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Fractional calculus and stable probability distributions

Dedicated to Prof. Henryk Zorski
on the occaston of his 70-th birthday

R. GORENFLO (BERLIN) and F. MAINARDI (BOLOGNA)

FRACTIONAL calculus allows one to generalize the linear (one-dimensional) diffusion
equation by replacing either the first time-derivative or the second space-derivative
by a derivative of a fractional order. The fundamental solutions of these generalized
diffusion equations are shown to provide certain probability density functions, in
space or time, which are related to the relevant class of stable distributions. For the
space fractional diffusion, a random-walk model is also proposed.

1. Introduction

THE PURPOSE of this note is to outline the role of fractional calculus in gener-
ating stable probability distributions through generalized diffusion equations of
fractional order.

For the standard diffusion equation it is well known that the fundamental
solution of the Cauchy problem provides the spatial probability density function
(pdf) for the Gaussian or normal distribution, whose variance is proportional
to time. For convenience, let us derive this result, using standard notation and
leaving out the regularity requirements. The Cauchy problem for the diffusion
equation reads

2

d J
v1.1) au(:r,t} = Dwu(m,t),

—00 < Z < 00, t>0 with u(z,0) =g(z),

and can be easily solved making use of the Fourier transform. Adopting the
notation g(z) <+ g(x) with Kk € R and

i(x) = Flg@)) = [ e g(o) da,
—00
1 o0
9@) = F 5] = 5 [ e g dr,
—00
the transformed solution reads
(1.2) a(k, t) = §(k) e~ DA
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378 R. GORENFLO AND F. MAINARDI

Then, introducing
(1.3) Gz, t) + e~ Dt

the required solution is provided by inversion in terms of the space convolution

(1.4) u(x,z)zfgg(g,:)g(x-g)dg, g;‘(x,g)=Q_V/ith-uze_xz/(wty

Here G4(z,t) represents the fundamental solution (or Green function) of the
Cauchy problem, since it corresponds to g(z) = d(z).

The interpretation of such Green function in probability theory is straight-
forward since we easily recognize

1
(1.5) Gd(z,t) = pg(z;0) := T e~ *'/(20%) —c0<z<00, 0°=2Dt,
o

where pg(z;0) denotes the well-known Gauss or normal pdf whose moment of
the second order, the wvariance, is 2. The associated cumulative distribution
function (cdf) is known to be

(1.6) Pgl(z;0) = /EPG(If’;U}dx’ == % [1 +erf (%)

vt ()]

where erf(z) := (2/y/7) [; exp(—u?)du denotes the error function. Furthermore,
the moments of even order of the Gauss pdf turn out to be

o0
2n)!
(1.7) /:cz“pc.-(:c;a) ar= (2n 72! " fak
=00

=(2n-1)o® = (2n - 1)1 (2Dt)", n€N,

where N denotes the set of the positive integers.

Let us show how the fundamental solution of the signalling problem in the
semi-infinite line provides a time pdf related to the unilateral Lévy distribution, a
property not so well-known as that for the Cauchy problem. Under fairly general
conditions, the signalling problem

a 9? , gl
(1.8) Eu(z, =D 22 u(z,t), z>0, t>0 with u(0,t) = ¢(t),

http://rcin.org.pl
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can be easily solved by making use of the Laplace transform. Adopting the
notation ¢(t) + @(s) with s € C and

=C[¢{t)]=/e‘”¢(i)dt, o(t) = L7 [4(t)] = 211/63‘(:_5(3)(13,
0

Br

where Br denotes the Bromwich path, the transformed solution reads
(1.9) iz, s) = p(s) e~ @/VD)s'?,

Then introducing
(1.10) Gd(z,t) + e~(@/VD)s'/?

the required solution is provided by inversion in terms of the time convolution,

t
1511 u(z,t =f d(z,7) p(t—T7)dr, d(z,t) = $- 33 ~E/ (B,
(1.11) (z,t) Dga( ) $(t—) gs( 2\/@
Here G%(z,t) represents the fundamental solution (or Green function) of the
signalling problem, since it corresponds to ¢(t) = §(t). We note that

2
1.12 d(g 1) = pr (6 ) 1= — VP =nl(2) 5 a8

where py,(t; 1) denotes the unilateral Lévy pdf, with cdf

t
(1.13) Prltip) = Ofp;,(t';#)dt' = erfc (\/g) = erfc (5—%),

see e.g. FELLER [1]. The Lévy pdf has all moments of integral order infinite, since
it decays at infinity as t~3/2. However, we note that the absolute moments of
real order ¢ are finite only if 0 < § < 1/2. In particular, for this pdf the mean
(expectation) is infinite, but the median is finite. In fact, from Pr (tmea; #) = 1/2,
it turns out that tyeq ~ 2, since the complementary error function gets the value
1/2 as its argument is approximatively 1/2 (a better estimate of the argument
is 1/2.1).

Both the Gauss and Lévy laws belong to the important class of stable proba-
bility distributions, which are mainly characterized by an index a (0 < a < 2),
called index of stability or characteristic exponent. In particular, the index
of the Gauss law is 2, whereas that of the Lévy law is 1/2. A special case
of stable distribution with @« = 1 is provided by the Cauchy law with pdf
pe(z; A) = M[r(2® + A%)], A > 0.
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380 R. GORENFLO AND F. MAINARDI

For the theory of stable distributions we refer to some classical treatises of
probability theory as [1-4], to the monographs by ZOLOTAREV [5], JANICKI and
WERON [6], SAMORODNITSKY and TAQQU [7] and to the article by SCHNEIDER
[8]. Here we limit ourselves to recall the main properties essential for the present
analysis.

All the stable pdf are unimodal and indeed bell-shaped, i.e. their n-th deriva-
tive has exactly n zeros, see GAWRONSKI [9]. However, while the Gaussian distri-
bution has a finite variance and is symmetric around its mean, for 0 < o < 2 all
the stable distributions have infinite variance and can have an arbitrary degree
of skewness. The skewness parameter is varying around zero (symmetric pdf)
between two extremal symmetrical values (eztremal pdf); for 0 < e < 1 the
extremal pdf turn out to be unilateral, i.e. restricted to a semi-infinite real line.
For 0 < a < 2 all the stable distributions exhibit at least one long tail, which
decays with the power (a + 1), so their absolute moments of order § are finite
only if § < a.. Note that for asymmetric distributions, the faster tail may decay
exponentially.

For our present purposes it is sufficient to draw the attention to the Fourier
transform of the symmetric stable distributions acting for 2 € R, i.e.

(1.14) ps(a; a,a) + plk; a,a) = e, a>0, 0<a<2

and to the Laplace transform of the unilateral stable distributions acting for
te RY, ie.

(1.15) pu(t: B,0) ~p(s:B,b) = e, >0, 0<B<1

In (1.14) - (1.15) the parameters «, 3 denote the characteristic exponent of the
corresponding stable distribution whereas a, b are scaling factors. The singularity
of the Fourier and Laplace transforms in the origin corresponds to the power-type
long tails of the distribution.

As a matter of fact we note that for the standard diffusion equation, the
Green function for the Cauchy problem yields (1.14) with « = 2 and a = D1,
whereas the Green function for the signalling problem yields (1.15) with 8 = 1/2
and b= z/V/D.

In order to reproduce both the classes of stable distributions (1.14) - (1.15), we
need to consider separately the Cauchy problem and the signalling problem for
two different diffusion equations in which the space or time derivatives of integral
order are substituted by special pseudo-differential operators, which are shown
to be expressed in terms of suitable “fractional derivatives”. For the Cauchy
problem we consider the so-called space fractional diffusion equation

du 0*u

—_— —_— — > i —_ 6
(1.16) % D(a)6|$|“ . o<T<oo, t>0 with u(z,0)=d(z),
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where 0 < a < 2 and D(«) is a suitable diffusion coefficient depending on a.
Here the pseudo-differential operator of space fractional derivative (symmetric
in ) is defined by its Fourier representation,

A Te s

o T
il el

u(z,t) + —|k|* a(k,t).

Correspondingly, for the signalling problem we consider the so-called time frac-
tional diffusion equation

0% u 9% u 2

where 0 < § < 1 and D(f) is a suitable diffusion coefficient depending on /.
Here the pseudo-differential operator of time fractional derivative is defined by
its Laplace representation,

(1.19)

5204, §2P%i(x, 8) — %P 1u(z,0%), if 0<f3<1/2,
a8

%P5z, 8)— 8% lu(z,0%) — s~ 2uy(z, 01), if 1/2<F<1

We easily recognize from (1.17) and (1.19) that the pseudo-differential operators
reduce to the space and time derivatives of integral order entering the standard
diffusion equation when o = 2 and 3 = 1/2, respectively.

In the following sections we shall discuss the two fractional diffusion equations,
providing an interpretation of the pseudo-differential operators (1.17) and (1.19)
in the framework of some established theories of the fractional calculus.

We begin in Sec. 2 with the time fractional diffusion equation that in recent
years has been extensively treated by MAINARDI [10-14]. Other significant treat-
ments of this equation have been given by a number of authors including Wyss
(15], SCHNEIDER and WYsS [16], SCHNEIDER [17], FuJTA (18], KocHUBEI [19],
EL-SAYED [20], and ENGLER [21]. In this case the fractional derivative can be
interpreted recurring to the Riemann - Liouville approach to the fractional cal-
culus.

For the space fractional diffusion equation, the literature on extensive and
clear treatments appears poor, in that the topic is mostly treated only briefly
from the mathematical point of view, as in SESHADRI and WEST [22], TAKAYASU
[23], ZAsLAVSKY [24], COMPTE [25]. In this case, the fractional derivative can
be interpreted as recurring to the Riesz approach to the fractional calculus. In
Sec. 3 we present a new and interesting analysis of the space fractional diffusion
equation, originally started by GORENFLO and MAINARDI [26], which leads to
an interpretation through a random-walk model. This analysis has been inspired
by a classical (but almost ignored) contribution by FELLER [27] and by a recent
paper by SAICHEV and ZASLAVSKY [28].
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382 R. GORENFLO AND F. MAINARDI

2. The time fractional diffusion equation

In the time fractional diffusion equation (1.18), the pseudo-differential opera-
tor of fractional derivative (1.19) is acting for ¢ € R and hence we must consider
the Riemann- Liouville fractional calculus, which is suitable for causal functions
f(t), vanishing for ¢ < 0. For details on this calculus the reader is referred to the
standard treatises of fractional calculus, which include OLDHAM and SPANIER
[29], SAMKO, KiLBAS and MARICHEV [30], MILLER and Ross [31], and to our
recent CISM lecture notes [32 - 33].

Here, for our purposes, we adopt the following definition for the fractional
derivative of order a of a causal function f(t),

t

o / it A

dte 0 t—‘r‘*"’lm

with m—-1l<a<m, meN,

where I' is the Gamma function and f (m)(t) denotes the derivative of order m,
which is assumed to be Laplace transformable. This definition has been origi-
nally introduced by CAPUTO [34, 35] in the late sixties, and extensively applied
by CApuTO & MAINARDI [36] for modelling dissipation effects in Linear Vis-
coelasticity. This derivative, that we refer to as the Caputo derivative, represents
a sort of regularization in the time origin for the Riemann - Liouville fractional
derivative by incorporating the relevant initial conditions. It has been exten-
sively investigated in [32] in view of its major utility in treating physical and
engineering problems with standard initial conditions, but has been ignored in
the mathematical treatises [29-31]. The Caputo derivative satisfies the relevant
properties: in particular, the derivative of any order of a constant is still zero
and the Laplace transform of a derivative of non-integral order still requires the
initial data for integral derivatives, according to the rule

(2.2) dtﬂ

m—1
f( )+ 5% fs) - Z FiRgH) ga-k m—1<a<m.

k=0
Since the above property is consistent with (1.19) for a = 23, and m = 1, 2, the
Caputo derivative is just the pseudo-differential operator suitable for the time
fractional diffusion equation.

The application of the Laplace transform to the signalling problem (1.18)

allows us to find the corresponding Green function, that we denote by Gs(z,t; 3).
In fact, after standard manipulations, we obtain the transformed solution

(2.3) Go(z,5;8) = e~ @/VPBENS 5>,

http://rcin.org.pl



FRACTIONAL CALCULUS AND STABLE PROBABILITY DISTRIBUTIONS 383

Introducing the similarity variable r = z/(,/D(5)t?) and the auxiliary function

1 U—T'O'B
(2.4) F(rif) = 5 /e do,
Br
we find
: 1 ~(148)
(2.5) Gz, 1 8) = 5 F(r; B) ~c(x)t : t — o0,

where c(z) is a certain positive function. The definition of F(r; ) can be analyt-
ically continued from r > 0 to any z € C, by deforming the Bromwich path into
the Hankel path. The auxiliary function F(z) turns out as an entire function of
order 1/(1— /), which can be identified with a special function, known as Wright
function [37].

In conclusion, the Green function for the signalling problem of the time frac-
tional diffusion equation turns out to be a unilateral stable distribution in time,
with characteristic exponent 3 and scale factor b= z/\/D(/3), that is expressed
in terms a Wright function in the similarity variable. For more details we refer
the reader to [10-14], where also the Cauchy problem has been treated.

It is noteworthy to recall here that for the Cauchy problem, the corresponding
Green function, obtained by the techniques of the Laplace or Fourier transform,
turns out to be a symmetric pdf in space, provided by

(26)  Gellzl :6) = == Fiirl; B) ~ aft) [a| - HA/O=) ~HAkel =8,

2ﬁ| |

as |z| — oo, where a(t), b(t) are positive functions. Therefore the pdf exhibits
two branches, for > 0 and = < 0, obtained one from the other by reflection.
The exponential decay of such pdf allows the existence of all the moments; we
obtain

o0

2.7) / 2 G (x, 1 B) dz

-0

_ I@n+1)

r'2pn+1) [D(ﬁ) tw]n* n=0,1,2...

We recognize that the variance is now proportional to D #*®, which implies a
phenomenon of slow diffusion (or sub-diffusion) if 0 < B < 1/2, fast diffusion
(or hyper-diffusion) if 1/2 < B < 1, and, of course, normal diffusion if g =
1/2. Furthermore, we recognize that for 1/2 < < 1, any branch of the pdf
is proportional to the exponential branch of an eztremal stable distribution of
index 1/8.
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3. The space fractional diffusion equation

In the space-fractional diffusion equation (1.16) the pseudo-differential oper-
ator of fractional derivative (1.16) is acting for z € R in a symmetric way. Here
we must consider the fractional calculus in the framework of Riesz potentials
and define properly the fractional derivative (1.17) as inverse of the Riesz frac-
tional integral. We recall that for 0 < a < 2, with @ # 1 and for a sufficiently
well-behaved function ¢(z), o € R, the Riesz integral operator or Riesz potential
I® and its image in the Fourier domain read

$(x)

|kl

1 T o .
2I' () cos(ra/2) _/ o — €171 #(€) d€ +

(3.1) = lz) =
On its turn the Riesz potential can be written in terms of two Weyl integrals I
according to

1

(3.2) I° ¢(z) = S

[1$(z) + I2¢(z)] ,

where

12 ¢(a) :%/ )21 6(€) de,
(3.3) s

oo

I% §(z) = ](e—w“ L (€) de.

Then, at least in a formal way, the fractional derivative (1.17) turns out to be

1

(34) 2 cos(ma/2)

o(z) = —-1"%¢(z) = — [I;“q&(a:) - I:“qﬁ(:a)] .

dT J“

Notice that (3.4) becomes meaningless if « = 1. Here we resist the temptation
to dive into the delicate details of the analytical inversion of the Riesz potential
but rather refer the interested reader to the specialized treatises by SAMKO,
KILBAS and MARICHEV [30] and RUBIN [38], and to the paper by SAICHEV and
ZASLAVSKI [28].

Here, for 0 < a < 2, a # 1, we propose a numerical approach for such inver-
sion, approximating the evolution of the solution u(z,t) of (1.16), interpreted as
a probability density, by a (symmetric) random walk model, discrete in space and
time. We shall see how things become highly transparent, in that we properly
generalize the classical random-walk argument of the common diffusion equa-
tion to our spatial fractional equation (1.16). So doing we are in a position to

http://rcin.org.pl



FRACTIONAL CALCULUS AND STABLE PROBABILITY DISTRIBUTIONS 385

provide in the future a numerical simulation of the related (symmetric) stable
distributions in a way analogous to the standard one for the Gaussian law.

The essential idea is to approximate the inverse operators I by the Griin-
wald - Letnikov scheme, on which the reader can be informed in the treatises on
fractional calculus [29-31] and in [33]. If h denotes a “small” positive step-length,
these approximate operators read

(3.5) WI2% §(z) =hlz () 9(z T kh).

Assume, for simplicity, D(a) = 1, and introduce grid points z; = jh with
h >0, j € Z, and time instances t, = n7 with 7 > 0, n € Ny. Let there be given
the probabilities p; > 0 of jumping from point z; at instant ¢, to point z; at
instant ¢,41, and define the probabilities y;(t,) of the walker being at point z;
at instant t,. Then, by

oo o0 (=]
(3.6) Ulbnri) = 2. Pintiln)i.  DiaSbegs 2 Pie= D Pia=1,

j=—o0 k=—o00 j=—00

a symmetric random walk (more precisely a symmetric random jump) model is

described. With the approximation y;(t,) =~ f(x’+;!’,f22)) u(z, tp) dz = hu(zj,t,),

and introducing the “scaling parameter” pu = -r/[h“2| cos(am/2)|], we have solved

(3.7) Yi(tnt1) = yj(tn) _ _ Tk,

T

for y;(tn41). So we have proved to have a consistent (for b — 0) symmetric
random walk approximation to (1.16) by taking
i)jfor0<a<l,

—0 h'a —x e
W7 yj(tn) = 1 — (A L5 yj(tn) + aI=% y;(tn)] ,

(3.8) 0<p<1/2,
[#1
k

- h =
nd ayj(tn} = ﬂ'? [fzf+ayj+l(t )+ pIZ° Yi— l(tn)] )

(3.9) 0<p<1/(20),
(a3 (8%
1+(2)}, Pjjtk = M (k+1)“ k>2.
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In the special case o = 2 we recover the well-known three-point approximation
of the heat equation, because p; ;i = 0 for k > 2. This means that for approxi-
mation of common diffusion, only jumps of one step to the right or one to the left
or jumps of width zero occur, whereas, for all other values of v, ie. 0 < @ < 2
with a # 1, arbitrary large jumps occur with power-like decaying probability, as
it turns out from the asymptotic analysis for the probability coefficients. In fact,
using the reflection and Stirling formulas for the Gamma functions entering the
binomial coefficients, one finds

(3.10) Di ik ~ %F(a +1)|sin(ra)| k=@ | k= o0

This result thus provides the discrete counterpart of the expected asymptotic
behavior for the long power-law tails of the (symmetric) stable distributions
when 0 < o < 2.
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