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dynamics

Attempts towards unification with thermodynamics
of irreversible processes (*)
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WITHIN THE LAGRANGE FORMALISM, a mechanical continuum theory of disloca-
tion dynamics is presented, which results in a phenomenological, unified descrip-
tion of elastic and plastic deformations of a crystal. Further developments towards
a thermo-mechanical theory including dissipation are methodically envisaged. The
theory is based on complex matter fields and vortex potentials as fundamental field
variables. Especially the dislocation network is divided into different classes of equal
dislocations, giving rise to a more refined description of the dislocation dynamics as
traditionally can be done by the well-known dislocation density tensor. Each class
of dislocations is associated with a complex dislocation field. The elastic interaction
between dislocations of different classes results in correlational effects which cannot
be described by means of the traditional continuum theory of dislocations. Whereas
in traditional approaches the plastically deforming body is formally looked npon as
an elastic solid with inherent flow properties, we are looking at such a system in
a reverse manner: The plastically deforming body is formally regarded as a fluid
with inherent solid properties. Formally the plastically deforming body is associated
with a generalized Cosserat fluid based on matter and dislocation fields. In this way
we overcome the difficulties due to the deformation chaos produced by dislocation
motion.

1. The aim

WITHIN THE FRAMEWORK of Lagrange formalism (LF) we aim at a phenomeno-
logical plasticity theory based on dislocation dynamics. The theory is intended
as a methodical unification of elasticity and plasticity. It will be a dynamical
generalization of the well-established eigenstress theory of dislocations. Plastic-
ity being extremely dissipative we finally intend to include thermodynamics of
irreversible processes (TIP) along the unifying procedure of LF. With regard to

(*) Conventions: Tensors are marked by bold-type symbols. If not stated otherwise, indices
occurring twice in a product imply summation over the range of the index.
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346 K.-H. ANTHONY AND A. AZIRHI

TIP the theory of plasticity will be formulated in quite a different manner as
compared with traditional attempts.

Roughly speaking, the whole information on static elasticity of a deformable
body is contained in an elastic potential W(Vd) = W(e), W being the density of
elastic energy, u the elastic displacement field and e the associated strain tensor.
The function W is the kernel of the elastic energy functional U, which in statics
defines the fundamental variational principle of minimal energy:

(1.1) U =deV = minimum,
‘./

by free variation of .
The associated Euler - Lagrange equations (ELEgs.),

(1.2) V.o =0,

are the equilibrium conditions, i.e. the fundamental dynamical equations in the
case of statics.

aow
(13) O = K

defines the constitutive equations for the stress tensor o.
The dynamical generalization of Eq. (1.1) is Hamilton’s variational principle:

t2
(1.4) ¥ f f I(, 8, V@) dV dt = extremum,
i V

by free variation of .
Now the total information on the processes is involved in the Lagrangian /.
The ELEqs. as the fundamental field equations are the equations of motion:

al ol ol
i e T Ve o
Obviously, there are two remarkable features involved in the theory: There are
universal structures (Egs. (1.1)—(1.5)), which apply in the same way to all elas-
tic materials, whereas the particular forms of the functions W(e) and [(...) are
individual structures, which depend on the particular material. They have to be
fitted to experimental data (elastic moduli)(*).

(*) It should be mentioned that the frequently used formula “kinetic minus potential (elastic)
energy” tor ! is but a dogma, which belongs to the individual structures insofar, as it only
approximately describes the dynamics of an elastically deformed body. An exact Lagrangian
for this case will be given in this paper, too.
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LAGRANGIAN FIELD THEORY OF PLASTICITY 347

We aim at a generalization of this unifying procedure in such a way as to imply
the dynamics of plasticity. From the very beginning this theory will be based on
dislocation dynamics. In this paper we shall confine our considerations to pure
mechanics, adding perspectives for the inclusion of TIP. Single crystals are the
systems we have in mind. Dissipation, which is a main feature of plasticity, will
be involved in a future step.

2. The physical situation — fundamental ideas
2.1. Deformation chaos

On the microscale, the phenomenological plasticity is based on dislocation
dynamics. Dislocation motion, however, is associated with deformation chaos [1].
The situation is demonstrated by means of the cartoon in Fig. 1:
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Fi1G. 1. Deformation chaos due to dislocation motion.
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One after the other, three dislocation cascades are running through the crys-
tal. The crystal lattice remains almost perfect except for the actual sites of the
dislocations. Nevertheless the crystal gets chaotically torn; material neighbour-
hoods get completely destroyed. The scales relevant for this chaos are given by
the relevant scales of the dislocation network, i.e. by the distances of the active
glide planes and by the lengths of the running dislocation cascades. This means,
however, that the relevant scales reach from micro to macro-dimensions. In this
context one should keep in mind the sliplines and Liiders-bands which can be
seen on the surface of a plastically torn specimen nearly with naked eyes.

As a consequence of this situation the traditional concepts for the deformation
of solids have to be left. Neither a displacement field nor a material coordinate
system dragged along with a deformation makes physical sense; the plastically
deformed body is not a material manifold!

m We look at the plastically deforming body by means of mass densities and
fluzes. That’s the point of view of TIP, which will be a guide-line throughout
our whole approach. Within Lagrange formalism this sight will be realized by
means of complex matier fields. m

2.2. Correlational effects

Traditional dislocation theory is based on the dislocation density tensor o
which geometrically is associated with torsion of the dislocated crystal lattice.
This tensor, however, is locally but an averaged measure of the dislocation ar-
rangement. It might vanish even though a vivid dynamics of dislocations of
opposite signs takes place in plasticity. So, correlational effects, kinematical as
well as dynamical ones, have to be taken into account in plasticity by means of
non-traditional tools.

m We look at dislocation dynamics in a more refined way by dividing the
dislocation network into different classes of equal dislocations [1, 2, 3, 22]. Within
LF each class will be associated with a complex dislocation field. Along this line we
are particularly able to introduce into LF the interactions between dislocations
of different types; we thus take account of correlations within the dislocation
network. For realistic plasticity problems only a few classes are really relevant. m

2.3. Thermodynamics and plasticity

The dislocation network is far away from thermal equilibrium. The energy of
a dislocation per atomic unit length is 1 ... 10eV, whereas the thermal energy
at room temperature is k7' ~ 1/20eV. Dislocation dynamics is extremely dissi-
pative, even at a very low plastic deformation rate. As a consequence there is
no reversible plastic deformation process, i.e. there is no thermostatics of plas-
ticity available which could be extrapolated into the regime of non-equilibrium
thermodynamics, e.g. along the line of Onsager’s approach to TIP [4].
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LAGRANGIAN FIELD THEORY OF PLASTICITY 349

» Lagrange formalism allows for any dynamics, even far away from equi-
librium. So, especially with regard to thermal effects, we describe dislocation
dynamics and plasticity within the framework of LF [1, 2, 3, 22].

It has been shown that TIP can be involved in LF, too [5, 6, 7]. As an essential
feature of this theory each degree of freedom, which gives rise to entropy pro-
duction, has to be represented by a complex field variable. Especially this holds
for disipative degrees of freedom. The entropy concept, which is involved in the
theory in a natural and straightforward way, is associated with the invariance of
the Lagrangian with respect to a common gauge transformation of all complex
field variables [8]. As a methodical consequence, all dissipative processes have to
be described by means of complex field variables. This is the reason for intro-
ducting complex matter and dislocation fields into our approach to plasticity, as
has been mentioned above.

LF as applied to TIP is based on the most fundamental, complez field of
thermal excitation or the thermion field(?) 1. Dissipation of mechanical energy
during plastic deformation will be modelled in LF as an irreversible energy trans-
fer from mechanical degrees of freedom, i.e. from matter and dislocation fields,
to thermal degrees of freedom, i.e. to the thermion field [22]. m

2.4, Creation and annihilation processes in plasticity

There are essentially three regions in the stress-strain curve of a plastically
deformed body [11, 12]: Increasing the external load of a body, the initial elas-
tic region is followed by an extended region of plastic softening which finally is
followed by a region of plastic hardening. The dynamics of dislocations, i.e. dis-
location motion, dislocation reactions, creation and annihilation of dislocations,
pinning and depinning of dislocations, are responsible with different relevance
for the various regions. Especially the plastic softening is related to a dramatic
increase of dislocations due to the activities of Frank — Read sources. Except for
the motion of dislocations, all these elementary processes can be looked upon as
creation and annihilation processes of mobile and immobile dislocations. They
are essentially dissipative.

m In LF the various elementary processes of dislocation dynamics will be
modelled step by step by an appropriate coupling of the various fundamental
fields in the Lagrangian.

With regard to motion, creation and annihilation there are close analogies
between the dynamics of dislocations and ordinary chemical reactions [13]. The
latter ones have already been successfully involved into LF by means of com-
plex matter fields associated with the chemically reacting species [7]. They are
physically related with point-like objects like atoms or molecules. Dislocations.
however, are line-shaped objects. We take account of this peculiarity by means
of the geometrical concept of torsion in a generalized Cosserat-continuum [1, 2,

(*) This nomenclature is due to the quantization of the thermal excitation field [9, 10].
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350 K.-H. ANTHONY AND A. AZIRHI

3, 14, 22|, whereas the complex dislocation fields associated with different dislo-
cation classes are directly analogous to the matter fields of chemical species. m»

2.5. Stability theory and dislocation dynamics

It is quite evident that stability and insfghilitanes Gniiond flutions of dis-
location dynamzcs We refan sl rlanpninihig and depinning of dislocations
and dfo ''n D&t hireshold of Frank - Read sources. So, the modelling of
b[éistic behaviour has to take into account stability considerations from the very
beginning.

w In LF there is involved a stability theory in the sense of Lyapunov’s direct
method [8]. This holds in a particular manner in the case of TIP based on complex
fundamental field variables. A Lyapunov functional can be established from the
Lagrangian in an easy and straightforward manner. This structure will play an
important role in our future efforts to model plasticity. =

Summing up the preceding arguments one can say, that Lagrange formalism is
an appropriate tool to describe plasticity from the mechanical as well as from the
thermodynamical point of view. Looking further at elasticity, which in the past
has more or less successfully been established with LF, a methodically unified
description of both deformation modes, the elastic and the plastic one, is a most
attractive feature of LF.

3. Design of the theory — formal ingredients (*)
3.1. The Cosserat-fluid as a model for plasticity

Traditionally a plastically deforming crystal has formally been looked upon as
an elastic solid with particular (plastic) flow properties. We adopt an alternative
view: A plastically deforming crystal will formally be looked upon as a fluid with
particular solid (elastic) properties! In this way we avoid the concept of a material
manifold () from the very beginning, i.e. we get rid of the difficulties associated
with the deformation chaos of a plastically deformed body. One should keep in
mind, that the deformation of a solid may equally well be looked upon as a
material flow!

THE MODEL:

Formally we introduce the concept of a generalized Cosserat fluid [2, 3, 14, 22].
This is the quintessence of a flowing, material carrier, the elements (mass points)
of which are endowed with an internal structure in the form of deformable triads
of Cosserat directors. The flow of the carrier is physically associated with the
phenomenological material flow of the deforming crystal, whereas the directors

(*) The subsequent Subsecs. 3.1-3.3 refer to the Subsecs. 2.1-2.3, respectively.
(*) In the usual mathematical sense, of course!
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are physically associated with the elementary lattice vectors of the crystal. The
elastic response of the crystal is locally modelled by the deformation status of the
director triad. In a generalized Cosserat-continuum [14] the deformations of the
material carrier and of the director triads are in principle independent. However,
with regard to plasticity of a crystal and depending on the actual deformation
modus of the crystal, there will be particular kinematical couplings between the
flow of the material carrier and the deformation of the director triads. Especially
in the case of dislocation motion, i.e. of plastic deformation of the crystal, the
dislocation fields will be involved in these kinematical couplings. It is evident, that
this concept takes account of elastic and of plastic deformation simultaneously
and in a methodically unified way.

All relevant physical structures of the crystal are embedded in the material
carrier. In the case of plasticity this will happen with the dislocation fields, and
- taking account of thermo-mechanical effects (dissipation) — it will happen with
the thermion field, too, etc.

The material carrier is formally described by means of a complez matter field
¥ and a complex vortex potential {2 as fundamental field variables:

(3.1) (z,t) = \/ol, ) exp(id(a, 1)),
(3.2) Q(z,t) = \[Alx,1) exp(iM(a,1)).
They give rise to the definition of the mass density

(3.3) o(z,t) = * (x,t)¥(2,t) > 0,

of the flow velocity

(3.4) (y)(z,t) = V@(z,t) + A(z, t) VM (2,1),

and of the vortex field
(35)  @la1) = 3V x i (@:0) = 5VA@,0) x VM(z,1)
= %Vﬂ'(:ﬁ,t) xVx,1)

as secondary field variables, all of them being identified with the respective phys-
ical quantities of the crystal.

With regard to the Egs. (3.4) and (3.5), the quantities @, A and M are known
as Clebsch or Monge potentials [24]. In three dimensions such a Clebsch-ansatz
can always be done. However, the three potentials are not unique; they are
associated with a non-Lie gauge group (°). It can be shown, that by properly

(*) This group becomes essential with regard to the definition of area-type balance equations
[15]. See also the paper of M. Scholle [16].
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regauging of the Clebsch potentials, the property
(3.6) Az, 1) = Q% (x,#) 2z, t) >0

can always be assumed. Thus, the definition of the complex vortex potential (2
is justified.

Let €;, i = 1,2, 3 be the local base vectors of an external, Cartesian coordinate
system z'. Then the three Cosserat directors

(3.7) @c(z,t) = AL (z,8)&, k=123,

are another set of fundamental field variables. They are defined by a non-singular
component matrix A (z,t), the inverse matrix of which is A} (z,t):

(3.8) £A=8, AAF=40.

The Cosserat directors give rise to the definition of secondary quantities such as
the elastic strain tensor [17)

(4Lads;; - 6xa)

b -

]' — —
(3.9) (6} e(z,t) = (exn), EkX = 5({1#'03 —0x\) =
and the affine director connezion [18]
(3.10) [(z,t) = (r,-jk) . Igk=Afaal,

which in the Cosserat fluid defines a director parallelism. In the associated crystal
both quantities are identified with the elastic lattice strain and the lattice par-
allelism, respectively. The torsion involved in the director parallelism is defined
by the torsion tensor [17, 18]

= (5..% R k= akg 4k
(3.11) §=(8*), S*=Iy* =404,
which in the crystal lattice is identified with the (traditional) dislocation density
tensor o 17, 19]:

(3.12) aii* = Si*.

Obviously the complete traditional deformation concept of an elastically de-
formed and dislocated crystal has been taken over into the model of the Cosserat
fluid. However, using the complex fields ¥ and (2, the deformation of the mate-
rial carrier is considered as a flow (Egs. (3.4), (3.5)). This holds for elastic and
plastic deformations of the crystal. We thus get rid of the traditional, conceptual

(%) The Euclidean scalar product is involved.
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difficulties associated with the deformation chaos, i.e. there is no displacement
field involved in the theory.

REMARK. One should keep in mind that the complez fields ¥ and 2 fit into
the entropy concept of LF as applied to TIP [8]. The dynamics of the directors
., however, gives rise to dissipation too. So, these quantities have finally to be
also represented by complex fields. This can be done on the basis of a threefold
Clebsch-ansatz

(3.13) (") @ =Ve*+£Vy*, k=123,
with
(3.14) V xa*=VE x V" #£0,

if the director fields are endowed with torsion, i.e. if dislocations are present in
the crystal.

Now we distinguish three deformation modes of the Cosserat fluid:

(I) The compatibly, i.e. elastically deforming crystal containing no disloca-
tions is associated with a Cosserat fluid, the directors of which are completely sub-
stantially dragged along with the carrier's low. The Cosserat triads are holonomic
[18] and they are deforming holonomically. The reader should imagine a com-
patibly deforming crystal lattice, the lattice points and lattice vectors of which
are identified with the material carrier and the directors of the Cosserat-fluid.

(IT) The elastically deforming crystal contains dislocations which are fixed
in the crystal lattice. This deformation mode is but a dynamical generalization
of the well-known statical eigenstress problem of dislocations [19]. It is modelled
by a Cosserat-fluid, the directors of which are still substantially dragged along
with the carrier’s flow. The dislocations are substantially dragged along with the
deforming crystal, i.e. with the carrier’s flow. Speaking in mathematical terms
the director triads are anholonomic; however, they are deforming holonomically.

(III) The plastically deforming crystal is associated with dislocations drift-
ing through the crystal. This deformation mode is modelled by a Cosserat fluid,
the director triads of which are anholonomic and which are deforming anholo-
nomically; they are partially dragged along with the fluid according to the drift
dislocation fluz, the latter one being exclusively responsible for the plastic flow
of the body.

The associated kinematical coupling equations will take into account the mat-
ter field ¥, the vortex potential §2, the flow field ¥y, the director fields dy, the
dislocation density o and its related drift dislocation flux J. These equations will
be presented in Sec. 4 (8).

(") See also M. Scholle: Dissertation [20]. @ are reciprocal vectors associated to d.
(*) Eqs. (4.8)-(4.11), (4.13)-(4.19).
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In the cases (I) or (II, ITI) we call the Cosserat fluid a compatible or incom-
patible one, respectively. In any case the deformation state of the Cosserat triads
gives rise to a local elastic response of the deforming body.

3.2. Dislocation classes and complex dislocation fields

The dislocation network is divided into different classes of equal dislocations
(see Fig. 2), which are characterized by the set of three vectors

(3.15) {fd b, 1, } = {line vector of the dislocation lines, Burgers vector,

normal vector of the glide plane}.

-t

& ]
4

e 5

Fic. 2. Different classes of dislocations in the dislocation network.

The dislocations are topologically defined with respect to the crystal lattice:
The three vectors are constant with respect to the Cosserat triads, i.e. with
respect to the lattice geometry:

(3.16) =1, b=0bad, Mm=m"a,
all components [*, b®, m" = constants.

The line vector [ is assumed to be a unit vector with respect to the Cosserat
triad, i.e. with respect to the lattice geometry; the line vector and the normal
vector are by definition perpendicular in the same sense (?):

(3.17) Csl =005 =1, [sm=6ul"m*=0.

Each class {I,b, 7} is associated with two complex fields, with a complez dislo-
cation field

(3.18) Y pm) (@) = \/ngpmy(,t) exp (5W{I,b.m}(ﬂ5a i)) :

(?) i.e. with respect to the lattice metric a = (@xp = 8x0): @ * T = axy u* v [18].

http://rcin.org.pl



LAGRANGIAN FIELD THEORY OF PLASTICITY 355

and with a complez vortexr potential

(3.19) Wt b,m}(T:t) = /A b,m) (2, t) exp (iuu,b.m} (-’M)) :

From these fields we define the scalar dislocation density within the class {I, b, 7},
(3.20) n @) = 9p (2, ¢ y(z,t) 20,

and the total dislocation flow velocity of class {I,b, i},

(3.21) Ui (2, t) = Vg y(@,8) + Ay (2, 8) Vg g (2, ).

ny.y is the number of dislocations of class {...} intersecting a unit test area
perpendicular to the line direction [. It may equally well be interpreted as the
total length of dislocations of class {...} within a unit volume, i.e. it is also a good
thermodynamical state variable for the dislocated crystal. Again we may assume
Ai.p(@,t) > 0 in the Clebsch-ansatz (3.21), which justifies the definition of the
complex vortex field (3.19).

The dislocation density tensor associated with the class {I,b,m} (*°) is the
dyad

(322) Q{Lb,m} = ﬂ{}(.’L, t) F@ g
We get the traditional, total dislocation density tensor by superposing all classes:
(3.23) a= > ng =19

{Lbyn}

From (3.21) and (3.4) we obtain the drift velocity of the dislocations of class

(3.24) Tay{..) (@ t) = Ty (2, t) — T g (2, 1)

It describes the motion of the dislocations with respect to the crystal lattice, i.e.
it is associated with plastic deformation.

Having introduced the dislocation classes and its related fields (3.18) and
(3.19), we result in a more refined description of dislocation dynamics than in
traditional dislocation theory!

Obviously the dislocation classes are handled in an analogous way as before
has been done with the carrier of the Cosserat fluid (see the fields ¥, 2 and ¢,
wy...}» respectively). So, in our model the dynamics of the dislocated crystal can

alternatively be looked upon as a sort of multi-fluid model. The vectors {i_: b, m}
are the Cosserat directors of that Cosserat fluid which is associated with the
dislocation class {l,b,m}.

(*°) Partial torsion due to class {F.S,m}
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3.3. Thermodynamics of plasticity within LF

Looking at thermal effects of plasticity, the Cosserat fluid will further be

endowed with the complex thermion field as the most fundamental variable of
TIP within LF [5-10]:

(3.25) x(z,t) = \/T(x,t) exp(in(z,t)).
It gives rise to the definition of the absolute temperature
(3.26) Tz, t) = x"(=z, 1) x(2.1) = 0.

The phase function n(z,t) is associated with the deviation of the irreversible
heat transport process from local equilibrium [5, 6, 7). Dissipation of mechanical
energy during plastic deformation will be modelled as an irreversible energy
transfer from mechanical to thermal degrees of freedom, i.e. from the matter field
¥ (Eq. (3.1)) of the Cosserat fluid and the dislocation fields 1 (;3,,) (Eq. (3.18)) on
the one hand to the thermion field y (Eq. (3.25)) on the other hand. This transfer
can be modelled in different ways: A direct coupling between the dislocation
fields and the thermion field is discussed by Azirhi [22]. Another approach takes
account of supplementary variables, which we call transfer variables [21].

4. The construction of the Lagrangian
4.1. The ideal hydroelastic fluid

Being a constitutive element of our Cosserat fluid, we start from the La-
grangian of an ideal hydroelastic fluid [24)]:

(41)  lpua = —0 | (3@ + ABM) + %(wa + AVM)? + W (o)
= Iﬂuiri((’a 6¢! A? aM)*

where W (p) is the specific hydroelastic energy. This Lagrangian can equally well
be expressed in terms of the complex matter field &. The difference between both
representations becomes essential only with regard to quantization, but not with
respect to the present classical field theory. The form (4.1) is the simpler one for
our purpose.

The ELEgs. associated with the variation of the variables p, @, A, M are:

(4.2) 00: o+ V-[o(VE+ AVM)] =0,
(4.3)  do: (8P + AOM) + é(vqﬁ + AVM)? - (g%g - w) =0,
(44) 6A:  [9+ (VD + AVM)-V]A=0,
45) M: [9+ (V6 + AVM)-V]M = 0.
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LAGRANGIAN FIELD THEORY OF PLASTICITY 357

Obviously (4.2) is the mass balance equation with the mass flur density

(4.6) Jio) = 0(V® + AVM)

and the flow velocity

(4.7) Tipy = % = V& + AVM.

Equation (4.3) is Bernoulli’s law and (4.4), (4.5) together are equivalent with
Helmholtz’s vortex law. With regard to (4.7) the differential operator [...] in (4.4),
(4.5) defines the substantial derivative. One can further easily show, that via
Noether’s theorem the Lagrangian (4.1) results in the correct balances for energy
and momentum. Furthermore the mass balance (4.2) coincides with Noether’s
balance associated with the gauge group ¥ — We'*, which is an invariance group
of the Lagrangian (}!).

4.2. The elastic crystal

We proceed to the Lagrangian of a compatibly deforming, elastic crystal with-
out dislocations. Referring to our model of the compatible Cosserat fluid we are
dealing with the deformation mode (I) of Subsec.3.1. The compatibility con-
ditions for the holonomic and holonomically deforming Cosserat triads are in
compact and component form, respectively(1?):

(4.8) (@ V=0,  (APond) =0,

]
(4.9)  Bdx+7(y) Vi —au- Vi) =0,  hAE+0]}0m AL — ATOmufy = 0.
The volume

(4.10) (@1,dy,d3) = Det (AL) = A

spanned by the three directors is coupled with the mass density of the material
carrier:

(4.11) A(z,t)o(z,t) = myg,

myg being the mass contained in the elementary cell of the crystal (atomic vol-
ume A).

(*') One should keep in mind, that the Lagrangian (4.1) is exact. See footnote 1.

(**) Latin and Greek indices refer to the external coordinate system 2¥ and to the internal
director basis d,, respectively.
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By slightly modifying the ansatz (4.1) (**) and taking account of the kine-
matical constraints (4.8), (4.9), (4.11) by means of Lagrange multipliers L"*
M*", N, we result in the Lagrangian of the compatibly deforming, dislocation-free
crystal:

(4.12) e [(6;@5 + ABM) + %‘aﬁ,} + W (a, )]
— L™ (G- Vi)
= M*- (s + (g) Vin — Ge- Vi) )
— N(Ae - mo)
— K- (Tg) - (VO + AVM))
= lelastic (0, 8P, A, M, 5y), L*>, M* N, K).

It is formulated within the model of the compatible Cosserat fluid and is abso-
lutely exact (}*). The variable Uy in the first and third row on the right-hand
side of the equation has to be read as the Clebsch-ansatz (4.7). However, this re-
sults in a Lagrangian of the second order ('°). So, in order to keep the formalism
within the first order, we prefer to insert the Clebsch-ansatz by means of another
Lagrange multiplier K (last row) and to join #(y) to the set of independent varia-
tional variables. One can show by means of the set of Euler - Lagrange equations
and by means of Noether's energy and momentum balances, that (4.12) really
describes the dynamics of the dislocation-free, elastically deforming crystal. It
is a remarkable fact, that we again result in the mass balance (4.2) and that
the velocity field of the deformation process is defined from this balance without
making use of a displacement field (Eq. (4.7)). From this point of view we are well
prepared to proceed to the plastically deformed crystal, i.e. to the incompatible
Cosserat fluid.

4.3. The dislocated crystal

In order to take account of dislocations in our Cosserat fluid model we have
to liberate the system from the kinematical constraints (4.8), (4.9):

(4.13) a = (@x-Vay)xy #0, e’ - (A?a”’*‘d‘f‘)[n:n T

J{ri) = (6‘;&',\. + ﬁ(f)V('ih o d'hVﬁ'(f}) ?(-' 0,

(4.14)
Ty + (OcAL + v} Om A — AT0ofyy) = 0.

(**) W(o) = W(dx, x=1,2,3).

(**) The most common form “density of kinetic energy minus density of the elastic energy”
is but an approximate Lagrangian of the elastically deforming body (see footnote 1).

(**) Last term in the third row.
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Formally o and J(4) are the incompatibility tensors of the system. Physically
these quantities have to be identified as follows: a is the total dislocation density
tensor, which has to be understood as the superposition (3.23) of dislocations of
the different dislocation classes:

(4.15) a= Y nayEdied o= Y npjlE )y,
{l,b,m} {l,bym}

The tensor o can be taken as a third rank or a second rank tensor(!®).
. 1 : il .
(4.16) o =gt Ag .l gy’ = "Q"Eux,\a‘” :

J(q) 1s the density tensor of the drift dislocation flur, which together with the
convective flux J 5y results in the total dislocation flux J,

(4.17) I=Jp+3),

vj

(4.18) In=—tnxe,  Jp.' = —exuwt(p

The drift flux is a superposition of the partial drift fluzes associated with the
dislocation classes:

Jay=— Y. Tayom} X X{tom)
; {L.bym}
b:19) J Iz vj
J(d)h- = — Z En;wv(d)“‘b.m}a{;‘b.m} :
{1,b;m}

Here 95y and 9(g)(1,,m} are the fluz velocity of the material carrier and the drift

velocities of the dislocations of classes {E_: E,Tﬁ} respectively, defined from the
matter and dislocation fields by Eqgs. (3.4), (3.24), (3.21).

By means of the kinematical constraints (4.13), (4.14) and using the expres-
sions (4.15), (4.17), (4.18), (4.19) and substituting the definitions (3.4), (3.24),
(3.21) for the velocities, we finally result in kinematical constraints for the dy-
namical eigenstress problem of a crystal with dislocations as well as for the plas-
tically deforming crystal. In the case of the dynamical eigenstress problem the
dislocation fields 1 ) are different from zero but the dislocation drift veloci-
ties ¥(g)(...; vanish (sessile dislocations). The Cosserat triads are anholonomic.
Furthermore in the case of plastic deformation the Cosserat triads are deforming
anholonomically, i.e. they are only partially dragged along with the carrier’s flow.

(*®) A more refined consideration may distinguish between tensors and tensor densities ac-
cording to the permutation symbols €*** and €uxa Which — precisely speaking - are no tensors
but “tensor densities of weight 1 and —1”, respectively [25].
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The dislocations are moving with respect to the crystal, i.e. their drift velocities
V(a){l,b,m} are different from zero.

We are now prepared to write down the pure mechanical Lagrangian of the
dynamical eigenstress problem of a crystal with sessile dislocations, and — si-
multaneously — of a plastically deforming crystal with moving dislocations. The
Lagrangian (4.12) of the compatible Cosserat fluid will slightly be extended:

T o
: .
o [ﬁeﬁ*p,an-pta,\ LW (e, V)

_ .
— > Mupm)nm) [(3s@{z.b.m} + A1b,m) Okt {i,b,m}) + 5”{%.&,1%} + &{1,b.m)
{l,b,m} =

K 1 ] P j
+ L Aj l§ ExAu {Z }{”{Lb.m}'{#bj) ™ (A:lamA?\)[N..\]
1,bom

+ M"~; [e,c,\p“; }{(vfi,b'm} — ) )ty V) = (Bl + 07 Om AL - AT O], )
0,1 J
- N [AQ Fr= fn(}]

— By [y = (V& + AV M)

- >, Kog1,my* {a{l.b.m} = (Veousmy + ’\{l.b.m}v”{i.b.m})}
{L.bm)

= apla:;tic(@ 8451 A! 3Mu a:m aam n{l.b,m} 5 699{1,!;,:11} ) )‘{I,b.m} 3 BN{I.b,m} 3
T4y, O0(£): Tt p,my» OF(t,p,my» L™ j, M" 5, N, K1, Kap.m})-

The different terms are written in the compact tensor form and in the index
form, respectively, depending on the most lucid form of the respective terms. The
arguments which will take part in the variational procedure, are listed explicitly
in lplast(-..) in the last row. The plus signs in front of the multipliers L and M

are chosen in succession to the respective terms in Eq.(4.12). One should keep in
mind, that the line vectors [ and the Burgers vectors b of the dislocations (4-th
and 5-th row) are involved in the variation of the Cosserat triads according to
(3.16) and (3.7). In the 2-nd row there is involved the substantial derivative

(4.21) D; = 0 + 'f?'(f) N g

which is necessary according to the Galilean invariance of the Lagrangian.
The theory of elasto-plastic deformation based on the Lagrangian (4.20) is
a reversible, pure mechanical theory. Especially the reversibility is due to the
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time reversal invariance of ljjas (replace: ¢ = —t, complex fields = conjugated
complex fields, i.e. phase functions = opposite phase functions, velocities =
opposite velocities, multipliers M, K, K5 = opposite multipliers).

The rows in lpjastic are in turn associated with the dynamics of the different
parts of our model.

1-sT ROW: The dynamics of the material carrier:

As compared with (4.12) the elastic potential is now joint with the Cosserat
triads. The second term defines the translational kinetic energy. The ansatz de-
scribes in the continuum picture the dynamics of a flow of free particles.

2-ND ROW: The dynamics of the Cosserat directors:

The first term defines the kinetic energy of the Cosserat triads. It is associ-
ated with the micro-inertia of the triads (tensor @). W is the elastic potential
associated with the elastic energy of the crystal. As compared with leas (see
(4.12)) this potential is supplemented by the lattice curvature — involved in Vay
~ in order to account for moment stresses, which are a natural ingredient of the
theory of Cosserat continua and of the dislocation theory. The 2-nd row describes
the elastodynamics of the crystal.

3-RD ROW: The dislocation dynamics of the different classes:

For the dislocation dynamics we assume again the continuum model of a
flowing medium. As already mentioned at the end of in Subsec. 3.2 we are thus
formally dealing with a “multi-fluid” system. The quantity m j ) is the effec-
tive mass of the dislocations. It is related with the inertia of dislocations. The
quadratic term is the kinetic energy of the dislocations, whereas £, is the
self-energy of the dislocation kernel [12]. The latter one will become inportant
in a later stage of the theory, when creation and annihilation of dislocations will
be taken into account.

Using the Lagrange multipliers the next rows take account of the kinematical
couplings discussed above:

4-TH ROW: The kinematical coupling of the dislocations of all classes with
the torsion involved in the field of Cosserat triads.

5-TH ROW: The kinematical coupling between the Cosserat triads and the
carrier’s flow via the motion of the dislocation of all classes.

6-TH ROW: The kinematical coupling of the triads with the mass of the carrier.

These three terms given rise to a dynamical coupling between the material
flow (material carrier) of the medium, its elasticity (Cosserat triads) and its
dislocations.

Finally a few more formal constraints are involved:

7-TH ROW: A formal variational constraint between the carrier’s flow velocity
and its Clebsch potentials.
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Using this constraint we preserve again a first order Hamilton’s principle (see
the last term in the 5-th row).

8-TH ROW: A formal variational constraint between the dislocation flow ve-
locities and its Clebsch potentials.

This constraint could be avoided. It is introduced because of a formal sym-
metry between the velocities of all “partial fluids”.

The Lagrangian (4.20) completely describes the unrestricted dynamics of
freely mowving dislocations due to elastic stresses; the Cosserat triads are the
transmitters of the elastic stresses. Under external load the dislocation motion
gives rise to an accelerating flow of the material carrier, i.e. to an accelerat-
ing plastic flow of the crystal. For a more detailed discussion we refer to the
forthcoming papers [22].

In reality there is a pinning of dislocations due to the discrete crystal lat-
tice (Peierls potential) and due to the pinning of dislocations at a lot of different
obstacles disturbing the perfectness of the crystal. So, in order to cause sessile dis-
locations to move, the local driving forces acting on dislocations (Peach - Koehler
force) have to overcome particular thresholds. By means of the following consid-
erations we are able to involve these effects into our Lagrangian field theory of
plastic deformation (17)

The density of the Peach - Koehler force on dislocations of the class {I,b,m}
is given by

(4?‘2) ll'--:{n!,b.m]» = T {l,bm} fx {Ug)-

o is the local elastic stress tensor (1.3). Projecting f{;.b‘m} onto the glide plain
(normal 771) we result in the relevant driving force acting on these dislocations:

(4.23) F{i.b.m} = X JEI:{1!,!::.1':1} xm=(1-m®e ﬁ')'f{l,b,m} /

By definition of the P.K. force the vector 7; 4 ) is perpendicular to the disloca-
tion line. This stress gives rise to dislocation motion if and only if it overcomes
the critical stress Tﬁ‘b.m} > 0, which is assumed to be characteristic for each class
and for each type of stability barrier:

(424) |f{l.b,m}| s Tff,bm} = ﬁ[d}{:’,b.m} = 0 < sessile dislocations,

(425)  |Tupmyl = Tpmy € Uayom) # 0 ¢ moving dislocations.

Both cases can be joint together in one equation by means of Heaviside's func-
tion (1%):

(426) (ﬁ(d){ttb.m} 'ﬁ(d){i.b,m} JH(Tf{'{;,m}z = ‘F{i,b,m,} 'F{t.b.m}) =0,

Obviously this equation is solved by the inequalities (4.24), (4.25).

(*") In a more general context these questions are related with dynamical stability of the
dislocation dynamics. See the remarks in Subsec. 2.5.
("YH(z)=0orlforz<0orz>0.
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Taking Eq. (4.26) into account by means of another Lagrange multiplier we
pass from (4.20) to a Lagrangian which — in a first and lump-sum way - takes
account of a critical stress in the phenomenological stress-strain curve of an
elasto-plastic material. Locally a free motion of dislocations takes place when-
ever and wherever the inequality (4.25) holds. Otherwise the motion of the dis-
locations stops abruptly; the dislocations are pinned. Phenomenologically there
are spatial regions in the deforming material where we get plastic or pure elastic
deformations according to the ineqalities (4.25) or (4.24), respectively. Moving
dislocations give rise to a reduction of elastic strains till we arrive at the situ-
ation (4.24), where the plastic flow stops. However, we are still dealing with a
reversible, purely mechanical theory. The thresholds T{1,p,m) are not yet related
with dissipation!

5. Perspectives

The theory of elasto-plastic deformation and of dislocation dynamics pre-
sented in this paper will be extented towards several goals:

The creation of dislocations via the Frank - Read sources can be involved in
various ways: With regard to the activation barrier of Frank - Read sources there
is an analogy with the relations (4.24-26). Another possibility is due to analogies
between a dislocated crystal and a spin system [22, 23].

Dislocation reactions between dislocations of different classes are analogous
with chemical reactions. The dynamics of the latter ones is already involved into
LF [7]. Furthermore the transition from immobile to mobile dislocations and vice
versa can be looked upon as creation and annihilation processes [22].

The Lagrangian (4.20) will be extended towards dissipative dislocation dy-
namics. A first approach is based on a direct coupling between the dislocation
fields and the thermion field: Friction gives rise to a transition of the dislocations
from the mobile to the immobile state [22]. Alternatively we shall attack the dif-
ficult problem of dislocation motion with friction by means of transfer variables,
which manage the energy transfer from the mechanical to the thermal degrees of
freedom. Using this method we already succeeded in the dissipation problem in
point mechanics [21]. A third approach tries to take advantage of the methods
of the gauge theory [20].
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