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Effective properties of physically nonlinear piezoelectric
composites

J.J. TELEGA, A. GALKA and B. GAMBIN (WARSZAWA)

FOR PIEZOELECTRIC composites with periodic microstructure and subject to stronger
electric fields, an effective model has been prepared. To this end the I'-convergence
theory has been applied. Detailed convergence proof has been given. Specific cases of
the internal energy have been suggested. Comments on homogenization in the case
of periodically nonuniform microstructure have also been provided.

1. Introduction

IN THE LAST DECADE various approaches were proposed to finding the effective
properties of piezoelectric composites, cf. [1-7] and the references cited therein.
In 1991 the first author published a paper [1] where he performed non-uniform
homogenization of linear piezoelectric composites by using the I'-convergence
method. However, that paper did not contain the proof of convergence. The aim
of the present contribution is to perform nonlinear homogenization of piezo-
electric composite with periodic or non-uniformly periodic microstructure. As it
was argued by TIERSTEN (8], for stronger electric fields one has to take into ac-
count higher order terms in the electric field E. The form of the electric enthalpy
H (e, E) proposed by this author, being of the third order in E, cannot be concave
in E, where e denotes the strain tensor. It should be remembered that H (e, E) is
here understood as a partial concave conjugate of the internal energy function
U(e.D) with respect to D, D being the electric displacement vector. In Sec. 2 we
shall briefly discuss a plausible form of the internal energy which accounts for
stronger electric fields.

The plan of the paper is as follows. Fundamental relations and nonlinear piezo-
electric composites with Y -periodic microstructure are introduced in Sec. 2. In
Sec. 3 we recall the basic notions of the I'-convergence theory, which will next be
of primary importance in Sec. 4. The heart of the paper constitutes Sec. 4, where
we give the proof of the I'-convergence of sequence of functionals J, defined by
(4.2). to the limit functional J;. Comments on non-uniform homogenization are
provided in Sec. 5. The summation convention applies to repeated indices.

2. Basic relations

Let V € R® be a bounded, sufficiently regular domain such that its closure V'
stands for a considered piezoelectric composite in its natural state. By v = dV we
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322 J.J. TELEGA, A. GALKA AND B. GAMBIN

denote the boundary of V. If u = (u;) is a displacement field, then e;;(u) = u )
is the strain tensor; i, = 1,2,3. By D = (D;), E = (E;) and o = (0y;) we
denote the electric displacement vector, the electric field and the stress tensor,
respectively. As usual, we set E;(¢) = —;, where ¢ is the electric potential
[9]. Let € > 0 be a small parameter and ¢ = [/L. Here [, L are typical length
scales associated with microinhomogeneities and the region V, respectively. The
internal energy is U = U(y,e,D), y € Y. Here Y is a so-called basic cell, cf. [10,
11, 12]. We set ;

(2.1) U.(z,e,D) =U(§,e,n),

where z € V, e € IEE and D € R3, IE‘E stands for the space of symmetric 3 x
3 matrices. Consequently, the piezoelectric material occupying V' exhibits the
eY -periodic microstructure. We observe that the case of quadratic internal energy
has been studied in [1]. In the general case the constitutive equations are given by

LB L W
e’ ~aD’
We make the following assumption:

(A) The function U : (y,¢€,0) € R® x E2 x R* = U(y,¢,0) € R is measurable
and Y -periodic in y, convex in (e, D) and such that

(2.2)

(2.3) der >¢>0, co(lef’ + |el?) < Uly,e,e) < arllel’ + |el?),

1 Tad
for each (y,e,p). Here p > 1 and ¢ > 1. As usual, we set §+I-J; =], -+5=1L

The assumption (A) will significantly be weakened in the case of non-uniformly
microperiodic composites, cf. Sec. 5 of our paper.

REMARK 1. As a particular case of the internal energy one can consider the
following one:

(2.4) U (f,e,n) =75 (E‘e,D) LI (f,e,n),
£ £ £

where U (E, e, D) is a positive definite quadratic form in e and D, typical for
; x
linear piezocomposites, cf. [1-3]. On the other hand, the function Uz (? e, D)

_ T
collects non-quadratic, higher order terms. Obviously, the function Us (E’ e, D)

has still to be convex in e and D.
A simple example is provided by

~ 1 x
(2.5) Us(y,e,D) = Us(y,D) = Zbijkl(y)DiDjDlea e
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EFFECTIVE PROPERTIES OF PHYSICALLY NONLINEAR COMPOSITES 323

where b;jp € L®(Y) is a completely symmetric tensor [13]. Further restrictions
on the material functions are imposed by the requirement of I}z(y,D) being
convex in D. The present contribution is confined to small deformations and the
internal energy U(y.€,@) is convex in € and . Finite deformations are properly
described by a nonconvex internal energy. Nonconvex homogenization is out of
scope of the present contribution.

Let us pass to the formulation of the minimum principle. The following bound-
ary conditions are assumed:

(2.6) u=0 on~, oijnj = X; onm,
(2.7) ¢=po onys, Dmi=0 onn,

where X; are the surface tractions, v = Fo U1, 70 Nm = 0; v = 7, U7,
¥2 M7ys = 0, and n = (n;) is the outward unit normal vector to ~; obviously
denotes the empty set.

For fixed € > 0 we set

(2.8) Ff(u,D)sz:—( ,e(u), D) dz — L(u, D),
4
where
(2.9) L(u,D) = fb-iuid-’f+ fﬂi‘uidﬁf = /‘PDDiﬂ-id'Yu
Vv T T2
and

ue W(V, %) = {v=(vi) | v; € W*(V), v=0 onnf,
D € W(div; V,v3) = {D = (D;) | D; € LY(V), divD € LY(V), D-n=0 on 73}.

For more details on the spaces just introduced the reader is refered to [14, 15].
The equlibrum problem of the physically nonlinear piezocomposites with the
£-Y periodic microstructure means evaluating

(Pe:) F.(u®,Df) = inf {F.(u,D) | u e W(V,v), D € W(div; V,73)}.

The assumption (A) implies the existence of unique (u®,D®) € W(V,qp) X
W (div; V,v3) solving the problem (P;).

3. ['-convergence

A detailed presentation of the theory of I'-convergence is provided by AT-
TOUCH [10] and DAL MAso [11]. ATToucH [10] prefers to use the notion of
epi-convergence, which in fact is a special case of I'-convergence. In our specific
case these notions coincide.
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324 J.J. TELEGA, A. GALKA AND B. GAMBIN

DEFINITION 1. Let (X,7) be a metrisable topological space, and let {Ge}eso
be a sequence of functionals from X into R - the extended reals.
a. The I'(T)-limit inferior, denoted also by G;, is the functional on X defined

by
Gi(u) = I'(7)- IunmfG (u) = min liminf Ge(u.).
=—0 {u‘_"u} e—0
b. The I'(7)-limit superior, denoted also by G, is the functional on X defined
by

G;(u) = F(T)-li193}}1p66(u) = min lim squ (ue).

{ueu) e—+0

c. The sequence {G:}eso is said to be I'(1)-convergent if G; = G,; we then
write
G = I'(7)-lim G,.
e—0

PROPERTIES. Let G. : (X,7) — R be a sequence of I'(T)-convergent func-
tionals and let G = F(’r}»lina G.. Then the following properties hold:
£—

(i) The functionals G; and G are T-lower semicontinuous (7-l.s.c.).

(ii) If the functionals G. are convex, then Gy, = I'(7)- lin;_}gup G- is also a
convex functional. Hence the I'(7)-limit G = F(")'}iﬂ% G. is a T-closed (7-ls.c)
convex functional.

(iii) If @ : X — R is a 7-continuous functional, called a perturbation func-
tional, then

[(7)-lim (Ge + &) = I'(7)-lim G +& =G + &;

(iv)
V {us = u}, G(u) < liminf G (uc), u € X,

G(u) = F(’-")‘li_lfil) Ge(u) & { Vue X 3Ju, > u, such that
: G(u) 2 lim_sup Ge(ue).

Further characterization is given by

THEOREM 1. Let G = F(T)-!i_l'.% G, and suppose that there exists a T-relatively
compact subset Xg C X such that infG = infG (Ve > 0). Then infG' =
hm(mfG ). Moreover, if {ug}eso 18 such that G (u,g)—mfG',S —+ 0, then every
T- cluster point of the sequence {u. : € = 0} minimizes G on X

REMARK 2. From a practical point of view the following sufficient condition
of existence of compact set Xy is very useful. If (X, ||.||) is a Banach space with

http://rcin.org.pl



EFFECTIVE PROPERTIES OF PHYSICALLY NONLINEAR COMPOSITES 325

T-relatively compact balls, then a sufficient condition of existence of compact set
X is that the sequence {G.}.-o satisfies the condition of equi-coercivity

(3.1) limssqug(ug) < 400 = limssup lue|] < +o0.

4. I'-convergence of the sequence of functionals {F.}..

We proceed to find the limit functional
(4.1) r [(s —LP(V)?) x (w — zﬂ(V)3)] - lim F. = F,

where LP(V)® = [LP(V)]® and s — LP(V)*(w — L9(V)®) stands for the strong
topology of LP(V)? (the weak topology of L9(V)?). The loading functional L may
be assumed to be continuous in the topology 7 = (s — LP(V)3) x (w — LI(V)?).
To thlis end it is sufficient to assume that b € L?"(V)"’, Bt (11)® and ¢ €
Wi (v2). As a particular case, one can impose g being continuous on 7;
and vanishing on dv;. According to the property (iii), the functional L plays the
role of a perturbation functional. Consequently it suffices to study the I'(7)-limit
of the following sequence of functionals {J. }.~¢ given by

(4.2) J.(u,D) = [Us(:v,e(u),D)da:.
v

The main result of this paper is formulated as:

THEOREM 2. Let the assumption (A) be satisfied. The sequence of functionals
{J:}es0 s I'(7)-convergent to the functional

(4.3) Ju(u,D) = f Un(e(u), D)dz,
| %4

where u € WWP(V)3, D € LY(V)? and

1

(44)  Un(e.0) = inf{l—? [ Ve v(w) +e.dw) + @)y |
Y

veWiE(Y): de Aper(Y)}-
1 [0y  Gv;
3 3 v RN o S
Here € € Ej, @ € R®, €];(v) 2(8yj+8y,-)and

(4.5) WLP(Y)? = {v e WHP(Y)3|v is Y —periodic},

per
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326 J.J. TELEGA, A. GALKA AND B. GAMBIN

(46)  Aper(Y)={d€ LUY)* | div,d =0 inY, (d) =0, d is anti-periodic],

1
(@ = }[ d(y)dy. o

REMARK 3. A function v € W]}é’;(}’)a is Y-periodic if the traces of v on the
opposite faces of Y are equal. It means that on these faces, the values of v; are
equal almost everywhere, at least. Similarly, if d € Ape(Y'), then the traces d-N
are opposite on the opposite faces of Y. Here N stands for the outward unit
normal vector to dY.

PROPERTIES OF U}
(i) The function Uy is convex.

P r oo f This evident property follows immediately from the convexity of
the function U(y, -, -) and the linearity of the operator e¥(-), cf. [16].
(i) F e > ¢y > 0 such that

co([el” + lel?) < Un(e,e) < cr(lel” + |el%)

for each € € lEg, o € R®. The constant c; is the same as in (2.3).
Proof Indeed, from (2.3) and (4.4) we obtain

Un(e,@) < (U(y,e,0) < ci(fef” + eff).

Similarly, let (v,d) € lf‘[/';éf,’(lf')"i X Aper(Y) be a minimizer of the mirimization

problem occurring on the r.h.s. of (4.4). This minimizer is unique, provided that
(v) = 0. Taking into account (2.3) we have

(47)  Unl(e.@) = (U(y,e¥(¥) +&,d(y) + @)

> (|e¥(¥) +€lP + |d(y) +el?) > ch(lel” + |el%).
Indeed, from (2.3) we conclude
(4.8) ea(lef +1°1Y) < U*(y,€”, ") < ca(le*lP +[e"]7),

where ¢z > ¢o > 0 are constants and €* € ]E?, ' € R3. Here U* denotes Fenchel’s
conjugate of U.

We recall that if f < g then g* < f* [16, 17]. Since U*(y,e*,@") = 0 and
U*(y,0,0) = 0, we may apply Remark 4.3, Chap.I, of EKELAND and TEMAM
[17] and (4.8) immediately follows.

By using the formula for the dual effective potential (4.9) below we conclude

Up(e*,0") < (U*(y,e*,0%) < ca(le*l” +*]).
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Hence
Un(e,@) = co(lel” + |el?)-

REMARK 4. For p = g = 2 another proof of (4.7) is more straightforward. In
this case we have

Un(e,@) > co{le¥(¥) +ef* + |d(y) +el?)
i ;y|f[le" (W) +2¢ : e(¥) + [el* + [d(y)* +2d(v) - + o] dy

> 17 [ (el +lef*)dy = co(lef* + fef”)
14
since (d(y)) = 0 and [e”(?(y}]dy = 0; here ¢ = ¢p/|Y|. o

Prior to passing to the proof of Theorem 2, we shall formulate two lemmas.

LEMMA 1. The dual macroscopic potential U} is given by

(49)  Uie'.@") = nf{(U* (v, t(y) +¢", BY(¢) +")) |
t € SperlY), €€ WLI(Y)}
where U* is the Fenchel coniugate of U(y, -, -), €* € E3, @* € R?® and
(4.10)  Sper(Y) = {t € L”(Y,E?)| divpt =0 inY,
(t) =0, t-Nis antiperiodic}.
Proof We have
(4.11) Up(e*, ") = sup {a‘ ce+0'-0—Un(e,0) | e€ES, g€ ]R3}

1
= |gup {—[(e‘:e+e‘-e)dy
eck?, geR? Y| L/

& inf Uy, e i d
VEW"P(Y;?.dEAper(Y),[ (y'e {V(y)) vk (y) +Q) y}

= SUp = % {/[ : (e¥(v(y)) +¢€) +e"-(d(y) +e)
— Uy, ¢(v(y) +¢, d(y) +0) ] dy| ve WP (Y)?,

de Aper(y)s EE Eg; ec Rs}a
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since js* :eY(v)dy = 0 and (d(y)) = 0. The last relation is written as follows
)/

(412) Ui(e' @) = ﬁ (G + ) (€%, 0"),

where

(4.13) i(t,5) /U Yy, t(y),v(y)) dy,

(4.14) H = (ey(wgef(y) )OES) x (Aper(Y) O R?) .

Identifying €* with a constant element of L¥ (Y, IE?) and @* with a constant
element of L7 (Y)® we have, cf. [18]

(4.15) (+ In)" = (5°Olys),

where O denotes the inf-convolution and

= [Vt @)y ),
/

(416)  Hi= [(ev(w;ef(yﬁ))ln(ﬁg)i] x [(Bpe¥)) - 0 (R)]
We find
(B3)* = {v e IF(V,E}) | (v) =0},
(ewazn®)” = {-r e I(VED | [1ly):e/(mdy=0 We W,:;.f:(v)a}
¥
= {"r € IF (V,E3) |div,T € L (Y)?, divyT =0in Y;
TN is anti-periodic},
(') | {tb € LY(Y)? | f¢-d(y)dy =0Vvde APer(Y}}
Y

{6 I/ (V)* | 6 = Bp), pe W (V).
since

f d(y)- B¥(p)dy = f o(divyd)dy — / od;Nids =0 Vd € Aper(Y),
Y ay

provided that ¢ € WI},;‘{(Y). Here E¥(p) = —0¢/0y;.
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Taking into account (4.15) and (4.16) in (4.12) we obtain

1 . -
7 (070 L1) (e7,07)

Ui (e",e") = g

~1nfly|{ (b1,7) + e (t2,%) | €8 =t1+8s,
€ =N +Y2 ta €Spal(Y), 1=E(pa), va €WpL(Y), a=1,2}
mfm{ e =t @ =) | tE€Su(Y), Y=EVp), pe WL (V)}

= inf {(U" (v, t +€°, BY(p) +0°)| t€ Spur(¥),0 € WL (V)]

because Sper(Y) and W;e‘;,’ (Y) are linear spaces. This establishes the formula
(4.9). O

COROLLARY 1. The macroscopic electric enthalpy Hp(e, E) can be calculated
as the partial concave conjugate of Uy, cf. [1]

(4.17) Hy(e,E) =inf{—E-D+Uh(e.E} [ DEIR3}.
Proceeding similarly to the proof of (4.9) we finally obtain

(4.18) Hy(e,0*) = inf sup  (H(y,e"(v) +¢,E'({) + 7)),
VEwper“ ¥ EEWper (Y)

where € € IEE, e* e R and
(4.19) H(y,e,E) = inf {~E-D + U(y,e,E) | DER3},

is the microscopic electric enthalpy. As we have already mentioned, the homog-
enization of linear piezocomposites was performed in [1], cf. also [2, 3, 6, 7,
21, 22]. O

LEMMA 2. Let t € Spe(Y), € € WLI(Y), 3 € D(V). Let the bounded
sequences {u°}.~o C WHP(V)3, {Df}.50 C W(div, V) be such that
u* — u strongly in L?(V)3,
D =D weakly in LY(V)3,
when € — 0. Then

(4.20) lim f (@)t ( )eu( ¢ (z))dz =
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421)  Di(z)E; (5 G)) — Di(z)Ei((€)) =0 in D'(V) when & — 0.

Here D'(V) is the space of distributions or the dual of the space D(V/).
Proof To prove (4.20) we set

Ri= /w tu( )eu( (z))dx.

Using integration by parts we obtain
Re=- [ byt () uit@)ds = [ vt (£) ui(e)da.
v 14

: J d : .
After the rescaling y — /¢ we have — = ¢ — and consequently, divyt =0inY

Ay Oz;
implies £(divt)(z/£) = 0 or (divt)(z/e) =0 in V. Since tiji(z/e) = (tij,i(y)) =0
in L? (V') weakly as ¢ — 0, therefore lin%l R, = 0 as claimed. O

To prove (4.21) we shall exploit the following result due to MURAT. [19].
PROPOSITION 1. Let ¢ and ¢’ be such that
Lol
l<ad<on =+=1,
q: q e ¢
and let V be a bounded or unbounded domain of RY. We define the following
spaces:
W(div, V) = {ue LY(V)" | divu e L(v)},

W(rot, V) = {ve L7 (V)" | rotv € L7 (V, EV)},

where 6 5
vy v v
e Yy 1< - N‘
(rot v);; 6&:1 3z’ <) S

and EV is the space of N x N matrices. The spaces W(div,V) and W(rot, V)
are equipped with the norms:

lullwgiv,vy = llallzeqryn + ldivullzaey),
||"’||W{rot.v’} = ”"’”Lq*(v)ﬂ 2 ||1'0t"||Lv’[v,E*"')'

If two sequences {up}, ey C W(div, V), {vn},cy C W(rot, V) satisfy the condi-

tions . 5
u,, is bounded in W(div, V), u, — u weakly in LY(V)",

v, is bounded in W(rot,V), v, — u weakly in LY (V)V,
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then
u,-v, = u-v inD'(V) when n — oo. O

Proof of (4.21). We observe that rot E¥(¢) = 0 and consequently E({(-/¢) €
W (rot, V). By using Proposition 1 we conclude that

D;(z)E; (§ (%)) — Di(z)E;({£)) =0 in D'(V) when € — 0,

because £(xz/e) — (£(y)) weakly in LY (V), cf. [12, 20]. The proof is complete.
[i]

Now we are in a position to prove Th. 2.

Proof of Th.2. It falls naturally into two parts.
I. Let us first show that

J; = [(7)- liminf J; > J.
=0

We recall that 7 = w-(W?(2)3x L(£2)3). Let {uf, D}.~o C W1P(2)*x LI(2)*
be a bounded sequence such that

u* - u strongly in LP(£2)3,
D — D weakly in L%(R2)3

when ¢ — 0.
We have to show that

(4.22) lim inf . (u, D) > Ju(u, D) fUh(e ), D) do

= sup{/[a . e(u) + D*-D — U (o, D")] dz |
v

o’ (V,E}), D¢ LQ'(V)S}.

SteP 1. First we take o and D* in the following form:

=130 oF €},
Kek
4.23 =
( } Z X Dax.h D*K € ]RS'
KeK
where
) = 1 if z € Vg,
X vy i 0 ifze V.
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Here {Vi}xex is a family of open disjoint sets such that V= |J V.
KeK
For § > 0 we set

(4.24) VP = {x € Vi | dist(z,0Vk) > 6} .

Let 1&‘}{ € D(Vk) be such that 0 < ¢%- <1 and Y =1forz € VI‘I,.
Let (¢5,0%) € Sper(¥) % W‘}é‘;"(Y), K € K. By using Lemma 2 and recalling
that U > 0 we obtain L

lim inf J; (u®, D®) > lim inf{fU (E,e(us},DE) dz
e—=0 e—0 [
v

-5 [ vhtart (3) syie - £ [ skt (¢ (2)) e

Ky

o) St
4 ; hl&%f/w‘;"(m)U(t“,E(w“n (E:‘-‘(“ ):D )dm,

where )
Uek (%)) (¥, €.0) = U(y,€,0) —tX : e - E(¢")-e.

Fenchel's inequality applied to [(e(u®),D?); (¢%,D*X)] yields:
Uew v (prey (:€7,@7) 2 0 2 e(u’) + D™D — Uiy v iy (v, €(u), D).
Hence

lim inf J, (u®, D)
g—0

Standard calculation yields
Uer gon(pry 20" D)
= sup {orK s+ D0 — Upr proxy)(W,60) | €€E], o€ R3}
- sup{(O‘K +t5) e+ (D' + EY(p%))-@-U(y,e,0) | € €E3, o€ R3}
= U*(y, 0% +t¥(y),D** + B/(¢")).
Thus we have

(425)  {(Uk gy (piy® 0%, D)) = (U* (3, 6% +t¥(y), D*F + E¥ (0" ())))-
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Consequently

lim inf J. (u,D%) > 3 /wjﬁ\,(:c}

e—0

{o™ : e(u) + D*F.D — (U*[y, 0% + t¥(y), D*K + BY(o" (1)) } d.

Passing to the supremum on the r.h.s. of the last inequality when (tK, %) runs

over Sper(Y) x Wk (Y) we obtain

lim inf J. (u®, D) > 3 /1;,;;. [0 : e(u) + D*¥.D - U3 (6%, D*¥)] de,
KeK v,

because sup(— [) = —inf [. Recall that U} is given by (4.9). Since %% > 0 and
o(xz), D*(x) are given by (4.23), therefore

lmllan /Z Pl (x . e(u(z)) + D*(z)-D(z)] dz
Vv Kek
- / Y v(=)Ui(0(2), D" (@) da
v KeK
The inequality
0< Y gk <1,
Kek
implies
0< 3 ¥k(@)U;(0(2)),D*(z)) < Uj(o(z), D* (2)),

Kek
because Uy > 0. It follows that

lim inf J; (u®, D)
e—=0

> [ ¥ 4i(@)[0(0): e(u)) +D*(z)- D@ dz - [ Ui(o(a), D" (a)) dz.

i Kex v

We pass now to the limit when § — 0; z PY () tends to 1 for a.e. z € 2 and
consequently we obtain e
liTllaf Ji{u®, D)
> [ [o(z) : e(u(x)) + D*(@)-D(a)}dz — [ Ui (o(2), D" (z))ds
1%

v
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STEP 2. For each o € L* (v, E3) and D* € LY(V)? there exist sequences
{0"}nen C L7 (V,E2) and {D*"},en C LY (V)? of simple functions suth that

o" +c in LP(V,E2) as n — oo,
D** 5 D*in LY(V)® asn— oo,

respectively. Here
o"(z) = Z xﬁn (m}o.!\'(n}‘ gl(n) EEi,

Dm(.’L‘) = Z XJ;; (I)th’(n), Dtig'(n] € ]R3,

and é, = 1/n, diam Vi () < 0n, V= U V;qﬂ). We conclude by the previous
K(n)

step that

llmme (1%, D)

/[a + D*"(z)-D()] dz —/Uh (z), D™ (x)) dz.

A passage to the limit on the r.h.s. of the last inequality when n — > finally
gives:

ling_i}x(l}f Jiut, D%) > f[cr(:::) : e(u(z)) + D*(z)-D(z) — U} (o(z),D(z))] d=z

v

II. We pass now to demonstrate that for any (u,D) € WiP(V)® x LI(V)?
there exists a sequence {u®,D¢}__, C W17(£2)* x L%(£2)* such that

u —u in W4 (V)® weakly,
DE—=D in LY(V)3 weakly

when ¢ — 0 and
(4.26) Jp(uf, D) > limsup J.(u®, D).
e—0
Obviously, the convergence of u® to u is strong in LP(V)3.
STEP 3. We take
(4.27) ui(z) = eijzj+ai, €€E), a;€R,

whereas D is an arbitrary element of R® treated as a constant function of LY(V)3.
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Next we set

u'(z) = u(e) + v (2 ),
(4.28) (6)

Df(z) = D(z) +d (5) ,

€

where (v, Ei) solves the local problem. Hence we conclude that
u - u in LP(V)® strongly,
D =D in L9V)® weakly,

as € = 0.
Applying Th. 1.5 of DACOROGNA [20, Chap. 2], we obtain

Lm J;,('I.IS,DE) - lill’l/U [515 + e(i) (E) .D +a (EL-)] dz
=0 e—0 € £ T

= [Wlye +e'@(w),D + ()]s
v
= [ Un(e, D)dz = [ Un [e(u(z)), D(z)] dz,
v v

since u is given by (4.27) and D € L¢(V)? is a constant function.
STEP 4. Let now u be a continuous affine function as an element of W (V)?
and D a simple function in the space L¢(V)3:
(4.29) u(z) = ez +a¥, x€ Vi,
: A K K 3
(4.30) D(z) = ;XVK (z)DX, DX e R3,

where e € lEg, ak € R® and {Vk}kex is a finite partition of V' formed by
polyhedral sets.
We set

VS = {z € Vi | dist (z,0Vk) > 6}, §>0.
Let 9% € D (Vi) be such that 0 < ¢4 < 1 and w?;,v;( = 1. With every family
of functions (v¥,d¥) e Wr}erf(Y)a X Aper(Y) we link the following sequences:

(4.31) u(z) = u(z) +¢ Z i (z)vE (E) A
Kek

(432 D*¥(z) = Do) + 3 vh(@)a¥ ().
Kek
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It is evident that
'’ —su in LP(V)® strongly,

DY =D in LY(V)® weakly,

ase— 0.
We recall that for Ny € N sufficiently large one has:

/ vK (g)r dz < N[,f|v*“'(3,,)|p dy.
¥

Vi

Take 0 < t < 1. Since t3 + t(1 — 9%) + (1 — t) = 1, therefore by coavexity of
U((z/e), -, ) we obtain

(4.33)  J.(tu*?,¢tD%) = ; / U[%,w}‘{ (e"*’ + e(vK) (%))+t('.-—wf<)s!{
Vie

b (=052 (et (2)) oot (0 405 (2))

+ t(1 — 9%)DE + (1- t)l]] d

[l s (2) 0w (]

K |y,

K 4 DX (1= gh)dz +eu(1 — 1) [ | (v a2l (2) "d
+r31(|€ E+| l) (1 —9k)dz +ar(l - i Vi@ ( 2 Hpo
Vi Vk
We recall that U > 0.
Let now ¢ tend to zero. Then we get
- £d 4TyEd : I T K. gk
im o . (114,074 < S{IVRU (0¥ + /(v ). D + 4°0)))
+ e (|e¥ PP + D¥]9) /(1 —;pf{)dm}.
Vi

Next, let £t — 17 and § — 0. The sequence Z’!’?\’(‘T) converges to 1 almost

K
everywhere when § — 0. We conclude that
: . : e,b £,0
(4.34) hn;itép 1111;1_5}16113 JuH )
t—1~

< Y IVilU (v, €% +¥(v¥ (1), DX +d*w))).
=
To proceed further we shall exploit the following lemma due to ATTCUCH [10].
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LEMMA 3. Let {aap | A € N,B € N} be a doubly indexed family in R-the
extended reals. Then there exists a mapping A — B(A), increasing to +o00, such
that

limsup a4 g4y < limsup limsup ays p. O
Ao 1 B—oo A—oo !

Applying this lemma we construct a mapping € — (t(£), 6(¢)) with (t(¢),d(e)) —
(17,0) such that by setting

u® = t(e) ut?, D¢ = t(e) DY,

we obtain from (4.34)

(435)  limsup Jo(u, D) < 3 |Vic| (U (v, +e¥(v/(y)), DX + +d"(y))).
K

Taking the infimum on the right-hand side of the last inequality when (v& . &)

run over Iflf's:}ﬁ,{:’(lf')3 X Aper(Y), we get

(4.36) Jolu, D) < llmsupJ (u®,Df) < Z Vi |Un(e®, DX)

/Uh D)dz = Ji(u, D),

where J, stands for the I" [(w—WP(V)?) x (w—L4(V)3)] —liuea_s:ép J-. In (4.36)
we have used the fact that

u® —u strongly in LP(V)3,
D% ~D weakly in LI(V)?

when £ — 0.

STEP 5. From Sec.3 we know that the convexity of J. is preserved by the
I-limit superior. By virtue of the property (ii) of U, we write

(u,D) Scif )P + [D(2)|9) dz,
Vv

where u € WP(V)?, D € L%V)3. Being convex and finite, the functional
J, is continuous on the space W?(V)? x L9(V)3. Exploiting the properties
of the homogenized potential U, we readily conclude that Jp is also a convex
and continuous functional on this space. By density of piecewise affine continu-
ous functions in W?(V) and simple functions in L(V), cf. [17], the inequality
Js(u,D) < Ju(u, D) is readily extended to W1P(V)3 x LI(V)3, see [23, 24]. This
completes the proof. O
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REMARK 5. The proof of Th. 2 remains valid for u € W?(V)3 with1= 0 on
v and D € W(div, V) satisfying divD = 0 in V. For the the sake of sinplicity,
let us assume that y3 = 0, hence v = dV. Then we take u as in (4.2)), with
u=0on v and
D*’(z) = Df(z) = D(z) +d* (-:-) N LT
Here d is an element in Ape (Y). Since divyd(y) = 0 in Y therefore (divd)(z/¢)
vanishes in V. Instead of J.(tu®?, t D*¥) we now consider J.(tu®®, D%)

REMARK 6. By exploiting the assumption (A) it is not difficult to slow that
Th. 1 applies and consequently

inf {J(u,D) — L(u,D) | (u,D) € X}
= lim (inf {J.(u, D) - L(w,D) | (u, ) € X})

where
(437) X ={(u,D) e W'*(V)*xW(div,V) [u=0 on 70, Dy =0 in V.
Dl-n.; =0 on ‘}‘3}.

5. Comments on non-uniform homogenization

From the point of view of homogenization, the coercivity condition aypearing
in (2.3) can be significantly weakened. In fact, let now

U=U(z,ye¢,0): R xR x E3 x R® - [0, +00),

be a measurable function, Y-periodic in y, continuous in z and convex in € and
o. This function is assumed to satisfy the following conditions, cf. [25-27]:

() [U(z.y.e.0) - U(z',5,€,0)| < w(|z - 2'|) (aly) + Ulz,y,e.0)),

(i) 0 < U(z,1,,0) < b(a) (ay) + [eP +Jol*),
foreachz € V,y € Y, o € R® and each € € E. Here a € L},.(R®) is a Y periodic
function, w : R™ — RT is an increasing function, continuous at zero ind such
that w(0) = 0 and b : R* — R is a continuous and nonnegative functon. The
assumption (ii) admits internal energies, which are not strictly convex. Thus
it may then happen that U(z,y,e(u),D) = 0 though either e(u) or/axd D do
not disappear. The dependence of U on the macroscopic variable £ means that
after homogenization, the effective potential U, still depends on z (nowniform
homogenization). Indeed, the latter potential takes the form:

(51} Uh(ms S,Q)

e iuf{% fU (z,y,eY(v) +€,d(y) + D) dy | vE W(Y)?, de ape,(Y)}.
Y
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The macroscopic variable 2 changes slowly while the local variable y charac-
terizes fast local changes. More general case of the stored energy function was
considered in [26, 27]. The last papers were inspired by application to geometri-
cally nonlinear structures such like plates and shells, yet the general nonuniform
homogenization procedure can be adapted to our case of nonlinear piezoelectric
composites. We observe that for microperiodic composites, U/ in (5.1) does not
depend on the macroscopic variable z € V. The assumption (i) is then trivially
satisfied. We conclude from (ii) that though then the problem becomes noncoer-
cive, yet the I'-convergence yields the same results as for the coercive problem
studied in Sec. 4.

6. Final remarks

To model the behaviour of piezoelectric composites with periodic structure
and subjected to stronger electric fields, nonlinear homogenization has been used.
Our considerations are confined to small deformations. Such a case has its prac-
tical value, cf. [8]. Theorem 2 justifies also the homogenization results obtained
by the first author in [1] for linear piezocomposites as well as the homogeniza-
tion formulae used by BISEGNA and LUCIANO [3 - 5], cf. also [2]. The primal and
dual effective potential cannot be explicitly found, except in particular cases.
For instance, such is the case of layered composites. Hence the need follows for
bounding the effective potential Uy, from below and from above. To this end, the
nonlinear bounding techniques developed by TALBOT and WiLLIS [28] can be
applied. We observe that bounding techniques for linear piezoelectric composites
have been used in [3, 21].
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