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IT 1s THE PURPOSE of this paper to reinterprete the original Cosserat continuum
from the point of view of both the fiber bundles geometry and the non-Abelian motor
calculus. The main ideas of Cosserats are best explained in terms of the moving reper
which is synonymous with the procedure of gauging in physics as well as with the
procedure of constructing a fiber bundle in pure geometry. On the other hand, the
classical (linear) von Mises motor calculus is extended to a non-Abelian case. It also
appears that this non-Abelian version of the von Mises concept is fully equivalent
with the fiber bundle description.
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one-form of fiber connection,
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1. Introduction

STARTING from investigations of KONDO (1] and BILBY et al. [2] who identified
the Cartan torsion tensor with the dislocation density, development of continuum
mechanics is closely associated with differential geometrical ideas and methods.
The subject has been extensively developed in Refs. [3-8], among others. The
tangent bundle and the connection on it are the fundamental notions of the
above-mentioned studies.

The next important step was made by the gauge theory of defects (for ex-
ample, see [9-11] and others). The gauge theory considers not only the tangent
bundle but also more general fiber bundles. It has recently been proposed that a
fiber bundle might be of considerable interest in continuum mechanics as a basis
for a differential geometrical description of the complex interactions between the
recoverable and the dissipative processes.

In order to describe forces and couples, translations and rotations, etc. simul-
taneously, VON MISES [12, 13] developed the motor algebra, an algebra of vector
fields in rigid bodies. Ostpov [14, 15] and SCHAEFER [16, 17] extended the motor
algebra to the motor analysis and introduced the differential operators for motor
fields. At the same time, it turns out that there is a close correlation between
the motor calculus and the fiber bundle with a group 7'(3) » SO(3) as a fiber
[18-21].

In COSSERAT pioneering paper [22], the geometrization and gauging play a
leading role. Recalling the Cosserat results in contemporary language, one can say
that during their treatment, the properties of the mathematical model are strictly
separated. All geometrical properties are carried by the base manifold, while all
the physical properties are embedded within the standard fiber - structural group
T'(3)> SO(3). The consequences of this are valuable indeed. The objects familiar
for the Cauchy continuum, such as displacements, measures of deformation and
stresses, equations of motion, etc. are now defined within the space of fiber
bundle and, what is characteristic for the Cosserat bundle, they are completely
separated from the base.

The aim of the present paper is to show the development of ideas and to
reinterprete the original Cosserat continuum in terms of both the non-Abelian
motor calculus and the fiber bundles geometry.
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2. The Abelian motor calculus

For a given point P of a rigid body, infinitesimal translation and infinitesimal
rotation are described by the translation vector u(P) and the rotation vector
@(P) forming a motor

u(P)
&y (lp('P))’

i.e. the ordered pair of two vectors which changes according to the rule

(u(Q)) B (u(P) +@(P)x &5)
@(P)

when changing a reduction point. For the following matrix notation it is conve-
nient to use such an order of vectors forming a motor as that shown in Eq. (2.1),
in contrast to that used in the literature.

The gradient and the curl of a motor field have the following form [17]:

(2.2)

W gradW -V x1
40 g = .
k%3) gead (V) ( grad V )
W rot W—VZ1
2 s X
2:4) z03 ( \' ) ( rot V )
with the well-known relation
W
2.5 =i
(2.5) rotgrad(v) 0

In the case of a two-dimensional surface ¥ embedded in a three-dimensional
space, we have [23]

WE gra.dng = Vz X 1y
2 — i 3
(2.6) grady (VE ) ( aiadeVs ) .
i Ws) _ [rotgWg — Veilg
(2.7) roty (VE) = ( rate Ve ’
and
Wy Wsg)
(2.8) roty, gradg(vs) —eg.b.gradg(vg) =0,

where 1 is the three-dimensional metric tensor, 1y and b are the tensors of the

first and the second fundamental forms of a surface, ey is the surface alternating
tensor.
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The motor calculus is very effective in various investigations of mechanics
and in the theories of defects in Cosserat continua [24-28]. For example, the
equilibrium equations, the compatibility conditions and the stress-strain relations
for a three-dimensional Cosserat continuum with dislocations and disclinations,
can be written in very convenient concise form:

(2.9) div (5) —(;)

(2.10) (g) rot (:)
B-¢3)- ()
(2.12) %(3) = —rot G)

The corresponding set of equations for a Cosserat surface reads

o fweN - (¥g
(2.13) dwg(az) = (Xg)’

o
(2.14) ('ﬁ
by
& )
d (o Jg Js
(2.16) E(‘ﬁg) = —roty (IE) +Eg-b-(ls),

where o and p are the stress and the couple-stress tensor, 4 and k denote the
strain tensor and the bend-twist tensor, o and 0 are the densities of dislocations
and disclinations, J and I are the dislocation and disclination current tensors,
X and Y denote the body force and the body couple, C and D are the material
constant tensors (for details see [28]).
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3. The non-Abelian motor calculus

Let us consider six-parameter local transformations of E3 consisting of three
translational parameters u,(z'), a = 1,2,3; i = 1,2,3, and three rotational
parameters ¢, (2%), A = 1,2,3; i = 1,2,3. As stated above, in the Abelian
approach the ordered pair (uq(z?), ¢,(2")) is an Abelian motor. To introduce a
concept of the non-Abelian motor [18] we consider the local translation Lie group
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T'(3), the local special orthogonal Lie group SO(3), and the semi-direct product
T(3) > SO(3) [10]. An element M of this product is represented by a matrix

1 u
(31) as

0 R 4x4
where u € T'(3) is the translation and R € SO(3) is the rotation:
(3.2) RTR =1, detR = 1.

The Lie algebra t(3) > so(3) can be described by six matrices

0 ¢ 0 0
(33) Ta = [ a} y TA = [ a= 132a3s A=132}3
0 0], 0 rafyy
with the matrices
(3.4) $1=1(1,0,0), to = (0,1,0), ts = (0,0,1),
0 0 0 00 —1 0 150
(3.5) w0 TR (6 s o far= 1000 OIS, r3=|—-1 00
0 -10 1.0 0 0 0.0

forming the basis of the Lie algebras ¢(3) and so(3), respectively.
The Lie brackets in the Lie algebra ¢(3) > so(3) have the following properties:

[TanTb] = 0, [Tas TA] = €,4BTB,
(3.6)
[Ta,Ts] = eancTe, [Ta,TB] = eapcTc

with the structural constants given by the completely antisymmetric tensor e.
In place of the ordered pair (u,, @4) in the Abelian theory, we consider a
motor as an element of the non-Abelian group T'(3) > SO(3)

(3.7 M(a') = u*(a")Ta + exp [ (=) Ta]

where the tensor exponential function realizes the full matrix of a finite rota-
tion R. . . -

An initial reper R containing the position vector r and the triad E,, a = 1,2, 3,
is defined as

(38) ﬁ: (ga El?%h E};’p) .

o
Under the action of the motor M, the initial reper R transforms into the actual
reper R

(39) R= (r‘ E13E21E3)
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according to
(3.10) R=MR.
Differentiation of fl with respect to 2' gives

(3.11) 8 R=A:R

with the six values in the matrix algebra.
The covariant derivative with respect to the undeformed base is

(3.12) Di= 8i— A

Thus, the gradient of the motor M with respect to z* has the form
(313)  GradM=A =g A; =¢ [(&M)M‘l +MA; M- R,f].

In a Cartesian coordinate system, by linearization of the rotation with R =
1+ ¢ x 1 we obtain

[0 Gu—-¢x1

(3.14) DM = [0 ks ]

which corresponds to the definition (2.3).
Let us define F;; as a result of the following operation:

(3.15) Fij = D;D; — D;D; = [D;, D]

or

(3.16) Fij =f}j Ai— 13:’ Aj+[AiAj]
Then

(3.17) B= %ek*‘frij .= rot A + %[(Ax),A],

and we can realize the non-Abelian extension of the rotor operator
(3.18) RotM=rotM+%[(A><),M],

and its linearization coincides with (2.4).
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4. The Cosserat bundle

Fiber bundles are the very concise tools for description of the Cosserat con-
tinuum. First, we shall very briefly reinterprete some results of [8] in terms of a
vector fiber bundle with a four-dimensional base and a three-dimensional fiber.

The one-form of fiber connection is written as

(4.1) A = ~dt + Ty dz' + Tadz? + T3 da®.
The two-form of bundle curvature

. k _ k k k k
(4.2) Fon. = Ol —0ua0, AL AL < A5 40,

can be split into two parts

(4.3) LD
and

P = k 81’;‘; k
(4.4) PspA ZFO.sp. = T_vﬂ'p‘ )

where Roman indices are running over 1, 2, 3, Greek indices over 0, 1, 2, 3.
Equation (4.4) leads to the evolution equation for the torsion tensor

88,,*
he = By, + Vi

(4.5) T o).

From the Jacobi identity for three derivative operators
(4.6) Vo, [Vs, V]l + [Vs, [Vr, Vo] + [Vr, [V, Vs]] = 0,
we immediately obtain the evolution equation for the curvature tensor

ORy m m o
(4.7) 6—; = 2(V[in]k. iy Sz‘j;.’Ppk. + Ri.f[pr-n’)‘k]- ):

As usually, the torsion tensor and the curvature tensor are interpreted in terms
of dislocation and disclination densities, respectively, while the time connection
~ and the tensor P are related with the dislocation current tensor

(4.8) Ty P =Nt =B,
where v is the velocity vector, and the disclination current tensor

1
(4.9) I = =" P,
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Being interpreted in such a way, Eqs. (4.5) and (4.7) provide nonlinear general-
ization of Eqs. (2.12).

Let us next consider a bundle P with four-dimensional or three-dimensional
base M and the semi-simple group G = T'(3) » SO(3) as a fiber. It is a natural
choice of the base J,, a = 1,2,...,6 of algebra G to be the fundamental vector
fields defining a vertical tangent to P. The base M is parametrized by the Gaus-
sian coordinates 0%, (a = 0,1,2,3 or a = 0,1, 2, where index 0 corresponds to
a time t) and its holonomic base vectors V,. A pair Oy = {Va, o}, M =a,a
spans the base of the tangent space to P, the Greek indices a, # indicate pure
geometry and the Latin indices a, b indicate pure physics.

The fundamental operation for both the gauge and the fiber construction is
the horizontal lift

(4.10) B — by = (D5 Tk

This operation is synonymous with the Utiyama compensating fields or the
non-inertial frame of reference in Poisson rigid-body mechanics.
The field

(4.11) A(6°,6%) = A% 7,d6°

is the one-form of fiber connection or the compensating gauge potential. Note
also that the vector product

(4.12) [Da, Dp) = FipTa

is purely vertical and can be expanded along J, with 8*-dependend coefficients
(4.13) Fos = —VaA§+ VAL + Cj AL AG

called the two-form of bundle curvature

(4.14) F = F2sJado® A 6P,

or the gauge strength tensor.
Within P such objects as the metric g,y connection I',, torsion Syy*,
curvature Ry ", etc. can be prescribed in a natural way:

1
(4.15) FJ\};N = ing{BMS‘NL + Ongmr — OLgun + Crpn + Crvse — Cuni),

(4-16) SMNI_' =FMNI_‘_PMNI_._CMN{J3
(417) RMNK{- = EA-IFNKI: —ENFMK% _FMK{’FNP{—+FNK}:,FMP£,‘_CMN}_,SPK%‘3

where ;a,a= Va'Vg and E‘ﬂb= C¢,C4 are the metric of a base and the Killing - Car-
tan metric on a fiber, respectively; [£), £y] = Cun"l..
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The one-form of fiber connection A = A% J,d0" can be interpreted as the

measures of deformation of the three-dimensional Cosserat continuum or two-
dimensional Cosserat surface, while the two-form of bundle curvature F =
FazTadd* A df” can be regarded as the compatibility of these measures (see

also [19]).
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