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Internal variables in macrodynamics of two-dimensional
periodic cellular media

[. CIELECKA (LODZ), C. WOZNIAK (CZESTOCHOWA)
and M. WOZNIAK (LODZ)

A NEW CONTINUUM MODEL for studying the plane strain problems in elastodynamics
of a cellular medium having a periodic structure is proposed. The model is based on
the concept of macro-internal variables, [17], being capable of describing structures
of an arbitrary complex lay-out. The continuum model equations constitute a certain
generalization of the plane Cosserat continuum equations coupled with the ordinary
differential equations for internal variables. The results are applied to the analysis of
free vibration and wave propagation problems. The physical correctness of the model
proposed is shown by comparing the obtained solutions to the exact ones.

Notations

Subscripts 4, j, k,l run over 1, 2 and are related to a Cartesian orthogonal coordinate system
on the plane 0z,x;. Superscripts a,b,... and A, B, ... run over 1,...,n and 1, ..., N, respectively,
where n is the number of nodes and N is the number of rods in a cell which is assumed to be
representative for a periodic structure under consideration. Superscripts a, 3 run over 1,..., v
being related to the description of micro-oscillations occurring inside every cell. Summation
convention holds for all aforementioned indices unless otherwise stated. Points on the plane
Oxyx2 are denoted by x = (21, z2) and ¢ is the time coordinate.

1. Introduction

THE OBJECTIVE OF THIS CONTRIBUTION is the formulation and application of a
continuum model to study linearized elastodynamics for a cellular medium of an
arbitrary periodic structure in Oz zs-plane. Examples of cross-sections for such
media are shown in Fig. 1. The considerations are restricted to the plane strain
problems.

It is assumed that the length dimensions of a representative cell of the periodic
structure are small compared with the minimum characteristic length dimension
of the whole medium, and that the mass distribution can be approximated by
assigning a concentrated mass and an inertia moment to every nodal point of
a periodic lattice. Hence the medium under consideration is represented by a
certain plane periodic system of mutually interacting rigid joints. For mass-point
systems, problems of this kind were studied in a series of papers which will be not
discussed here. An overview of the results, related mainly to the wave propagation
and vibration problems, can be found in the known book by BRILLOUIN and
PARODI [2].
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4 I. CiELECKA, C. WOZNIAK AND M. WOZNIAK

It is known that a direct approach to dynamics of periodic systems with a very
large number of interacting mass-points or rigid bodies leads to computational
difficulties due to a large number of ordinary differential equations describing the
problem under consideration. That is why different averaged continuum models
of periodic mass-point and rigid-body systems have been proposed in order to
reduce the number of basic unknowns and to simplify the analysis of particular
problems. From many results obtained in this manner, let us mention those
related to periodic structures [5], cellular materials [6], perforated plates [7], and
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INTERNAL VARIABLES IN MACRODYNAMICS OF CELLULAR MEDIA 5

frame-type lattice structures, summarized in [15], where the list of references
can be found. Main attention in [14, 15, 16] was focussed on investigation of
engineering problems for framed structures (not only periodic) but the analysis
was restricted to static problems. A more sophisticated modelling approach,
based on the asymptotic procedures of the homogenization theory (for details
see the recent book [8], and the references therein) can be found in a book [1]; a
similar approach was also applied in [4].

It has to be emphasized that the asymptotic approaches to the formulation of
continuum (homogenized) models for periodic structures neglect the effect of the
unit cell size on the global behaviour of discrete medium, because in the course
of modelling all length dimensions of every unit cell tend to zero (and number of
the cells tends to infinity). On the other hand, the aforementioned effect plays
an important role in many dynamic problems being responsible, for example,
for dispersion of waves propagating across a periodic system made of interacting
mass-points or rigid elements. We can mention here a series of papers [10-13]
related to the analysis of hexagonal gridworks, where Rogula - Kunin's approach
was applied, cf. [9].

An alternative nonasymptotic continuum model of periodic mass-point sys-
tems was formulated in [3]. This model was based on the concepts of refined
macrodynamics of composite materials proposed in [17] and then developed in a
series of papers (for references cf. [18]). The idea of refined macrodynamics lies in
the description of microdynamic effects on the global composite body behaviour
in terms of so-called macro-internal variables which are governed by a system
of ordinary differential equations and hence do not enter boundary conditions
(17, 18].

In this paper, the line of approach is similar to that leading to the refined
macrodynamics of composites, but it has been modified in order to derive a con-
tinuum model of the plane problem for an arbitrary periodic cellular structure,
with nodal joints as rigid elements interconnected by means of linear-elastic thin
plates subjected to cylindrical bending. This model also describes a plane framed
structure with rigid joints and linear-elastic beams. It is assumed that the length
dimensions in 0xzy plane of every rigid nodal element are negligibly small as
compared with the spans of interconnecting plates or beams.

The present paper constitutes a generalization of the approach to dynamics
of periodic trusses proposed in [3] where only axial forces in the interconnecting
rods and concentrated masses at the nodal points of the system were taken
into account. The aim of this contribution is to formulate a refined continuum
model of the medium under consideration (i.e. a nonasymptotic model which
describes the effect of size of the representative periodicity cell on the global body
behaviour) which can be applied to the analysis of linear elastic plane cellular
media with an arbitrary complex lay-out of the representative cell. The main
feature of the model is its relatively simple analytical form given by the partial
differential equations of the plane Cosserat continuum coupled with the system
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6 I. CieLECKA, C. WO0ZNIAK AND M. WOZNIAK

of ordinary differential equations involving only second order time derivatives of
internal variables. An example is used to show that the proposed model yields
physically correct solutions.

2. Preliminaries

Let A = (=0.5l1,0.5l;) x (—0.5l5,0.5l5) represent a cell which is assumed
as representative for of a periodic network on the plane 0z;, 5, cf. Fig.3. It
means that A contains the representative structural element for the cellular or
framed periodic medium. It has to be emphasized that the choice of this element
is not unique and depends not only on the geometry of the network but also
on the class of micro-motions we are to investigate using the model proposed
in the sequel. It is assumed that the representative element is made of n rigid
nodes N% a = 1,...,n, interconnected by N linear-elastic homogeneous thin
plates R4, A = 1,.., N subjected to cylindrical bending in 0z;z,-plane. For
framed structures R* are linear-elastic beams and it is assumed that Ozyzs is
a symmetry plane, both for every beam and every rigid node treated as certain
spatial (3-dimensional) elements. By a region occupied by a periodic medium
under consideration we shall mean the plane region (2 obtained by a union of
all repeated cells. Denoting by L the smallest characteristic length dimension
of 2 and setting [ := \/({1)* + (I2)*, it will be assumed that /L <« 1. This is
why [ will be referred to as the microstructure length parameter of the medium.
It has to be remembered that the periodic structure of the whole medium can
be disturbed in the structural elements situated near the boundary 92 of 2.
An example of a lattice with the representative cell A is shown in Fig. 3 but in
general, no restrictions are imposed on the form of the lattice and a choice of a
representative cell, provided that condition //L < 1 holds.

: N\
\r

) /o\

FiaG. 2.

Significant properties of a thin plate or a beam R* will be given by the
flexural stiffness B# in plane Ozyzs, the axial stiffness D? and the span 2.
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The concentrated mass and the rotational moment of inertia (related to the axis
normal to the plane 0z;z5) assigned to node N® will be denoted by M*®, J°,
respectively. Orientation of the plate or the beam R interconnecting nodes N¢,
N will be described by unit vectors t*, n?, t4%, n® shown in Fig. 2. We shall
assume that if a plate or a beam R” is not supported at the nodal point N then
by definition t4* = 0, n® = 0. Denoting by uf, ¢* displacements and rotation
of the node N, respectively, let us define

ul — u?
(2:1) Aju; = _[‘A_L - Aqtp = (pb — %, 0 =

Let us also assume that every plate or beam R* can be considered in the frame-
work of the Kirchhoff plate theory or the Euler - Bernoulli beam theory, respec-
tively. Then the strain components related to R4 can be taken in the form (no
summation over A in formulae (2.2) - (2.4)!)

(2.2) ed == (Aqu)tf, &= (Aaw)nf —pa, Kri=Aup,

and at additional notations

(2.3) A =pY4, A=1BA1", KA=B
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8 I. CiELECKA, C. WOZNIAK AND M. WOZNIAK

the strain energy UA assigned to platE or beam RA is equal to
1 ,
(& ot = SAA (A + SAAEN? + KA (R4,

It has to be remembered that all the aforementioned denotations and formulae
are related to an arbitrary but fixed structural element of the periodic lattice
under consideration (possibly except some elements situated near boundary 952
of £2). Let us denote by L a set of all points on the plane 0z;x2 which are centers
of all disjoined cells constituting the region 2. Then the displacement vector and
rotation of the node N* belonging to a cell with center z, z € £, at an arbitrary
instant ¢, will be denoted by u®(z,t), ©"(z,t), respectively. All external loads
acting on the medium will be applied exclusively to the centers of the nodal
joints. The resultant force and moment applied to the node N® in a cell with a
center 2 € £ will be denoted by f*(z,t) and m®(z,1), respectively. Introducing
the action functional A =7 — K — W, where

T=_ZZ[A ) + AAE 3, 0) + KA (A (2,0)?)
zEC A=1
25 K=% Z (Mo (2, £)? + I (2,0))?]
zeL a=1
W= 30 3 [%(s )0 (3, 1) + m?(a, )" (2, 1)),
zel a=1

and taking into account formulae (2.1), (2.2), from the principle of stationary
action we derive equations of motion for u®(z,t), ¢*(z,t), 2 € £, a = 1,....n
These equations represent a discrete model of a periodic lattice-type structure
but are not convenient in investigations of its global dynamic behaviom since
the number of points of £ is very large. That is why relations (2.1), (2.2), (2.5)
together with assumptions formulated in Sec. 3 will be treated only as a ba.sm f01
deriving a continuum model of the cellular medium under consideration.

3. Modelling assumptions

In order to formulate the modelling assumptions leading from the discrete
model of the periodic mediuin under consideration to a certain refined (non-
asymptotic) continuum model, first of all we have to choose a cell A and then
to introduce two auxiliary concepts.

The first is the concept of a macro-function related to the choice of a cell A.
Let F(-,t) be a real-valued function defined on {2 and depending on time ¢, the
values of which, from the computational viewpoint, have to be calculated within
the known error €. For a given value of A, the microstructure length parameter
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INTERNAL VARIABLES IN MACRODYNAMICS OF CELLULAR MEDIA 9

L is also known. Function F(-,t) will be called a macro-function (related to ep
and ) if for every x,y € 2 such that ||x — y|| < [ and for every ¢, condition
|F(x,t) = F(y,t)| < ep holds. Moreover, if F(-,t) is a differentiable function and
similar conditions hold also for all derivatives of F' (including time-derivatives),
then F will be called a regular macro-function. In the sequel we tacitly assume
that every (regular) macro-function F is related to certain parameters ep, [.

The second auxiliary concept is that of an oscillation-shape matrix. Define
v:=mn-—1 and let h**, ¢*®, a = 1,...,v be the real numbers which are elements
of n x v matrices of rank v, satisfying conditions

(3.1) MEE™* =0, dhgtn=1p. i T

The aforementioned matrices will be referred to as the oscillation-shape matrices.
The physical meaning of this concept will be explained below.

The first modelling assumption makes it possible to represent displacement
u’(z, t) and rotation ¢®(z,t) of an arbitrary node N in a cell with center z,z € L,
in terms of certain regular macro-functions U;(+,t), Q%(-,¢t), ®(-,t), R*(,t), de-
fined on {2 for every t. This assumption will be referred to as the macro-kinematic
hypothesis given by

ul(z.t) = Ui(x, t) + 1h%Q%(x, t),

(32) a e e

p*(z, t) = D(x,t) + lg"*R*(x, t), g€ L,
where x is a position vector of the node N* in a cell with the center z. Because
of |Ui(x,t) — Ui(z,t)| < ey, |P(x,t) — D(z,t)| < €¢, etc., and bearing in mind
Eqgs. (3.1), we obtain

M@y (z, 1)

Uslmi k)= S~ Mo

+ O(er) + @(EQ),
& 7o (a, 1)

P(z,t) = —EJT—%O(S.;) + O(er), z€ L.
It follows that U;(z,t) and ®(z,t) are approximations of weighted averaged dis-
placements and rotations, respectively, within an arbitrary cell. Fields U;(-, )
and @(-,t) will be called macro-displacements and macro-rotation, respectively,
at an instant ¢. Taking into account Egs. (3.1) it can be seen that Q% (z,t), R%(z, t)
describe oscillations of displacements and rotations at time ¢ within an arbitrary
cell. Fields Q§(-,t), R*(-, ) will be called macro-internal variables; the meaning
of this term will be explained in the subsequent section. Roughly speaking, in
order to use the macro-kinematic hypothesis we have to choose a certain rep-
resentative cell A, and then to specify oscillation-shape matrices and hence to
restrict our considerations to a certain class of motions which can be expected
in the problem under consideration. Such situation is met in many dynamic
problems of interest in the analysis of special classes of motions.
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10 I. CiIELECKA, C. WOZNIAK AND M. WOZNIAK

Let 1s observe that restrictions imposed on the class of motions under con-
sideration reduce to the requierement that U;(-,t), Q%(-,t), @(-,t), R*(-,¢)
have to be regular macro-functions for every t. Let us also observe that the
oscillatipn-shape matrices are not uniquely determined but their choice is irrel-
evant.

The second modelling assumption is related to the concept of macro-function
and wil! be called the macro-approzimation hypothesis. This hypothesis consists
of two kinds of postulated approximations:

(i) Finite differences of regular macro-functions within every cell can be ap-
proximezted by the values of appropriate derivatives.

(i1) Increments of all macro-functions inside an arbitrary cell will be neglected
in calculation of averages over this cell.

From (ii) it follows that term O(ey), Oeq), Oles), O(er) in Egs.(3.3)
in the course of modelling can be neglected. Hence macro-displacements and
macro-1otation in the center of an arbitrary cell can be treated as weighted aver-
ages of nodal displacements and rotations, respectively, in this cell. From (i) we
obtain the formulae for strain components in an arbitrary plate or beam belong-

ing to a cell with the center z. To this end, define M = 1/I4, g% = i(g‘“‘ +gb“)‘
gAe .= (gb@ — g°@) if nodes N, N’ belong to the rod R*, and

E,'j (x,2) := Ui,j (x,t) + 6,'_-.,'@{1, t),

(3.4)
P;(x,t) := @ ;(x,1), x € {2,

where ¢; is the Ricci symbol. After simple calculations we arrive at (no summa-
tion over A!)

eA(z,1) =t Eij(z.t) + MR Q2 (3, 1) + O(e),
(3.5)  &(s,t) = nftEij(s,t) + MnfohQF (,t) — IgGR® + O(e),
kA (z,t) = 14t30;(2,1) + lg**R%(z,t) + O(e),
where 2 € £ and terms O(¢) depend on increments of the pertinent macro-func-

tions irside a cell with center z. Here and in the sequel it has to be remembered
that t* := 0, n{'® := 0 if the node N* does not belong to the rod RA.

4. Governing equations

After substituting to (2.5) the right-hand sides of Eqgs. (3.2), (3.5) and tak-
ing into account the macro-approximation hypothesis (related to calculations of
averages), it can be seen that the finite sum over £ can be approximated by an
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11
integral over (2. Setting |A| = [;l3 let us introduce the notations
N
A 1= (A1 Y (A%t + Anfnd) thef,
A=1
N
Bg = AT Y0 M (A%fede + AAnfne) thhee,
A=1
N
C'f;ﬁ = |Al™! Z{/\A (AA 4at.4b +AAnAa Ab) haa b8,
N
Dy =47 Y ) Edde,
A=1
N
G = |41 T A KA,
(4.1) el
PR o= |4~ l Z (AAQA‘}A KAQAG Aﬁ)
A__.
- -1 ndidg
Bjj = —|A|” Z A'nit]
C:xp‘ ) —|A|_l Z /\AJAn;ﬂahangﬁ .
A=1
n n
X = |Al-—lZJn, QZ=]A|_12MG,
a=Y =1
n n
aff |A|_1 Z Jagaa nﬂ 90,6 — |A]_1 Z Mﬂhﬂahaﬁ.
a=1 a=1
Under the extra assumption that there exist continuous macro-functions f;(-,),

(-, t), m(-,t), m®(-,t) defined on {2 for every ¢, such that the conditions
T
filz,t) = A7 Y fi(3,t) + O(ey),
a=1

f&(z,t) = 1A Y f(z, )R + O(ey),
(4.2) “:1
m(z,t) = |A|™} Zm“(z, t) + Olem),
a=1

me(a,t) = [A'S mo(s, 0% + Oem),

a=1
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12 I. CiIELEcKA, C. WOZNIAK AND M. WOZNIAK

hold for every z € £ we arrive, after some manipulations, at the integral form of
the action functional A =7 — K — W, where now

1
= / (§A,;jHE§jEM - B;?;kE,-ng - lBgEija
n
. %C?jﬁQ?Qf +ICPQERP + 1°Dy®:9; + G ;R
(4.3) + z?%FﬂﬁR“Rﬁ) da,

K

R I} A2 (Y iy ey
/ (EQUiUi +51%0%9Q2 Q0 + SXEE + ;tzgﬂﬁRﬂRﬁ) da,
n Ld -

W = / (BT P08+ wB LI A% e, da'=deyilcs.
e

From the principle of stationary action we obtain the following equations of
motion for macro-displacements U; and a macro-rotation &:

AijiiBrj + BgQf ; +IBERS — o Ui +f; = 0,

(4.4) 5
I2Dij(pf‘j el JZG?R':: — €ij (AinEk{ o B:}LQE = IB%RQ) =y d+m =10

coupled with equations for macro-internal variables Qf, R*:

(45) 26 Qf + i Q] +1CP°R? + BBy = 1f7
12x%% RP + 1PFPRP +1CP°Q] + 1G3®; + IBSE;; = Im®,

where E;;, @; are defined by Eqs. (3.4). The obtained equations have to be satis-
fied for every ¢ in region {2 of the plane 0x;z,, and represent a continuum model
of the cellular periodic medium under consideration.

The governing equations (4.4), (4.5) can be also written in the alternative
form given by:

(i) Equations of motion

Ti;i—oUi +fi =0,
(4.6) o= oBe
M;; —€iTij — x ®+m = 0.

(i) Dynamic evolution equations

1200 QF + 82 = 152,

(4.7) &
?x*% RP + H® = Im®.

http://rcin.org.pl



INTERNAL VARIABLES IN MACRODYNAMICS OF CELLULAR MEDIA 13

(ii1) Constitutive equations

T%-j Aijk!‘ 0 ijk Jij Ey
) M| | 0 D o Bef|| %

+ TR T v M 4

H® IBg 12Ge 1cP* ppes| LR

which have to be considered together with the notations (3.4). From a formal
viewpoint, Eqgs. (4.6) are similar to the known plane Cosserat media equations
of motion. Hence T;; and M; can be called components of a macro-stress tensor
and a macro-couple-stress vector, respectively. However, contrary to the Cosserat
media, we also deal here with the dynamic evolution equations (4.7) which are
coupled with the Cosserat equations (4.6) via the constitutive equations (4.8).

The first characteristic feature of the obtained model is that it describes, in
one formal scheme, a wide class of plane problems for elastic periodic cellular
media. Moreover, the effect of the cell size on the dynamic behaviour of the struc-
ture is taken into account. This fact is caused by the nonasymptotic modelling
procedure which leads to the occurence of the microstructure length parameter
[ in Egs. (4.7), related to the coefficients at the second-order time derivatives of
macro-internal variables. At the same time, all coefficients in equations (4.4),
(4.5) defined by formulae (4.1) are independent of the cell size and hence, the
dependence of these equations on [ has an explicit form.

The second characteristic feature of the obtained continuum model is that
equations (4.5) for Qf, R® are ordinary differential equations involving exclu-
sively time-derivatives of these fields. Hence functions Q, R® are not restricted
by boundary conditions, which have to be formulated only for macro-displace-
ments U; and a macro-rotation @. That is why functions Q$, R* were called
macro-internal variables. Thus, in formulation of initial-boundary value prob-
lems, Eqgs. (4.4), (4.5) have to be considered together with both the boundary
and initial conditions for U;, @ and only the initial conditions for Q¢, R®. This
fact is essential in investigations of special problems since in the framework of
the continuum model, only boundary conditions for U; and @ have a physical
motivation, being independent of possible disturbances of the periodic structure
of a medium near the boundary of a region 2.

It has to be emphasized that solutions to problems described by Egs. (4.3) -
(4.5) together with boundary and initial conditions, have a physical sense only
if solutions U;, @, QF, R® to these problems are represented by regular macro-
functions.

In order to evaluate the cell size effect on the dynamic behaviour of the
medium, together with the refined model we can also consider its asymptotic
approximation obtained by a formal passage | — 0 in (4.3). In this case we
arrive at a special case of results obtained in [3].
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At the end of this section let us consider some special cases of the proposed
continuum models for discrete periodic structures described in Sec. 3. Firstly,
assume that Bf:,-k =0, Gf =0 and C'f‘ﬁ = 0. Such situation takes place if z,
are elastic symmetry axes for constitutive equations (4.8). In this case the model
will be called macro-ortothropic. Moreover, if B}i— = 0 then constitutive equations
(4.8) reduce to the form

(4.9) Tij = Aijki By » M; = D;;®;,
and dynamic evolution equations (4.7) yield

o8 QF +65P Q] =12,

(4.10) e
2x*% R® 4+ I2PF*PRP = Im®.

Hence, if f* =0, m® = 0 then under homogeneous initial conditions for macro-
internal variables QF, R®, we obtain Qf = 0, R* = 0. It follows that for this
class of problems, there are no oscillations in displacements and rotations within
every cell of a structure provided that the external loadings are not oscillating on
a cell (i.e. f& =0, m* = 0), and the initial values of macro-internal variables Qf',
R® are equal to zero. Macro-ortothropic models in which Bf = 0, will be called
uncoupled and their continuum models are represented by equations of motion
(4.6) and constitutive equations (4.9) (together with notations (3.4)) for U;, &
and indepedently, by the evolution equations (4.10) for Qf, RP. Now assume that
the choice of a cell A implies v = n—1 = 0 and hence there are no macro-internal
variables in the considered model. This special discrete medium will be referred
to as having a simple lay-out structure [12]; an example of this medium is shown
at the bottom of Fig.1. The detailed analysis of different problems for these
media was given in [15] where also the list of references can be found. However,
also in the case of media with a simple lay-out structure we can analyse more
complicated motions by introducing another cell for which v > 0. Let us also
observe that for quasi-stationary processes, the macro-internal variables can be
eliminated from (4.4) by means of (4.5).

5. Example

General results of the previous section will be now illustrated by the analysis
of a wave propagation in a periodic medium with a rectangular network shown
in Fig. 3. In order to introduce the simplest continuum model of this medium, let
the cell A be assumed in the form given in Fig. 3. This cell has two nodal points;
in this case n = 2 and ¥ = n — 1 = 1, i.e., the oscillation-shape matrices reduce
to vectors with components h'', k%! and ¢!, g°'. Moreover, let the directions of
network be paralell to the coordinate axes z, xg, and let 2; be a symmetry axis
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for the constitutive equations (4.8) which have to be invariant under transforma-
tion x3 = —x3. We are to show, under what conditions a longitudinal harmonic
wave can propagate across such medium and how the dispersion relation depends
on the unit cell size.

Taking into account the aforementioned properties of a medium and assum-
ing that all unknown functions depend only on z; and time ¢, from Egs. (4.4),
(4.5), (3.4), bearing in mind definitions (4.1) and neglecting external loadings,
we obtain two independent systems of equations. The first system is related to
Uy and Qq:

(5.1) AunUin + BinQiy —e Uy =0,
120 Q) +C11Qu1 + BinUi, = 0,

and the second one involves Uy, @, Q2 and R:

AUz + (A2niz — Aoin1)@1 + Bo12Qa — 0 Ua= 0,
D@1+ (A2112 + Arz21 — Ar21z — Azin)®
(5.2) + (Az121 — A1221)U1 + (Ba1z — B122)Q2 + 1*G1Ry — x 9= 0,
120™ Q3 +C22Q3 + (Bi22 — B212)® + Ba1aUszy = 0,
X" R +1°FR + 12G1$, = 0,
where the superscripts related to macro-internal variables were neglected, i.e.,
Q1 =Q1, Q2 =Q}, R= R! etc.
In this paper investigations will be restricted to longitudinal waves. Substi-

tuting Uy = U(zy —ct), Q1 = Q(z1 —ct) to Eqs. (5.1), where ¢ is the propagation
speed, we obtain

(A1 — ec®)Ua + BinQa = 0,

5.3 _
30 IzQHCZQ +CnQ + BimU, = 0.
Define

A 1 Bi11)2

(5.4) 2 .= Auu 2.1 (Auu _ (Bm) )

e e Cn

It can be shown that @ > @ > 0. Analysis of Eqgs. (5.1) leads to the three
following cases:

CAase 1. If ¢ < ¢ or € > ¢ then across a medium under consideration, a
harmonic longitudinal wave can propagate. Under the notation

(5.5) o g

TP 2R -2)’ (k(c)® >0,
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solution to Eqs. (5.3) will be given by
U = Ay sin[k(c)(z1 — ct)], Q = Ag cos[k(c)(zy — et)].
CASE 2. If ¢ < ¢ < € then we shall deal with the exponential wave. Setting

Cn 2—¢
[2p11 02(52 -c2)’

(5.6) (@) = (r(c))? > 0,

we obtain
U = Ay exp[—&(c)(z1 — ct)] + By exp[k(c)(z1 — ct)]

and
Q= —0o(Bi1)' (@ - *)U;.

CAse 3. If ¢ = ¢ then we deal with a degenerate case in which U y; = 0,
@3 = 0. At the same time, the propagation speed ¢ = ¢ cannot be realized in
the medium under consideration.

Let k = 2w /L, where L is the wavelength, be the wave number for a harmonic
longitudinal wave. Taking into account (5.5) we obtain the dispersion relation

(5.7) 21 K2t + (Cn 3 129“(:%?) - Cpd=0.

In the framework of applicability of the proposed continuum model, the wave-
length L has to be much longer than the microstructure length parameter; only in
this case the obtained solutions to Egs. (5.3) are represented by macro-functions.
Hence ¢ := kl is a small parameter, ¢ < 1. For harmonic waves we obtain the
following asymptotic formulae related to the lower ¢ = ¢; and higher ¢ = ¢y
propagation speeds

¢ >
¢} =@ -P—— (22 -2) "k + O(c"),
11

o Cni
Xy = 52911;‘72

(5.8)
L7 — P4 O(e?),

where ¢, < ¢ and cy > €. In the case of an exponential wave, i.e., for ¢ € (¢,©),
we obtain from (5.3) the dispersion relation

2
(5.9) Sl (& - 2) o"'5* + O(eY),

Cn
where x := 6~ and J is called the length of the exponential wave; here ¢ := &l
is a small parameter ¢ < 1.

The above results were obtained by using the proposed continuum model of a

periodic discrete medium. In the framework of the asymptotic model, by formal
passage with [ to zero, we obtain from (5.3) only one propagation velocity ¢ = ¢.
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6. Reliability of the model

In order to investigate the physical correctness of the model we restrict our-
selves to equations (5.1). Denoting by M, M? the masses assigned to nodal
points, by (!, [ the distances between them (where I + [ = [, cf. Fig.3)
and by D', D? the axial stiffnesses of the corresponding plates, under notation

p=M?/M* and assuming h'! = —p, h?! = 1, from formulae (3.6) we obtain
1 1 1 2
o= e (004 28), G- Boer (24 21),
(6.1) hily ly T
1 1 2 MI 11 Ml
Bin = ~(1+u)(D" - D7), o=(1+up)77, o = ul4p)—-
£2 1!1-',2 f;fg

Setting A := Ajj111, B := B, C := Cy1 and U := Uy, Q := @y, we shall rewrite
Egs. (5.1) to the form

AU 4+ BQ1—pU =D,
(6.2) 11 Qi—opo
PupQ+CQ+BU; =0

and look for solutions to (6.2) in the well known form
(6.3) U = ayexpi(wt — K21), Q = agexpi(wt — Kx1),

where £ = 27 /L and L is the wavelength. Substituting the right-hand sides of
(6.3) into (6.2) and denoting [ := ) = I' + (2, k := Kl = 2xl/L, for the free
vibration frequency w we obtain the dispersion relation

(6.4) ()2po*w? — (AK?u + C)ow? + K%(AC — B?) = 0.

The model is applicable only if (6.3) are macro-functions; hence the value & has
to be sufficiently small compared to 1 and solutions w4, w_ to (6.4), by taking
into account (6.1) and performing some manipulations, will be given by

oA AW R
=\t \ T

Dl o D2 2 k 2
(6.5) 3 ( Dl) = (I) + o(k?),
(M + M?) (3—1 - 1—2)
D +D2£2 (Dl __D2)2 FLYF 5
(w_)2 = T S (I) + o(k?).
(M + M?) (Tl + 1—2)
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Exact solution of the discrete problem under consideration is known for D! = D?
and can be found in [2]. For the long wave approximation and after neglecting
terms k? as small compared to 1, it can be easily shown that the model solution
(6.5) coincides with the long wave approximation of the exact solution given
in [2]. Hence we conclude that the proposed model in the problem under con-
sideration yields the physically correct solutions and can be treated as a reliable
one.

7. Conclusions

From the illustrative example given in Sec.5 and its physical correctness
discussed in Sec.6 it follows that the continuum model of a cellular periodic
medium,which was proposed in this contribution, constitutes a useful tool for
investigations of certain dynamic problems. We also conclude that the propesed
continuum model describes dynamics of a whole class of discrete periodic me-
dia in one formal scheme given by equations of motion (4.6), dynamic evolution
equations (4.7) and constitutive equations (4.8). It has to be emphasized that
the microdynamic phenomena (micro-oscillations of mass-elements inside an ar-
bitrary periodicity cell) are described by the macro-internal variables governed
by the ordinary differential equations and not entering the boundary conditions;
hence the proposed continuum model have certain features typical for the dy-
namics of discrete media. Moreover, accuracy of the model proposed can be
verified a posteriori by evaluations of the computational accuracy parameters
€U, €Q, EVU, ... related to the obtained macro-functions U(-), Qf(-),..., which
constitute a solution to the problem under consideration.

Application of Eqgs. (4.6) — (4.8) to the dynamic analysis of honeycomb cellalar
structures as well as comparison of the obtained data with those resulting fom
the known models will be given in the subsequent paper.

For the sake of simplicity, the proposed model was restricted to the plane p:ob-
lems for periodic cellular media or framed linear-elastic structures. However, the
proposed general line of modelling can be also applied to spatial periodic systems,
to problems with damping and to non-linear dynamic problems. Formulation of
these models and their applications will be considered separately.
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