltonian vector field Xp.

EXAMPLE 1. Newton’s second law

The Newton's second law states that a particle of mass m > 0 moving under
the influence of a potential V (q), ¢ = (¢%, ¢%,¢%) € R?, moves along a curve g(t)
in R? in such a way that
(1.3) F = ma,

where a = d?q/dt? is the acceleration and F(q) = —grad V/(g) is the force acting
on the particle (the force field is conservative).

If we introduce the momemtum coordinates p; = m(dq'/dt), then the phase-
space is R® with coordinates (¢*, ¢%, ¢, p1, p2, p3) and canonical Poisson bracket.
Therefore the Newton second law (1.3) is equivalent to the Hamilton equations

(1.1) with respect to the total energy of the system H(q,p) = K(p)+V (q), where

Bl = (3—) lpl? is the Kinetic suetey.
2m

ExAaMPLE 2. Rigid body

We will consider the motion of a free rigid body around a fixed point [3].
The Euler equations of rigid body dynamics in the absence of external forces are
usually written as follows:

ds

IL? = (I — I3)22823,
df?

(1.4) fz-—d—tg = (I3 — I;)238,
df?

L—= = (h — L)%,

where 2 = (21, £25, £23) is the body angular velocity vector and Iy, I, I3 are the
moments of inertia.

To see the Hamiltonian structure of the rigid body equations, one can use
the description in terms of the Euler angles 6, v, ¢ and their conjugate momenta
Pé, Py, Po (the configuration space is SO(3) and the phase-space is T*(SO(3))),
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relative to which the equations are in canonical Hamiltonian form (1.1). However,
this procedure requires using six equations instead of the three equations (1.4).

We introduce the angular momenta IT = 112 € so(3)* = R®, that is, IT; = I;£;
(i=1,2,3), so that Eqgs. (1.4) become

dll;,  L-1I
dt i sza Hzﬁ;;,
Al Te=ily
1:5 - = I IT
] dt Rl
dlly I —1I,
dt Ll il

that is, dII/dt = IT x {2.
Introduce the following Poisson bracket on functions of the I7:

{F,G}(II) = II-(VF(IT) x VG(IT)),

where V f is the gradient of the function f. Notice that this bracket is the
Lie-Poisson bracket of the dual so(3)* of the Lie algebra so(3). If the Hamil-
tonian H is

1

2 2 2
H(H)—z(& &+&)

I i L I
then Egs. (1.5) are the Lie - Poisson equations. Finally, we notice that the kinetic
energy and the total angular momentum

1
(1.6) C(IT) = 5(II} + I3 + IT3),

are integrals of motion of the Hamiltonian vector field Xy.

2. Nambu mechanics

In 1973 Y. NAMBU (8] proposed a generalization of classical Hamiltonian
mechanics to a Hamiltonian system defined on a 3-dimensional phase-space with
respect to a ternary Poisson bracket and two Hamiltonian functions.

Nambu considered the 3-dimensional phase-space R® with coordinates z1, 3,
z3 and the canonical Nambu bracket defined for three arbitrary functions f;, f2,

ol 8ih, fa o)
15yJ2:.J3
U for fo} = d(z1,22,23)

Then the Nambu equations of motion are given by

d.T.l - 3(H1,H2) ﬂ:&?z o 3(H1,H2) Egl - B(Hl,Hg)

&0 dt  O(zg,33) dt — d(zs,m) dt — 9(zy,72)’
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or in a more general way
d

(22) Y — (i1 1),
where Hy, Hy are two Hamiltonian functions on R3.

Now, the solutions of Eqgs. (2.2) are the integral curves of the Hamiltonian
vector field Xg, g,, where Xy, i, (g) = {Hi, Ha, g} for g € C®°(R* R).

Nambu posed the following question: Are there real physical systems which
may be described in this way?

The example considered by himself was the following.

EXAMPLE 3. Rigid body II

Nambu observed [8] that Eqgs. (1.5) are nothing else but the Nambu equations

(2.2) with respect to the canonical Nambu bracket for the coordinates ITy, [T, IT3
and the two Hamiltonians

1
Hy = 5(-”52 + I3 + 113),

L (a2 p:  ml
g7 S e (e SR SN o
¥ 2(11+12+13

that is, total angular momemtum and the kinetic energy.

EXAMPLE 4. Static SU(2)-monopoles
The Nahm’s system in the theory of static SU(2)-monopoles [9, 10] is given
by the following equations of motion:

i T Lo T o 1T
dt = 4243, dt = 143, dt = L1432 .
The above equations can be written in Nambu form (2.1), where
S, e Yiia o
Hy = 2(-"-‘1 3), 2= 2(-’171 3)-

Other examples of Nambu dynamical systems are the SU(n)-isotropic harmonic
oscillator and the SO(4)-Kepler problem studied in [11] or the rigid body with
a single torque about a major axis [12], among others.

3. Nambu - Poisson and generalized Poisson manifolds

After the publication of NAMBU’S paper [8], Nambu mechanics has been dis-
cussed by many authors, but it was almost forgotten for many years. A recent
paper by TAKHTAJAN [10] gave a new interest to this subject by introducing a
geometrical setting for Nambu brackets. He considered brackets of n functions
satisfying a generalization of the Jacobi identity, the so-called fundamental iden-
tity. More recently, DE AZCARRAGA, PEREMOLOV and PEREZ BUENO [13, 14, 15]
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have introduced an alternative generalization of the Jacobi identity, the so-called
generalized Jacobi identity. Both kinds of multibrackets are natural generaliza-
tions of the ordinary Poisson brackets, and the fundamental and generalized
Jacobi identities are the corresponding integrability conditions which extend the
Jacobi identity.

In order to give a unified setting, we have introduced in [16, 17, 18] the
following definition.

A generalized almost Poisson bracket of order n on a smooth manifold M
is an n-linear mapping {,..., } : C®°(M,R) x --- x C*°(M,R) — C*®(M,R)
satistying the following properties:

1) {flr v rfll} = (_l)c(g){fu(l): P fa('n)}‘ (Skew'symmf"try)

2) {flgh--' 9fﬂ} = fl{gl--“1fn} +gl{f1!-" rfn}' (Lez‘bniz ru!e]
for all fi,..., fayg1 € C°(M,R) and ¢ € Symm (n), where Symm (n) is a sym-
metric group of n elements and €(o) is the parity of o.

An alternative way to define an n-bracket of functions is to consider the
skew-symmetric tensor A of type (n,0) given by

A.L‘(dfl(a’)' \dfﬂ(l‘)) = {.flr' L rfn}(:r) )

for all fy,...,fn € C®(M,R) and z € M. A manifold M with such a structure
is called generalized almost Poisson manifold of order n [16].

In local coordinates (x1, -+, Zm,) on M, the tensor A can be written as follows:
1 i d 0
3.1 A=— Ciyoi, —— Noes A :
(3:-1) n! . Z_ ol T ox;
11, in=1 ™
where the functions ¢;,...;, = {zi,, -+, 2, } = A(zi,, -+, xi,) are skew-symmetric.

With n — 1 functions Hy, -+, H,—q € C*°(M,R), we associate a vector field
Xu,.-H,_, called the Hamiltonian vector field and defined by

XHyHo(9) = {Hy, -, Hn-1,9}, for all g € C®(M,R).

In addition, we can consider an integrability condition. A generalized almost
Poisson manifold (M, A) of order n is said to be

e Nambu-Poisson [10, 16] if it satisfies the fundamental identity

{32) {fls'- . sfﬂ~11 {gl“”sgn}’} = Z{gls-' . s{fh"wfn—-hgi}a-“ 1971} y
g=1

for all fi,..., fa-1,91,---,9n o0 M;
e generalized Poisson manifold [13, 16] if n is even and it satisfies the gener-
alized Jacobi identity

(33) Alt’ ({fh 1fﬂ—11{9h--w9n}}) — 01
for all flr--'!fﬂ—laglw <y Gn ON M.
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We notice that the generalized Jacobi identity is equivalent to the condition
[A, A] = 0, where [, ] is the Schouten - Nijenhuis bracket [5].

REMARK. If in the definition of a Poisson bracket we only assume that the
bilinear operator {, } is of local nature, we obtain a Jacobi bracket (see [20, 21]).
The corresponding generalizations to multibrackets have been recently discussed
in [22, 23, 24].

ExAMPLE 5. Volume form

Let M be an oriented n-dimensional manifold and vys a volume form. Given
n functions fy,...,f, on M, we define a Nambu - Poisson bracket by the for-
mula [25]

dfy A+~ ANdfp = {f1,-.., fatvm -
Notice that the associated Nambu-Poisson tensor A is non-zero everywhere:
A(z) #0, for all z € M.

Conversely, each Nambu - Poisson tensor A # 0 of order n on a smooth man-
ifold M of dimension n follows from a volume form [16]. If we take M = R", and
v 18 the standard volume form vy = dzy A -+ A dz,,, we recover the example
originally discussed by Nambu [8].

The Nambu - Poisson structure associated with a volume form (for n > 3) can
be considered as the analogue of the symplectic structure in Poisson geometry
(see [16]).

EXAMPLE 6. Constant Nambu-Poisson structures

A generalized almost Poisson structure of order n on R™ is given by the
expression (3.1) and this structure is constant if the coefficients ¢;,..., € R.
GAUTHERON proved in [25] that the constant Nambu - Poisson structures of order
n on R™ are just the decomposable n-vectors. Notice that, in contrast, all the
constant generalized almost Poisson structures are trivially generalized Poisson
structures.

4. Foliation of Nambu—Poisson manifolds

As is well known, a Poisson manifold possesses a symplectic foliation [6, 5].
Given a Nambu - Poisson manifold (M, A) of order n > 3, if for each point 2 € M
we consider the subspace D, of T, M spanned by the Hamiltonian vector fields
Xf,...fn_, evaluated at z, then we obtain a generalized distribution D on M
(called characteristic distribution). By using the results in [25] we have proved in
[16] that the characteristic distribution D is completely integrable and therefore,
it defines a foliation on M such that the restriction of A to each leaf defines an
induced Nambu - Poisson structure. There are two kinds of leaves:

i) for z € M such that A(z) # 0, the leaf passing through 2 has dimension n,
and the induced Nambu - Poisson structure on it comes from a volume form;

ii) for z € M such that A(z) = 0, the leaf passing through z reduces to the
point z, and the induced Nambu - Poisson structure is trivial.
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5. Local structure of Nambu—Poisson manifolds

The local structure of a Poisson manifold was elucidated in [6]. For a Nambu -
Poisson manifold was proved a sort of Darboux theorem (see [25, 16]):

Let (M, A) be a Nambu - Poisson manifold of order n > 3. Then around each
point & € M such that A(z) # 0, there exist local coordinates (zy, -+, Zn, Tns1,
-+« T;,) such that

0 d
A= e A A P
This result shows that the Nambu - Poisson manifolds are extremely rigid.

A consequence of this result is that every Nambu- Poisson manifold of even
order is generalized Poisson, but the converse does not hold, as we have observed
in Example 6.

6. Other properties of Nambu - Poisson manifolds

Let (M, A) be a Nambu - Poisson manifold of order n, then:

i. A function f € C°°(M,R) is an integral of motion of a Nambu system with
Hamiltonians Hy,---, Hp—y if {H1,--+, Hp—1, f} = 0. By using the fundamental
identity, one can prove that the Nambu - Poisson bracket of n integrals of motion
is again an integral of motion.

ii. If f € C*°(M,R) then the tensor A; = i(df)A is also a Nambu - Poisson
tensor of order n — 1 on M. In general, Ay, .5, is a Nambu-Poisson tensor of
order n — r, for r functions fy,---, f, € C*°(M,R).

iii. Every Hamiltonian vector field Xg,...,_, is an infinitesimal automorphism
of A, that is,

Lxp,..p,_,A=0.

Then its flow consists of Nambu - Poisson morphisms (see [16]).

ExAaMPLE 7. Completely integrable systems

Let (M,w, H) be a completely integrable Hamiltonian system, that is, M is
a 2n-dimensional symplectic manifold with symplectic form w such that there
exist fi,..., fn independent functions pairwise in involution, i.e., { fi, f;} = 0 for
i,j = 1,...,n. Then the associated Hamiltonian vector fields X, commute, that
is, [Xy,, Xf;] = 0. Thus, A = Xy, A... A Xy, is a Nambu-Poisson tensor on M
of order n (see [17]).

Since the system is completely integrable, there exists (at least, locally) a
family of independent conjugate functions g, ..., gn, that is, we have

{fhgj} == 51']'1 {gtagj} =0.
A direct computation shows that

XQI---gn—l = an A
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Therefore, if the symplectic dynamical system is given by a Hamiltonian function
H = f;, then it is also a Nambu - Poisson dynamical system for the Hamiltonians

911"'191’&—1'

EXAMPLE 8. Compatible Poisson structures

Let M be a differentiable manifold and A, A3 two compatible Poisson struc-
tures, that is, [A;, A2] = 0; then A; A Ay is a generalized Poisson structure of
order 4 (see [17]).
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