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On anisotropic functions of vectors and second order
tensors — all subgroups of the transverse isotropy group C..

H. XIAO (BOCHUM and BEIJING)

A UNIFIED PROCEDURE for constructing both the generating sets and the functional
bases is suggested, which reduces the representation problem for anisotropic functions
of any finite number of vector and second order tensor variables under any subgroup
g C Caon, to that for the same types of anisotropic functions of not more than two
vector and/or second order tensor variables. By using this procedure and new results
for isotropic extension of anisotropic functions, simple irreducible generating sets
and functional bases in unified forms are presented to determine general reduced
forms of scalar-, vector-, and second order tensor-valued anisotropic functions of any
finite number of vectors and second order tensors, under all kinds of subgroups of
the transverse isotropy group Cucn. The results given are derived in the sense of
nonpolynomial representation.

1. Introduction

IN CONTINUUM PHYSICS, scalar-, vector- and second order tensor-valued func-
tions of vector and second order tensor(!) variables serve as mathematical mod-
els of macroscopic physical behaviours of materials. Such tensor functions are
required to possess form-invariance under the action of the material symmetry
group due to material objectivity and material symmetry. Let f(u;, Wo,AL),
h(u;, W,,A) and F(u;, W,, Ay) be, respectively, scalar-, vector- and second or-
der tensor-valued functions of the a vector variables u;, the b skewsymmetric
second order tensor variables W, and the ¢ symmetric second order tensor vari-
ables Ap. wherei=1,...,a;0=1,...,band L =1,...,c. Moreover, let g be a
subgroup of the full orthogonal group Orth, which may serve as a material sym-
metry group for solid materials. The tensor functions f, h and F are invariant
or form-invariant under the group g, respectively, if for every orthogonal tensor
Qeg,.

£(Qu;,QW,QT,QALQT) = f(u;, W,,AL),
h(Qu;,QW,Q",QA.Q") = Qh(u;, Wy, Ay),
F(Qu;,QW,QT,QA.Q") = QF(v;, W,,AL)Q".

General reduced forms of the tensor functions f, h and F under the above in-
variance restrictions are called representations for f, h and F under the group

(') Throughout the paper, vector and tensor mean three-dimensional vectors and tensors.
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g. It has been known (see PIPKIN and WINEMAN [15], WINEMAN and PIPKIN
[30]) that finding representations for the tensor functions f, h and F under the
group g is equivalent to determining functional bases (for f) and generating sets
(for h and F) under the group g. Moreover, both the functional bases and the
generating sets to be used are further required to be irreducible in order to arrive
at compact representations. For detail, refer to the definitions given later.

Proper subgroups of the full orthogonal group Orth include the proper or-
thogonal group Orth™, the five classes of cubic crystal groups, the two classes
of icosahedral groups. the five classes of transverse isotropy groups and the de-
numerably infinitely many classes of subgroups of the latter (see, e.g., SPENCER
[26]. VAINSHTEIN [28]). Of them, the 32 classes of crystallographic point groups,
the five classes of transverse isotropy groups and Orth (see SPENCER [26]) are
related to common solid materials in engineering, while the others are associated
with quasi-crystalline solids and texture materials (see VAINSHTEIN [28]), etc. In
the past decades, many efforts were devoted to finding representations for various
kinds of tensor functions under the aforementioned orthogonal subgroups, and
many significant results were obtained. Here, we would not reproduce the large
number of the related references. For details, refer to TRUESDELL and NOLL
(27], SPENCER [26], KIRAL and ERINGEN [10], SMITH [21] and the recent re-
views by BETTEN [4], RYCHLEWSKI and ZHANG [17], and ZHENG [43] et al., and
to the references therein. Although now many results in many cases, mainly in
the sense of polynomial representation, are available (see SPENCER [26], KIRAL
and ERINGEN [10], and SMITH [21]), general aspect of representation problems,
mainly in the sense of nonpolynomial representation, remains open, except for
some particular cases such as isotropic, orthotropic and transversely isotropic
functions etc. (see ADKINS [1-3], PIPKIN and RivLIN [14], WANG [29], SMITH
(19], BOEHLER [5], and PENNISI and TROVATO [13], SMITH [20], ZHENG [41],
JEMIOLO and TELEGA (8], et al.). Applying the isotropic extension method for
anisotropic functions, initiated by LOKHIN and Sedov [12] and BOEHLER [6, 7]
and Liv [11] (see also RYCHLEWSKI [16], ZHANG and RYCHLEWSKI [40], ZHENG
and SPENCER [44]) and further developed recently by the author (see X140 and
Guo [31], X1a0 [35, 39]), as well as the general representation theorems given
in X140 [33, 34], we shall derive general irreducible representations for scalar-,
vector- and second order tensor-valued anisotropic functions of any finite number
of vectors and second order tensors, under various kinds of orthogonal subgroups,
in a series of works. In this paper, we shall confine ourselves to anisotropic func-
tions under subgroups of the transverse isotropy group C.n (see PIPKIN and
RIVLIN [14], SMITH and RIVLIN [23, 24], SMITH, SMITH and RIVLIN [25], SMITH
and KIRAL [22], SMITH [18, 20, 21], SPENCER [26], KIRAL and SMITH (9], ZHENG
[41, 42, 43], X1A0 [32, 36, 37]. et al. for related results in some cases; in partic-
ular, see ZHENG [42] for the counterpart of the two-dimmentional case of the
problem considered here).

At the end of this introduction, we state some facts that will be used.
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Throughout the paper, V, Skw and Sym are used to represent the vector
space, the skewsymmetric and symmetric second order tensor spaces, respec-
tively. u, v, r etc., W, H etc., A, B etc. are used to denote vectors, skewsym-
metric second order tensors and symmetric second order tensors, respectively.
On the other hand, g(X) is the symmetry group of the set X of vectors and
tensors (see X1A0 [33]) and for any subgroup g € Orth, M(g) is the g-subspace
of the space M € {V,Skw,Sym} (see X1A0 [32, 33]). The former consists of the
orthogonal tensors preserving X, and the latter includes the elements in M that
are invariant under the action of the group g.

A finite set of scalar-valued functions that are invariant under the group g C
Orth, i.e. invariants under ¢, is a functional basis under ¢ if each invariant under
g is expressible as a real single-valued function of these invariants. On the other
hand, a finite set of vector-valued (resp. second order tensor-valued) functions
that are form-invariant under the group g C Orth, i.e. vector (resp. second order
tensor) generators under g, is a generating set under g if each vector-valued
(resp. second order tensor-valued) function that is form-invariant under g is
expressible as a linear combination of these generators whose coefficients are
invariants under g. Furthermore, a functinal basis (resp. a generating set) under
the group g C Orth is irreducible if none of its proper subsets is again a functional
basis (resp. a generating set) under the group g. A criterion for generating set is
as follows (see X1A0 [33]).

The vector-valued or skewsymmetric tensor-valued or symmetric tensor-val-
ued functions Y, - - -, P, that are form-invariant under the group g C Orth form
a generating set under g iff

(1.1) VX € V®*xSkw’xSym® : rank{,(X), -+, P.(X)}>dimM (g N g(X)),

where M =V, Skw, Sym, respectively, when 1, is vector-valued, skewsymmetric
tensor-valued and symmetric tensor-valued, respectively. Here, for any set S of
vectors or tensors and any subspace L, the notation rankS and dimZL are used
to represent the number of the linearly independent elements in the set S and
the dimension of the subspace L, respectively.

To facilitate the application of the above criterion, we list the following facts
for the subgroups g C Cuoop.

1, gc Orth*, 9 #0C;,

21 LB Clh.‘
142 dimV(g) =
(1.2) mV(g) S bl
0, otherwise;
3, g=0C1,5,
(1.3) T ) e S
1, otherwise;
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6; g.= Cla Sz .
(1.4) dimSym(g) = < 4, g = C3,Cip,C2p,
2, otherwise.

The groups appearing above will be given later. On the other hand, a criterion
for functional bases is as follows (see PIPKIN and WINEMAN [15, 30]; see also
X1a0 [33]).

The invariants fq,---, f, under the group g C Orth form a functional basis
under g iff

(15)  AX)=AX), - (X)) =f(X)=3Qeg: X=QxX,

for X, X € V% x Skw” x Sym®. The latter means that X and X pertain o the
same g-orbit. Thus, the variable X is determined to within an orthogonal :ensor
pertaining to the group g.

To check the irreducibility of a given functional basis, we shall use the bllow-
ing fact.

A functional basis I under the group g C Orth is irreducible iff for any given
element fo € I there exist X, X' € V2 x Skw? x Sym®, which belong o two
different g-orbits, such that

(1.6) fo(X) # fo(X') & f(X) = f(X') forall felI/{fo}.

In fact, for any given element fq, the proper subset I /{ fo} can not be a functional
basis under g if (1.6) holds, or else according to the aforementioned criterbn for
functional bases, X and X’ must pertain to the same g-orbit (see (1.5) and
hence fo(X) = fo(X'), which contradicts (1.6);.

Let S be a functional basis or generating set under the group g. We shallspeak
of the irreducibility of an element in S. By this we mean the following fact: an
invariant or a generator y € S is irreducible if the proper subset S/{x} fils to
supply a functional basis or generating set under g. Obviously, a functiona basis
or generating set is irreducible iff each element of it is irreducible.

By means of the Schoenflies symbol we list the transverse isotropy groups
Coon and all its finite subgroups as follows.

Coon(n) = {+R% | 6 € R},
Coo(n) = Coon(n) N Orth™;
€y = 11}, So= {:I:I}
Clh(n = {I,-R%}, Ci(m)={LRE}, Co(n)={£I,+RY;
Simi2(n) = {EREZT/AMHL | .---,2m+ 1
G n) = (#R¥"™ | k=1, ,2m},
Com+1(n) = Symeo(n) N Orth™, Com(n) = Caymp(n) N Orth™;
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34171(11) — {(_R;}"Zm)}; | = 1"",4?’?1},
Comsrn(m) = {(RF™™ ¥ |k =1,---,4m +2}.

Here and hereafter n is a given unit vector and I is the identity tensor. Henceforth,
we shall quote the above subgroups by dropping out the defining vector n when
no confusion arises.

For u,v,r € V and A € Sym, we introduce the following notations.

(L.7) u=u-— (u-n)n,
A= A—-(n-An)n®n;
(1.8) q(A) = l(a-ﬁu’: —e-Ae')e + (e-Ae')e’ .

2

Throughout, e is any given unit vector in the n-plane and
(1.9) € =nxe.

Hence, the triplet (n,e,e) is an orthonormal system. It is evident that (1.7); 2
define two linear functions of u and A that are form-invariant under the maximal
transverse isotropy group D (n).

Moreover, we denote

UAV=u®v—-vQ®@u,
(1.10) uvVv=u®v+veu,
[mv,r] =u-(vxr)=(uxv)-r=v-(rxu),
for vectors u, v and r. Throughout, u-v and u x v are used to designate the inner
product and the vector product of u and v, respectively.

Let <wu,v> denote the angle between two vectors u and v. For any vector z
in the n-plane and for each positive integer r, the following notations are used:
(A1) p,(z) = |z|"(ecosr <z,e> —€'sinr <z,e>);

(1.12) a,(z) = |z|" cosr <z,e>, Br(2) = |2|" sinr <z,e> .

When z = 0, the angle <z,e> is assumed to be zero. By means of the formulas

cos <z,e> = —
(1.13)
sin <z,e> = —

and Tschebysheff polynomials, it can easily be proved that each tensor function
defined by (1.11) —(1.12) is a polynomial of the components z-e and z-e'.
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2. A unified scheme of constructing functional bases and generating sets

Usually, quite different methods are used to derive functional bases and gen-
erating sets separately, which are generally cumbersome. In this section we shall
describe a simple, unified scheme for constructing both functional bases and
generating sets. Such a scheme enables us to derive generating sets for gen-
eral vector-valued and second order tensor-valued anisotropic functions only
from those for the same types of vector-valued and second order tensor-valued
anisotropic functions with not more than three variables (see X1A0 [33]) (two
variables for the anisotropic functions considered here; see X1A0 [34]) and. espe-
cially, at the same time it enables us to obtain functional bases for scalar-valued
anisotropic functions directly using the generating sets obtained for vector-valued
and second order tensor-valued functions. For the sake of definiteness, in the sub-
sequent account of such a unified scheme we shall consider only the anisotropy
groups of interest in this paper.

Let ¢ be any subgroup of Cup. Henceforth, we denote the domain V¢ x
Skw” x Sym® by D. For any given set of vectors and second order tensors, X =
(ay, -, uy; Wy, , Wy Ay, oo, W,) € D, by means of the following facts

(2.1) g(W) 0 Cao(n) = {Cm(n). Wn =0,
Cy, Wn #0,
(Coon(n), A=2I+yn®n,
(2.2) 9(A) N Coon(n) = { Con(n), An=0, q(A)#0,
\ S2, An#0,

[ Coi(n), =10,

Cxin), n=zn, z#0,
Cin(n), un=0, nxu#0,
G,  (wm)mxu)#0,

(23) g(u) N Cooh(n} =4

.

it can be proved (see §2.2 in XI1AO [34]) that there are Xy C X, where Xy €
{(u,v),(u,W), (u,A)} is a subset of X with two elments, such that

(2.4) gNg(X) =gng(Xo), ;

and accordingly, that irreducible generating sets for general anisotropic vector-
valued and second order tensor-valued functions of the variables X relative to
the group g C Cuop can be formed by union of irreducible generating sets for the
same types of anisotropic functions of not more than two variables (see Theorem
2.4 in X1A0 [34]). Generally, the just-stated fact implies that if G(u,v), G(u, W)
and G(u, A) are irreducible generating sets for vector-valued or skewsymmetric
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tensor-valued or symmetric tensor-valued anisotropic functions of the two vari-
ables (u,v), (u, W) and (u, A) relative to the subgroup g C C.y respectively,
then the union

a b &
U U (G(ui,u;) U G(u;, Wa) UG(u;, Ay))
1 =1

i,j=1 a=

furnishes an irreducible generating set for vector-valued or skewsymmetric tensor-
valued or symmetric tensor-valued anisotropic functions of the vectors uy, - - -, u,,
the skewsymmetric tensors Wy, ---, W, and the symmetric tensors Ay, ---, A,
relative to the subgroup g C Cuon. In the above, each generating set of two
variables may be constructed by applying the related results for isotropic exten-
sion of anisotropic functions given in X1A0 [35, 39]. Moreover, in constructing
generating sets for one and two variables we can, as mentioned before, derive
functional bases for general scalar-valued anisotropic functions of the variables
X, directly utilizing the results for the generating sets obtained. To realize this
goal the following fact is essential.

Let X € D be a set of vectors and second order tensors with a proper subset
X satisfying (2.4). Moreover, let I(X,) and

V(Xo) = {h1(Xo),---,h.(X0)},
Skw(Xg) = {Q1(Xo), -, 0s(X0)},
Sym(Xo) = {®1(Xo), -, ¥e(Xo)},

be a functional basis and generating sets for vector-, skewsymmetric and sym-
metric tensor-valued anisotropic functions of the variables X relative to the
group g, respectively. For a generic vector r € X/Xq, a generic skewsymmetric
tensor H € X/X and a generic symmetric tensor B € X/Xj, construct the
following invariants under g:

{hy(Xp)-r,- -+, hy(Xp) 1},
{tI‘ ﬂ;(Xg)H, I 7 ns(Xo)H},
{tI“I’l(X(])B, siae ,tI"I’g(Xo)B}.

8
t

The union of the above invariants for all r,H,B € X/Xj is denoted by I°(X).
Then X can be determined to within an orthogonal tensor pertaining to the
group g by I(Xp) and I°(X).

The proof is as follows. First, from (2.4) we deduce

(2.5) gNg(Xo) Cy(z), Ve X.
By virtue of this and the obvious fact:

g1 C g2 = M(ga) C M(g1)
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for any two subgroups ¢, g2 C Orth and M € {V, Skw, Sym}, we infer

r € V(g(r)) C V(9N g(Xo)) = spanV(Xo),
H € Skw(g(H)) C Skw(g N g(Xp)) = span Skw(Xp),
B € Sym(g(B)) C Sym(g N g(Xo)) = spanSym(Xj),

for any vector r € X/ X, any skewsymmetric tensor H € X/X; and any symmet-
ric tensor B € X/ X, where the last equality in each of the above three expres-
sions can be derived from (2.13), (2.16) and (2.15) in X140 [33]. From the above
three expressions we know that X /X is determined by the union 1°(X) indicated
before if the three generating sets V' (Xj), Skw(Xp) and Sym(Xy) are known. On
the other hand, X is determined to within an orthogonal tensor Q € g by a
functional basis I(Xp) of Xy under g. Since each generator is form-invariant un-
der g, we infer that the three generating sets just mentioned can be determined
to within an orthogonal tensor Q € g by the functional basis I(Xj).

Combining the above facts we conclude that the aforementioned fact is true.

Owing to the fact proved above, in the process of constructing generating sets
for vector-valued and second order tensor-valued functions of the two variables
Xy C X, we can obtain general functional bases of the variables X merely by
forming the corresponding inner product between each generic variable x € X/ Xy
and each presented generator and moreover, by constructing functional bases of
the two variables X, C X.

The above process of constructing generating sets and functional bases may
be simplified due to the fact that some or even all the three lists of two variables,
(u,v), (u, W) and (u, A), may be further reduced to some lists of a single variable.
Generally, simplification concerning each list Xg of two variables is possible (see
(2.6) below). Specifically, we design the following scheme.

1. For each variable x € {u,W,A}, construct irreducible generating sets
VO(x), Skw’(x) and Sym’(x) for vector-valued and skewsymmetric and sym-
metric tensor-valued functions, respectively. Then form the corresponding inner
product between each generic variable y € {r, H, B} and each presented vector,
skewsymmetric tensor, and symmetric tensor generator and moreover, construct
an irreducible functional basis of the single variable x.

2. For each list Xy = (u,x) of two variables, where x € {v,W, A}, consider
the union G(u) UG(x), where G(u) and G(x) are the generating sets for vector-,
skewsymmetric tensor-, and symmetric tensor-valued functions of the single vari-
ables u and x respectively, constructed in the first step. This union obeys the
criterion (1.1) for the cases

g(z)Ng=g9(Xo)Ng, 2z€{ux}

Thus, it suffices to treat the case other than the above cases, which is specified
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by the conditions
(2.6) g(z)Ng #g(u,x)Ng, z=ux.

Then, analyze the latter case and judge whether or not the aforementioned union
also obeys the criterion (1.1) for the latter case. If not, then add some generators
with two variables u and x into this union so that an irreducible generating
set for the two variables (u,x) is formed. If yes, then the aforementioned union
is already the desired result. Moreover, form the corresponding inner product
between each variable y € {r,H,B} and each presented vector, skewsymmetric
tensor, and symmetric tensor generator with two variables (the generators with
a single variable have been covered in the first step) and moreover, construct an
irreducible functional basis of the two variables (u, x) specified by (2.6).

3. Combine all vector generators, skewsymmetric tensor generators, symmet-
ric tensor generators and invariants obtained, respectively, and let each generic
variable concerned run over the set X. Then the desired general irreducible rep-
resentations are available (see Theorem 2.4 in XI1A0 [34]).

In the above procedures, the related results for isotropic extension of aniso-
tropic functions given in X1A0 [35, 39] may be applied to construct irreducible
generating sets for one or two variables. Furthermore, according to Theorem
3.7 in X1A0 [34], for skewsymmetric and symmetric tensor-valued functions we
need only to consider two vector variables (u,v), a single skewsymmetric tensor
variable W, and a single symmetric tensor variable A, respectively. As to the
scalar-valued and vector-valued functions of two variables Xy, the condition (2.6)
usually leads to such X that construction of functional bases and generating sets
for X can be considerably simplified.

Following the above scheme, in the succeeding sections we shall construct gen-
eral irreducible representations for anisotropic functions of the variables X € D
under all subgroups g € Cup. In view of the fact stated above, in the sec-
ond step above we shall omit generating sets for skewsymmetric and symmetric
tensor-valued functions as well as the invariants obtained by forming the corre-
sponding inner product between each variable x € {r, H,B} and each generator
with one variable.

Finally, it should be pointed out that the above construction scheme in itself
does not mean the irreducibility of each invariant obtained by means of the inner
product. As a result, additiontial proof for the latter is needed. To this end, one
may contruct the pair (X, X') fulfilling (1.6).

3. The triclinic and monoclinic crystal classes C;, S; and Cy,
3.1. The triclinic group C,

Henceforth, (e, es,e3) is an orthonormal basis of V. Trivially,
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14 €),€e9,e3
Skw e; Aeg,e; Aes,e3Ae
Sym e ®ej,exRex,e3®e3,e1Vey,ezVes ezVe;
R r-e;; e;-He;; e;-Be;; 1,7 =1,2,3,
wherer = uy,---,u,, H=Wy,---, Wy, and B = Ay, -, A, provide rreducible

representations for scalar-. vector-, skewsymmetric and symmetric tersor-valued
anisotropic functions of the variables X € D relative to the triclinic group Cj.

3.2. The triclinic group S»

It is evident that for any X € D there is a vector u € X such that

g(X)NSy; =g(u)n Sy.

Accordingly we construct the following table.

V u,uXe;,uxesuxes

Skw ej; Aeg, e Aes, ez Aep

Sym e ®@ej,e;®@ep,e3@e3,e; Ve e;VesezVe

R u-r, [u,r,e); e;-Hej; e;-Be;j; <(u-e;)(u-e;)>; 4,5 =1,2,3
Here and hereafter the invariants in the angle brackets supply an irreducible
functional basis for one variable or two variables under consideration. The other
invarants are obtained by forming the corresponding inner product besween each

generator given and a variable x € {r,H, B}.
Thus, we obtain the main result of this subsection as follows.

THEOREM 3.1. The table given above, together with u,r = uy,---, g, 0 # 1;
H=Wy, -, Wy, B=Ay, -, A, provide irreducible representations for scalar-,
vector-, skewsymmetric and symmetric tensor-valued anisotropic funciions of the
variables X € D under the triclinic group Ss.

REMARK. An irreducible functional basis of two vector variables urder S; was
derived by L1u [11], in which 18 invariants are employed. Here only 1€ invariants
are used.

3.3. The monoclinic crystal class Cyj

Since Cy, has only two subgroups, i.e. C; and Cjp, we infer tkat for any
X € D there exists a single vector or second order tensor x € X suck that

9(X) N Cip(n) = g(x) N Cya(n).

Consequently, it suffices to treat the cases for a single variable. As mentioned
before, e and €' are two orthonormal vectors in the n-plane. Henceforth we denote

(3.1) N=eAe =En.
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Throughout, E is used to denote the third-order Eddington tensor, i.e. the per-
mutation tensor. It is evident that N is invariant under Co5(n) and independent
of the choice of the orthonornormal vectors e and €’ in the n-plane.
CASE 1. A single vector variable u
Vv e.e¢ (u-n)n
Skw N,(u'n)nAe, (u-n)nAe
Sym n®ne®ee ®e,eVe (u-n)nVe, (u-n)nve
R r-e,r-¢',(r-n)(u-n);
tr HN, (u-n)(n-He), (u-n)(n-He');
n-Bn,e-Be,e'-Be',e-Be’, (u'n)n-Be, (u-n)n-Be';
<u-e,u-e, (u-n)?>.
CASE 2. A single skewsymmetric tensor variable W
Vv e, e (n-We)n, (n-We')n
Skw  N,nAWn,nA (nx Wn)
Sym {(n®ne®ece ®e eve ,nVWnnV(nx Wn)} (= Symy(W))
R r-e,r-e¢’ (r-n)n-We, (r-n)n-We';
tr HN,n-WHn, [n, Wn, Hn;
n-Bn.e-Be e'-Be' e-Be',n-WBn, [n, Wn, Bn;
<tr WN, (n-We)?, (n-We')?, (n-We)(n-We') > (= Ip(W)).
It can be readily verified that the first three sets given above are irreducible
generating sets for vector-valued, skewsymmetric and symmetric tensor-valued

anisotropic functions of the skewsymmetric tensor variable W € Skw relative to
Cyp(m), respectively, by means of (1.2) —(1.4) and the fact

1n(n), Wn=0,
¢,  Wn#0.

Moreover, by means of criterion (1.5) it can be proved easily that the four in-
variants of W listed in the angle brackets form an irreducible functional basis of
the variable W € Skw under Cj,(n).

9(W) N Cyp(n) = {

CASE 3. A single symmetric tensor variable A
V e, e (n-Ae)n, (n-Ae')n

Skw N,nA An,nA (n x An)
Sym {n®ne®ee ®e ,eve ,nVAnnV (nx An)} (= Symy(A))

R r-e,r-e¢’, (r-n)n-Ae, (r-n)n-Ae’;
tr HN,n-HAn, [n, An, Hn;
n-Bn,e-Be,e'-Be’,e-Be’,n-ABn, [n, An, Bn|;
<n-An,e-Ae,e'-Ae' e-Ae’, (n-Ae)?, (n-Ae')?,
(n-Ae)(n-Ae')> (= Iy(A)).
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It can be readily proved that the first three sets given above are irreducible gen-
erating sets for vector-, skewsymmetric and symmetric tensor-valued anisotropic
functions of the symmetric tensor variable A € Sym relative to Cy;(n), respec-
tively, by means of the criterion (1.1), (1.2) —(1.4) and the fact

Cin(n), An=0,
G,  Anso.

Moreover, the given irreducible functional basis of the symmetric tensor variable
A € Sym under Cjj(n) can be found in X1A0 [36].

Henceforth, we denote the irreducible functional bases and generating sets
for scalar-valued and symmetric tensor-valued functions of the single variables
W and A, given in the two tables for Case 2 and Case 3 respectively, by Iy(W),
Io(A), Symy(W), and Symg(A), respectively.

Combining the above three cases, we arrive at the main result of this subsec-
tion as follows.

g(A) N Cyp(n) = {

THEOREM 3.2. The four sets given by

Io(W); Ip(A);u-e,u-¢, (u-n)?

(un)(v-n):

(u-n)n-We, (u-n)n- We';

(u-n)n-Ae, (u-n)n-Ae’;

n-WHn, [n, Wn, Hn|;

n-ABn, [n, An, Bn];

n-AWn, [n, Wn, An];
and

e, e, (u-n)n;

(n-We)n, (n-We')n;

(n-Ae)n, (n-Ae')n;
and

N, (u'n)nAe, (u-n)nAe’;

n A Wn,nA (nx Wn);

nAAn,nA (nx An);
and

Symg(W),Symgy(A), (u-n)n Ve, (u-n)nVe;
where u,v=uy,---,Uq; W, H=Wy,--- Wy; AB=A;,--- Ai;u#v, W#H,
A # B, provide irreducible representations for scalar-, vector-, skewsymmetric
and symmetric tensor-valued anisotropic functions of the variables X € D under
the monoclinic group Cyp(n), respectively.

4. The classes Cy,,, and Cy,,

The classes Comp and Co, include the monoclinic crystal classes Cap and
Oy, the tetrahedral crystal classes Cy;, and Cy, and the hexagonal crystal classes
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Csn and Cg as the particular cases when m = 1,2,3. Moreover, the transverse
isotropy groups C»p, and C can be treated as the particular case of the classes
at issue when m = oco. It should be pointed out that the former can not be
regarded as the particular cases of the classes S4p42(n) and Copyyq(n) when
m = o, since the element Ry is not contained in either of the latter.

4.1. The classes Cap,p,
Six cases will be discussed.

CASE 1. A single vector variable u

From the criterion (1.1) and the formula (1.2) - (1.4) as well as

'szh(n)! uzuv
Com(n), =0, un#0,
(4.1) g(u) N Comp(m) = { :
Cip(n), un=0 u#0,
| ¢, (u-n)u #0,
i Doh(n)! u=0|
Coo(n)v ﬁ:l], u-n#0,
(4.2) g(u) N g(N) = < 0
Clh(n)u un=0, u#o0,
\Cla (U'n)lol #07

we deduce that the following fact holds: generating sets for vector-valued (for
m > 1), skewsymmetric tensor-valued (for m > 1) and symmetric tensor-valued
(for m > 2) anisotropic functions of the vector variable u under Cy,(n) can
be derived from those for vector-, skewsymmetric and symmetric tensor-valued
isotropic functions of the extended variables (u, N), respectively. Moreover, with
the aid of the fact that (—I)u = —u, —I € Cs,5(n) and the invariance condition
stated at the start of the introduction, it may be readily understood that func-
tional bases for scalar-valued anisotropic functions of the vector variable u under
Camn(n) can be obtained from those for scalar-valued anisotropic functions of
the symmetric tensor variable u ® u € Sym under Cs,,;(n). The latter can be
found in X1A0 [36] for m = 1 and in Case 3 below for m > 2.

Applying the above facts, we construct the following table:

1% (2,1 x n, (u-n)n} (= VO(u))
Skw  {N,(u-n)uAn,(u-n)aA (i xn)} (= Skw’(u))

Sym {n®n,fijpe®e e @€ dimeVe, (1—0m)l (11— Jlm){i@ﬁ,
(1- 1)UV (0 X m); (u-n)u Vn, (u-n)n Vv (ﬁ xn)} (= Sym?, (u))
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R ﬁ-?,[n,ﬁ,g],(u-n](r-n);

tr HN, (u-n)u-Hn, (u-n)[n, u, Hnl;

n-Bn, d;,,e-Be, §;,¢' -Be’, 61,,e-Be’, (1 — 61, )tr B,

(1 = 8yp)0-B1, (1 — 61,0 )[n, 0, BU), (u-n)u-Bn, (u-n)[n, Bn, u;

< (ll°n)2, 01m (u'e}zi 5lm(u°e’)2! 61"1(“'8)(11'9,)?

(1 = S1m)azm (8), (1 = 81m) Bom () > (= I (w)).
Henceforth, the first three sets consisting of vector generators, skewsymmetric
tensor generators and symmetric tensor generators, respectively, are denoted by
V°(u), Skw®(u), and Sym?, (u) respectively. We have Sym{ = Sym(u) for m = 1
and

(4.3) Sym? (u) = {I, n®n, u®u, uV(nxu),

(u-n)nVu, (u-n)nV (nx u)} = Sym°(u)

for m > 2. Moreover, the set of invariants given in the angle brackets is signified
by I, (u).

It should be pointed out that in the above table, each element with the
coefficients dy,, or (1 — dy,,) comes into play only when m = 1 or m > 2. Here
and hereafter 8, is used to represent the Kronecker delta. Such a difference
between Cyp, and Camp for m > 2, which will also appear in the next five cases,
arises from the fact

d.m=1

dim Sym(C: =
ym(Cam) { 2, dimSym(Caomp) =2, m>2.
CASE 2. A single skewsymmetric tensor W
Every vector-valued function of the variable W € Skw that is form-invariant
under Ca,,, vanishes. Moreover, from the criterion (1.1) and the formula (1.3) -
(1.4) as well as

) g(W) N Camn(n) = { Comn(n), Wn =0,
| S, Wa#0,

(4.5) 9(W) Ng(N) = { Coon(n), Wn=0,
S,  Wn#0,

we infer that the following fact holds: generating sets for skewsymmetric tensor-
valued (for m > 1) and symmetric tensor-valued (for m > 2) anisotropic func-
tions of the variable W € Skw under Cy,p(n) can be derived from those for
skewsymmetric and symmetric tensor-valued isotropic functions of the extended
variables (W, N). Thus, we construct the following table.
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Skw {N,nAWn,nA (nx Wn)} (= Skw’(W))

Sym {n®n,de®e b e @€, meVe, (1 —dn)l (1 —0,)Wn®Wn,
(1=061m)WnV (n x Wn),nVWn,nV(nxWn)} (= Sym? (W))

R tr HN,n-WHn, [n, Wn, Hn];
n-Bn, d;,,e-Be, d;,,¢ -Be’, §;,,e-Be,
(1— 61, )n-WBWn, (1 — 6y,,)[n, Wn, WBn|,n- WBn, [n, Wn, Bn];
<trWN, 61 (n-We)?, 6, (n-We')2, 61, (n- We) (n-We'),
(1 = d1m)a2m(Wn), (1 — d1m) Bom (Wn) > (= I2,(W)).

Henceforth, the two generating sets in the above table are denoted by Skw?(W)

and Sym’ (W) and the functional basis given in the angle brackets is denoted
by 19 (W).

m

We have Sym{ (W) = Sym,(W) and
(4.6) Sym? (W) ={I, n®n, Wn® Wn, WnV (n x Wn),
nVWn, nV (nx Wn)} = Sym°(W),

for each m > 2.

We need only to show that the set IJ, (W) is an irreducible functional basis of
W under Cy,,,(n). To this end, we prove that I2,(W) obeys the criterion (1.5).
The proof for m = 1 is easy. Let m > 2. Observing the fact that the last three
invariants in the above table form a functional basis of the vector Wn in the
n-plane (see Case 1), we infer that for W, W € Skw,

I2(W)=1I%(W) = 3Q€ Copmn(n): Wn=Q(Wn), tr WN = tr WN.

In the above, we can assume Q € Cy,,(n), since Wn lies on the n-plane. Thus,
by means of the identity

(4.7) W= %(tr WN)N + (Wn) An

as well as the facts: QNQT = N, Qn = n for every Q € Cy,,(n), we deduce
I5,(W) = In(W) = 3QE€ Con(n): W=QWQT.

Thus, we conclude that I2 (W) obeys the criterion (1.5). The irreducibility of
this basis is evident.

CASE 3. A single symmetric tensor variable A
Every vector-valued function of the variable A € Sym that is form-invariant
under Cs,,,;(n) vanishes. Moreover, from the facts

Comn(n), A=zI+yn®n,
0
(48) Q(A) n C2mh(n) = C2h(n)= An =0, Q(A) 7& 0,
Sa, Kn 240,
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Coon(n), A=zI+yn®n,
0
(4.9) g(A)Ng(N) =< Cop(n), An=0, q(A)#0,
S;,  An#o,

and the criterion (1.1) as well as the formula (1.3)-(1.4), we infer that the
following fact holds: generating sets for skewsymmetric tensor-valued (for m > 1)
and symmetric tensor-valued (for m > 2) anisotropic functions of the variable
A € Sym under Cyy,j(n) can be derived from those for skewsymmetric and
symmetric tensor-valued isotropic functions of the extended variables (A,N).
Using these facts, we construct the following table:

Skw {N,nAAn,nA (nx An)} (= Skw’(A))

0 0
Sy]]l {n @ n, Jlme ® e, (5]_n1e‘I ® e’, 61,—,;8 V e,.. (1 == 51}“)1, (1 _= Jlm)An ® AII‘
(1= 61m)AnV (n x An), A, AN — NA} (= Sym®,(A))

R tr HN,n-AHn, [n, An, Hn];
n-Bn, tr AB, tr ABN, §;,,e-Be, 6;,,€ -Be’, §;,,e-Be’,
(1 = S1m)te B, (1 — d1m)n-ABAR, (1 — §1n)[n, An, BAn);
<Iy(A)> (form =1); <I%(A)> (form >2).

It can be readily shown that the presented set for skewsymmetric tensor-valued
functions, denoted by Skw’(A) henceforth, obeys the criterion (1.1), and it is
evident that this set is irreducible. The presented set for symmetric tensor-valued
functions is denoted by Sym? (A) henceforth. Sym{(A) can be found in X1A0
(32] and Sym?,(A) for m > 2 is an equivalent form of the minimal generating set
given in X1A0 [36]. We have Sym{(A) = Symg(A) (cf. Sec. 3.3) and

4] o]
(4.10) Sym?, (A) = {I, n®n, A, AN — NA, An® An,
(0]
fﬁm V(nx An)} = Sym’(A),
for each m > 2.
Moreover, in the above table, the basis Ip(A) for m = 1 is given in Sec. 3.3

and the basis I% (A) for m > 2 is given by (cf. X1A0 [38])

(4.11)  I%(A) = {n-An,tr A, tr A%, [n, An, A%n),
aam(An), Bom (An), am(a(A)), Bn (a(A))}.

CASE 4. Two vector variables (u,v)
The condition (2.6) yields

(412) g(z'} n C?mh(n) :,é g(u, V) N C2mh (Il), z=uV.
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Hence,
9(z) N Comp(n) # Cy, £ =U,V:
By using (4.1) and the latter we infer

(z-m)z xn =0, =¥,
The above result and (4.12) yield
(4.13) un=0, vxn=0 or v-n=170, wxn=90;,
where (u-u)(v-v) # 0, and hence
g(u,v) N Coymp(n) = C; .

Accordingly, we construct the following table (the first case in (4.13) is consid-
ered).
Vv u.uxmn (v-n)n
Skw N,uAv,(uxn)Av+(vxn)Au
Sym n®n,fe®e de e deVve, (l— S1m )0 ® 1,
(1—=6ym)uV(@xn),uvVv,(nxu)Vv+(nxv)Vu

R u-Hv, [n,u, Hv] + [n, v, Hul;
u-Bv, [n,u, Bv] + [n, v, Bu];
< (v-n)?, 61yn(u-e)?, d1m (u-e')2, 81, (u-e)(u-e'),
0
(1 N, élm)ﬂ'Qm(ﬁ)s (1 R 61711)62111(“} >
Owing to (4.13), the above table can easily be constructed.

CASE 5. A vector variable u and a skewsymmetric tensor variable W
The condition (2.6) yields

(414} g(z} N CEm.h (n) ?é g(u‘ w) n C2mh (Il], z = u, W.
Hence,

g(u) N Copmp(m) # C1,  u#0,
g(W) N C?mh(n) 7& Cgmh(n) .

From the latter and (4.1) and (4.4) we derive

(u'mjuxn =0, u#o0,

4.15
( J) U(W) N C2mh (n) == S2| i.e. Wn -'/'é 0,

and hence
g(u! W) M C2-mh(n) — Cl .
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Thus, we construct the following table for vector generators and invariants (sec-
ond order tensor generators and related invariants have been covered by Case 2
due to (4.15)2).

v 101, (u-n)n,ﬁ xn, Wu, W(u x n) + n x Wu
R r-Wu,[n,u, Wr| + [n,r, Wul;
<I5,(w), I,(W), (1 = 81m) (@-Wn)?, (1 = byn) (8- W) [, Wn, 0] >

We are in a position to prove that the above two sets, denoted by V(u, W) and
I(u, W), are an irreducible generating set and an irreducible functional basis for
scalar-valued and vector-valued anisotropic functions of the two variables (u, W)
specified by (4.15) relative to the group Ca,p(n), respectively. For the case when
uxn = 0, the proof is easy. In the following, we treat the case when u-n = 0. We

prove that the two sets in question obey the criteria (1.1) and (1.5), respectively.
First, we have

rank{u,u x n, Wu} =3, nnWu#0,

rank V(u, W) =
rank{u,u x n, W(uxn)} =3, n-Wu=0,

where in the second equality, the fact
n-W(uxn)=(Wn):(uxn)#0

is used, which can be derived by using the facts: 1. The three vectors u,u X n
and Wn lie in the n-plane and the first two are independent, and 2. n-Wu =
(Wn)-u = 0. From the above, we know that the set V (u, W) obeys (1.1) for the
case u-n = (.

Next, for m = 1, it is readily verified that the set I(u, W), i.e. I{(u) U I (W),
obeys (1.5). For m > 2, let I'(u, W) = I% (u) U I% (W). Then, for the pair (1, W)
and (u, W), where the two vectors lie on the n-plane, we have

I'(@,W) = I'(u,W) = 3R,Q€ Cymn(n): T=Ru, W=QWQT.

Denoting Qg = Q'R = ER%, €% = 1, and noting that both @ and Wn are on the
n-plane, we infer

-Wn)? = ((Qou)-Wn)?
= [a[?.|[Wn|? cos?(9 + ¥) ,

Blo

(

[v]

(%-Wn)[u1 Wn,n| = %lﬁ[2|Wn|2 sin®(6 + 1),

where 6 is the angle between u and Wn, and (0 + ) the angle between R}"lu and
Wn. When 1 =0, the above two equalities yield (u-Wn)? and (ﬁ—Wn)[ﬁ, Wn, n|.
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Hence, we deduce

L

Therefore,

“Wn)? = (u-Wn)?, { cos 2(0 + ) = cos 20,
=

.Wn)[@, Wn, n] = (& Wn)[&, Wn, n], sin2(0 + ) = sin 26,
—> th=km, b=0,F1,E£2 v

gle glo

R=QQ,=cQRt", €=1.
Let Ry = (—1)*¢Q. Then, using the facts

un=0 = REu=(-1)"y,
we deduce

Rou = (—1)¥eQu = ¢QRE™u = Ru =T,
RyWR] = QWQ™T = W,
where RO € C?mh (“)

Thus, we conclude that the set I(u, W) obeys the criterion (1.5) for (u, W)
specified by (4.15).

CASE 6. A vector variable u and a symmetric tensor variable A
The condition (2.6) yields
(4.16) 9(z) N Comp(n) # g(u, A) N Copmp(n), g=u. k.
From this we derive
(u'm)u xn = 0, u#0,

(4.17) !
g(A) N Camn(n) = Sz, ie. An#0,

and
g{u, A) N Camn (n) =(.

Thus, we construct the following table for vector generators and invariants (sec-
ond order tensor generators and related invariants have been covered by Case 3
due to (4.17)3).

Vv [u—n)n,ﬂ x n,Au,A(u x n) +n x Au

R r-Au,[n,u, Ar| + [n,r, Auj;

5 ] ]
<19, (), I%(A), (1 — Sy ) (1-A)?, (1 — 81n) (u- An)[u, An, n] >

It is easy to treat the case when u x n = 0. Let u-n = 0. Following the same

procedures used in the last case, we can prove the following facts: 1. The set of
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vector generators given in the above table is a generating set for vector-valued
anisotropic functions of the two variables (u, A) specified by (4.17) under Capp,
and 2. The set of invariants listed in the angle brackets is a functional basis of
the two variables (u, A) specified by (4.17) under Cy,,,, m > 2. Besides, it can
be readily verified that the union I7(u) U I?(A) is a functional basis of the two
variables (u, A) at issue under Cy,(n). Hence, for each m > 1, the set listed in
the angle brackets gives a functional basis of the two variables (u, A) specified
by (4.17) under Comp.

Combining the above six cases, we arrive at the desired representations under
each subgroup Cy,,,. Moreover, it can be easily seen that the analysis given
also applies to the transverse isotropy group Coo if the functional bases IPn(u},
1% (W) and I9 (A) are respectively replaced by three bases of the single variables
u, W and A under the group Cuop. These facts are summerized as follows.

THEOREM 4.1. The four sets given by

15, (w); I (W); 15, (A); (wem)(v-m); 87, [m, 8, ¥}

(u-n)u-Wn. (u-n)n, Wn, 31](1 - Jlm)(ﬁ-Wn)z,(l —51m)(ﬁ-Wn)[ﬁ,Wn,n];
(u-n)ﬁ-An. (u-n)[n, An, 101], (1— é]m)&-ﬂ.{}l, (1- 51,,1)[:1.{’1,;&{)1],

(1 = 0ym)(0-An)?, (1 — dy,,) (- An)[u, An, n];

n-WHn, [n, Wn, HnJ;

n-WAn, [n, Wn, An|, (1 — 81, )n-WAWn, (1 — d1,,)[n, Wn, AWn];

(o]

tr AB, tr ABN, (1 — 51,n_)n-RBRn, (1 = d1m)[m, f\n, BAnj;

u-Wv, [n,u, Wv| + [n,v, Wu];

u-Av,[n,u, Av] + [n, v, Au;
and

w1 % n, (u-n)n:

Wu, W(u x n) +n x Wu;

Au,A(u x n) +n x Au;
and

Skw®(u); Skw’(W); Skw’(A);uAv,(uxn) Av+ (v xn) Au
and

Sym?, (u); Sym? (W); Sym), (A);uV v, (uxn) Vv+ (v xn)Vu
where u,v =1y, -, ug; W H=Wy,--- Wy; AB=A;,---  Asu#v, W#H,
A # B, provide irreducible representations for scalar-, vector-, skewsymmetric
and symmetric tensor-valued anisotropic functions of the variables X € D under
the group Comn(n) for each m = 1,2, 00, respectively. For m = oo, i.e. for
the transverse isotropy group Coop(n), it is assumed that 0y = 0 and moreover
that

={ (u-n)?, [ul?}, I (W) = {tr WN, tr W?},
= {trA,tr A% tr A®> n-An,n-A’n, [n, An, A’n]}.
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REMARK. Irreducible nonpolynomial representations for transversely isotro-
pic functions of the variables X € D relative to Cy, were first derived by ZHENG
[41], which belongs to the case when m = oo in the above theorem. It can be seen
that the new results presented in the above theorem are more compact than those
given in ZHENG [41], e.g. the presented functional basis of two symmetric tensor
variables and the presented generating set for a single symmetric tensor variable,
respectively, consist of eighteen invariants and six generators, respectively, while
the corresponding results given in ZHENG [41] include nineteen invariants and
eight generators, respectively.

4.2. The classes Cy,,

Let IO(Hy, -+, Hg; Wy, -+, Wy Ay, -+, A.), Skw®(Hy,---,Hq; Wy, Wy
A, A.) and Sym®(Hy, -, Hy; Wy, -+, Wy; A, ---,A.) be, respectively, an
irreducible functional basis and irreducible generating sets for scalar-valued,
skewsymmetric and symmetric tensor-valued anisotropic functions of (a + b)
skewsymmetric tensor variables and ¢ symmetric tensor variables under an or-
thogonal subgroup g containing the central inversion —I. Then, according to
Theorem 2.1 and 2.2 in X1A0 [35], the four sets

I°(Buy,--- ,Bug; Wy, , Wy Ay, -+, Ag),

E : Skw’(Buy,---,Bu,; Wy, -, Wy; Ay, - -+, Ap),
Skw’(Euy, - - - ,Eug; Wy, -+, Wy Ay, -+, Ac),
Sym®(Euy, - -+, Eug; Wy, -+ Wy Ay, -+, Ap),

supply, respectively, an irreducible functional basis and irreducible generating
sets for scalar-, vector-, skewsymmetric and symmetric tensor-valued anisotropic
functions of a vector variables, b skewsymmetric tensor variables and ¢ symmetric
tensor variables under the rotation subgroup of g, i.e. g N Orth*. Here, the
second set above is obtained by forming the double dot product between each
skewsymmetric tensor generator and the third order Eddington tensor E. From
this fact and Theorem 4.1, we derive the following result.

THEOREM 4.2. The four sets given by

In.(W), I?,(A);

U-n, 6noo |02, O1m (u-€)2, 6170 (u-€')2, 61 (u-e)(u-e'),

(1 = G1m )2 (0), (1 = 1) Bamm (W);

ﬁ-g, [, u, %]‘

n,u, Wn|, u-Wn;

(n,u,Anj,u-An, (1 - Sim)U- AR, (1 — 81n) [, u, Aul;

n-WHn, [n, Wn, Hn];

n-WAn, [n, Wn, An], (1 — §1,,)n-WAWn, (1 — d1,,,) [0, Wn, AWn];

o o 0 0
tr AB,tr ABN, (1 — 61,,)n-ABAn, (1 — §;,,)[n, An, BAn];
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and

n, U, X

Wn,n x Wn;

An,n x An;
and

N,nAw,nA (nxu); Skw®(W); Skw’(A);
and

Symy, (Eu), Symy, (W), Sym{, (A);
whereu,v =1y, - ,uy; WH=W;,--- Wy; AB=A;,---,Ac;u#v, W#H,
A # B. prouvide irreducible representations for scalar-, vector-, skewsymmetric
and symmetric tensor-valued anisotropic functions of the variables X € D under
the group Cam(n) for each m = 1,2,--- 00, respectively. When m = oo, the bases
13, (W) and I (A) are given in Theorem 4.1 and moreover

5 1, mi=od,
NS, . =12,

5. The classes Sy,

The classes Sy, include the tetrahedral crystal class Sy as the particular case
when m =1,

As pointed out in Sec.2, for any X € D there is Xo C X such that (2.4)
holds, where X consists of two vectors or a vector and a second order tensor,
ie. Xo = (u,x), x € V U Skw U Sym. Furthermore, from the facts

Sim(n), u=0,
(5.1) g(r) N Sym(n) = { Com(n), U=0, un#0,
s u#0,
(5.2) 9(W) N Sim(n) = {g‘i’:‘(n)’ 3:2
Sin(n); A=zl+ym®n,
(5.3) 9(A) N Ssm(n) = ¢ Cy(n), An=0, gq(A)#0,
Ci.,  An#0,

we infer that for any X € D there is a single vector or a single second order
tensor z € V U Skw U Sym such that

9(2) N Sam(n) = g(X) N Sgm(n).
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The above fact indicates that the cases for two variables can further be reduced
to the cases for single variables, which are discussed as follows.

CASE 1. A single vector variable u

According to the related results in X1A0 [35, 39|, representations for scalar-,
vector-, and second order tensor-valued anisotropic functions of the vector vari-
able u under the group Sy, (n) may be obtained from those for scalar-, vector-,
and second order tensor-valued isotropic functions of the extended variables
(u, ,,(u), N) respectively, where

(5.4) Om(u) =0V Py (1) + dim(un)(e®@e — e @e'),

and where pgm_l(ﬁ) is a vector depending on u, given by (1.11).

We mention that the second term at the right-hand side of (5.4) comes into
play only when the group Sy(n) is concerned. This fact implies the particular
property of the group S4(n), which will be seen below.

Applying the above fact and the related results for isotropic functions and
then removing some redundant elements we construct the following table.

Vo {810 % n, aom (0)n, By ()0} (= Vi (u
Skw {N'n A p2m—i(ﬁ)1 nA (sz_l(u) X n)} SkW )
Sym {I,n®n,u®w,uV (1 xn),d,,(u),d,,(WN - N,,(u)} (= Sym, (u))

Rt [n,u,1], (r-m)agn (W), (rn)m (0 w);
(2]
tr HN,pgm_l(u)-Hn,o[n, Hn,p,,, (0)];
tr B,n-Bn, u-Bu, [n, u, Bu], tr ¢,, (u)B, tr ¢, (u)BN;
0 0
< (un)azm (W), (u-n)Bzm (1), Qg (1), Bam (0) > (= I}, (w))

In the following, we prove that the first three sets given in the above table,
denoted by V1(u) and Skw},(u) and Sym}, (u) henceforth, are irreducible gen-
erating sets for vector-valued and skewsymmetric and symmetric tensor-valued
anisotropic functions of the vector variable u under S4,(n), respectively. To this
end, we prove that each of these sets obeys the criterion (1.1). In fact, we have

(5.5) Qo (W) = Bom(W) =0 <= P (W) =0 <= U =0.

Then, by using (4.1) and the latter, as well as (1.2) and (1.3), we deduce that
V! (u) and Skw,,(W) obey (1.1) respectively. For Sym} (u), the group Sy and
the groups Sym for m > 2 should be considered separately due to the following
particular property of the former:

dim Sym(S4(n)) =2, u=0,
(5.6) dimSym(g(u) N Sy(n)) = { dimSym(Cs(n)) =4, =0, u-n#0,
rank Sym(Cy) = 6, u#0,
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while for m > 2,

¥

2
6,

go o
Il

e
° @

(5.7) dim Sym(g(u) N Sgm(n)) = {

For m = 1, we have

rank{I,n®n} = 2,

3

, u#0,

Il

u=20
Is 3 —¢ ’) ve'} = 1 u 0

o ) = { n@ni@mi 0e ®oe eve'} 40 u

{ILn®n,u®u,u® (uxn),nVp,(u),

nV (l'.l X pl(ﬁ)} = 6‘ ﬁ ?(‘_ 0:
and for m > 2 we have
rank{I,n®@n} = 2,
6,

se go
Il

H

0 |
rank Sym/), (u) = {
0

b

Thus, we deduce that the set Sym,,(u) obeys (1.1) for each m > 1.
It is evident that both Skw’ (u) and Symy, (u) are irreducible. Moreover, by
considering the facts

ﬁam(ﬁ] =) for m=e;
aom() = 0 for u= R;rl“me‘
we know that V! (u) is also irreducible.
Next, we prove that the set given in the above table in the angle brackets,
denoted by I} (u) henceforth, is an irreducible functional basis of the vector
variable u under Sy, (n). First, suppose u-n # 0. Then we infer

I} (@) = IL () = |%| = [u, ©-n=du-n, cos2mb = dcos2md,

sin 2m@ = 6 sin 2mé
_dp+1-4
i3 4m

i==1]

= T+0, p=0,£1,£2,.--; W.n=du-n,

where §2 = 1, 0 =< %,e > and # =< u,e >. Thus, we have @ = Qu, where
Q € Sym(n) depends on 4, given by

2pm/2m =
REIAAT, =1,
Q= {

_Rgm+2p+1)ﬂ';'2m’ e o
Hence the set I} (u) obeys (1.5) when u-n # 0.
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Second, suppose u-n = 0, i.e. U = u. Since R} € Sym(n), we have
f(u) = f(Rpu) = f(—u) = f((-T)u)

for each invariant f(u) under Sy, (n). Since the group Sy,(n) and the central
inversion —I generate the group Cy,,,(n), the above fact implies that for the
vector variable u = u each invariant of u under S4m(n) turns out to be an
invariant of u under the larger group Cypnpn(n) D Sy (n). Thus, for the variable
u obeying u-n = 0, a functional basis of u under Sy, is provided by a functional
basis of u under Cy,p;, the latter being formed by the last two invariants listed
in the presented table.

From the above, we know that I}, (u) is a functional basis of the vector u under
Sam(n). Furthermore, from the following four pairs (X, X’) = (u,u’) fulfilling the
condition (1.6) we infer that each of its elements is irreducible.

Bam (1) : u = R;’Jsme, U =2u; agp(0): u=e, u = 2e;
(u-n)ag, (1) :u=n+e, u' =2u; Bon(W): u=n+ R;’qme, u = 2u
CASE 2. A single skewsymmetric tensor variable W
Every scalar-valued (resp. second order tensor-valued) anisotropic function
of W under S4,,(n) is equivalent to a scalar-valued (resp. second order tensor-
-valued) anisofropic function of W under Cy,;(n). Irreducible representations
for the latter can be obtained by merely replacing m with 2m in the table for
Case 2 of Sec.4.1. As a result, we need only to consider vector-valued functions.
Representations for vector-valued anisotropic functions of the skewsymmetric
tensor variable W under Sy,,,(n) can be derived from those for isotropic func-
tions of the extended variables (W,p,,, _1(Wn),N) (see X1a0 [35, 39]), where
Pom—1(Wn) is defined by (1.11). Applying this fact, we derive an irreducible gen-
erating set for vector-valued anisotropic functions of the variable W € Skw and
the related invariants formed by the inner product between the generic vector
variable r and each vector generator as follows.

Vo {pom-1(Wn), nxpy, 1 (Wn), (a2m(Wn)n, Bom(Wn)n} (= V(W)
R (r-m)asg,, (Wn), (r-n)3s,(Wn).

In the above table, the generic vector variable r is treated as being subject to the
condition that u x n = 0, since the case when there is an r such that r x n # 0,
i.e. g(r) N Sgn(n) = Cy, has been covered by Case 1. The same is true for the
next case.

CAsSE 3. A single symmetric tensor variable A
Every scalar-valued (resp. second order tensor-valued) anisotropic function of
A under Sy, (n) is equivalent to a scalar-valued (resp. second order tensor-valued)
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anisotropic function of W under Cy,,, (n). Irreducible representations for the lat-
ter can be obtained by merely replacing m with 2m in the Table for Case 3 of
Sec.4.1. As a result, we only need to consider vector-valued functions and the
related invariants. According to X1A0 [35, 39], generating sets for vector-valued
anisotropic functions of the symmetric tensor variable A under Sy, (n) can
be derived from those for isotropic functions of the four extended variables
(N, A, B (q(A))n, p;,(A)), where

(5.8) 0 (A) = Pym_1(An) + [q(A)"Lam(a(A))n.

Basing on the above facts, we construct the following table (refer to the
remark at the end of the last case).

V {Pam1(An) + ()™t (a(A))n, 0 X Py (An) + [a(A)[™ Bru(a(A))m,
cam(An)n, o (Am)n} (= VL (A)),

R (-n)agm(An), (r-0)Bam(An), (r-0)am(a(A), (£n)fn(a(A)).

We proceed to prove that the set I} (A) given above is an irreducible generating

set for the vector-valued anisotropic functions of a symmetric tensor under the
group Sy, (n). By using (1.2) and the fact (see (5.8) and Case 1)

(+]

0 L] [¢] ] o
p?nt—l(An)'An= naAn!pthl(An) =0 < p2m—1(An) =0 < An=0

as well as g(A) N Sgm(n) = C; for Kn # 0, we infer that the criterion (1.1) can
(4]
be satisfied when An # 0 and each of the presented generators is irreducible. On
[e]
the other hand, let An = 0. Then by using (1.2) and the facts

g(A) n S.lm(n) - C2(n)! An = 0! Q(AJ ?é 01

Sim(n), An=q(A) =0,

0 0 o e]
An=0, un(A)=vy(A)=0 < A=0,

0
we deduce that the criterion (1.1) can also be satisfied when An = O, ie.
nx An = 0.
Combining the above three cases, we arrive at the main result of this section.

THEOREM 5.1. The four sets given by
I3 ), 18,,(W), 3, (A); ;
u-v, []l, u, V], (v-n)a2m{u}, (V'n)@m(“)E
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(I.l- D)Q'Zm (wn) ) (ll E n)ﬁl’m (Wll}.l P21 (ﬂ) 5 WII, [Il., wn! Pom—1 (ﬁ)]u

8- AG, [n, &, AL, tr &, (§)A, tr &, (&) AN, (u-n)azm (An), (u-n) B (An),
(u-n)am(q(A)), (u-n)Bn(q(A));

n-WHn, [n, Wn, Hn|;

n-WAn, [n, Wn, An|,n-WAWn, [n, Wn, WAn|;

tr AB, tr ABN, n-ABAn, [n, An, BA];
and

Vin(u), Vi (W), V5 (A);
and

Skw’ (u), Skw”(W), Skw®(A);
and

Symy, (u), Sym”(W), Sym®(A);
where u,v=uy, -, u,; WH=Wy, ... Wy: AB=Ay,--- A ;u#v, W#H,
A # B, provide irreducible representations for scalar-, vector-, skewsymmetric
and symmetric tensor-valued anisotropic functions of the variables X € D under
the group Sym(m) for each integer m > 1, respectively.

6. The classes Cy,, 115

The classes Cay,41n include the hexagonal crystal class Csp, as the particular
case when m = 1.

Following the scheme designed in Sec. 2, in what follows we discuss various
cases for a single variable and two variables.

CASE 1. A single vector variable u

By means of the criterion (1.1) and (1.2)-(1.4) as well as the facts
Com+1n(n), u=0,

Cam+1(n), =0, un # 0,
Cip(n), uwn=0, u#0,
Cy, (u-m)u # 0,

(6.1) g(u) N Copmsin(n) =

we infer that the sets V?(u), Skw®(u) and Sym®(u) listed in the table for Case 1
in Sec.4.1 are also generating sets for vector-valued and skewsymmetric and
symmetric tensor-valued anisotropic functions of the vector variable u under
Com+1n(n). In the following, we show that the set given below is an irreducible
functional basis of the vector variable u under Cgp, 414 (n).

(6.2) 12, (u) = {(u-n)?, azm+1(8), Boms1 (W) }.
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In fact, we have

{ﬁ-n — Suen, (6 = [8],

(@) = I (u) = = =
cos(2m+1)6 = cos(2m+1)80, sin(2m+1)0 = sin(2m+1)8,
= U-n = Ju-n, [%l = [u|,d = i +6,k=0,%1,.--
2m + 1
= 1 = Qu,

- - o -~
where 02 = 1, § =< U,e >, § =< u,e >, and Q € Coyn+1n(n) depends on 4,

given by
{ R?lk?r/2m+1‘ e N

_R£R2nkrf2m+l, B, il
Thus, we infer that the set IZ (u) obeys the criterion (1.5) and hence that it is
a functional basis of u under Cy,,+14(n). It is readily shown that this basis is
irreducible.

From the above, we conclude that for the case at issue, the derived results are
obtained by taking 81, = 0 and replacing the basis I (u) with the basis 12 (u)
in the Table for Case 1 in Sec.4.1.

CASE 2. A single second order tensor variable

Since a scalar-valued (resp. second order tensor-valued) anisotropic function of
a second order tensor variable x under Cy,;, 415 (n) is equivalent to a scalar-valued
(resp. second order tensor-valued) anisotropic functions of x under Cyy,4ox(n),
we know that irreducible functional basis or generating sets for scalar-valued
and skewsymmetric and symmetric tensor-valued anisotropic functions of the
variable x = W € Skw (resp. x = A € Sym) under Cyp,414(n), as well as the
invariants formed by means of the inner product between each presented second
order tensor generator and a generic second order tensor variable, are given by
the corresponding ones listed in the Tables for Cases 2—3 in Sec.4.1 with m
replaced by 2m+1.

In view of the above facts, in what follows we need only to derive a gener-
ating set for the vector-valued anisotropic functions of the variable W € Skw
or A € Sym under Cy,i14(n), and meanwhile provide the invariants formed
by the inner product between each presented vector generator and the generic
vector variable r. The desired generating sets are obtainable from those for
vector-valued isotropic functions of the extended variables (W, p,,,(Wn),N) or

v
(A, pym(An),p,,(q(A)), N) (see X140 [35, 39]). )
Applying the above facts, we construct the following tables for the single
variables W and A, respectively.

¥ {p2m (W'ﬂ) YL X Poy (wn] » @241 (wn)n> ﬁ2m+l (Wn)n} (= Vr?l (W) )v
R T Pom (wn)a [ﬂ, T Pom (wn)]s (l‘ ' n)a2m+1 (wn)? (I‘ 'n)ﬁ2m+1 (Wn) .
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and

[} (4] 0
4 {p2m(An)sn x p?m(An)s |Q(A)Im+lpm (Q(A)) + a2m+1(An]n,
0
|a(A)["* 0 x p,,,(q(A)) + Bam+1(An)n} (= Via(A)),
o] (o] 0 0
R r 'pEm(An)- [Il, r, pZm(An)]s Q2m 41 (An} (r-n), ﬁ2m+1 (AB) (I‘ 'Il).

We need to prove that the two sets V,2(W) and V;2(A) given in the above
tables obey the criterion (1.1). First, let z be a vector in the n-plane. Then we
have
(6.3) Pn(z) =0 < z=0.

From this and

. 02 1 h(n)ﬂ wn:ov
(bl) Q(W) n C?m.-t-lh(n) = { e

Cy, Wn # 0,
Cams1n(m), An=q(A) =0,

(6.5) 9(A) N Coms1n(m) = { Cia(m),  q(A)#0, An=0,
Ci, Rn # 0,

as well as (1.2), we conclude that V,2(W) and V;2(A) obey the criterion (1.1)
separately.
Furthermore, let W; =nAe;,A; =nVe;,it =1,2. Then for ,5 = 1,2,

sin(2m + 1) < Win,e>= 0, cos(2m + 1) < Won,e>= 0,
9(Wi) N Compan(n) = Cy;

o]
sin(2m + 1) < im,e): 0, cos(2m + 1) < Asn,e>=0,
9(Ai) N Comyrn(n) = Cy.

Thus, we infer that either of the two generating sets V,2(W) and V,2(A) is irre-
ducible.

CASE 3. Two vector variables (u,v)

From the condition (4.12), where Cop,;(n) is replaced by Copy1n(n), we infer
that the vector variables (u,v) are specified by (4.13). Hence, we construct the
following table (the first case in (4.13) is considered).
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% U,1 % n, (v-n)n
Skw N,uAv,(uxn)Av+(vxn)Au
Sym I.n@n,ﬂ@ﬂ,ﬁv(ﬁxn);u\/v,(uxn)Vv+[vxn)Vu
R u-Hv, [n,u,Hv] + [n, v, Hu);
u-Bv, [n,u, Bv] + [n, v, Bu;

2 0 0
<(v-n) 102m+1(u)‘}32m+1(u)> .
The results listed in the above table can easily be verified by means of the
condition (4.13).

CASE 4. A vector variable u and a skewsymmetric tensor variable W
From (6.1) and (6.4) we infer that there is x € {u, W} such that

9(x) N Comi1n(n) = g(u, W) N Comyan(n).
Thus, the case at issue can be reduced to the cases for the single variables u
and W.

CASE 5. A vector variable u and a symmetric tensor variable A
The condition (2.6) yields

g(u, A) N Camyrn(n) # g(x) N Comyan(n), x =u,A.

From (6.1) and (6.5) and the above condition we derive (cf. §3.3 in X1A0 [34] for
detail)

u = an, a#0,

(6.6) ' ! ' 2 2
A=ze®Re—e®e)+yeVe +cl+dn®n, z°+y° #0.

By means of the criterion (1.5), it can easily be verified that for the vari-
ables (u, A) specified above, the union {(u-n)?} U I%(A) supplies an irreducible
functonal basis of the variables (u, A) specified above under Cs,,14(n). On the
other hand, generating sets for vector-valued and second order tensor-valued
anisotropic functions of the variables (u,A) under Cy,414(n) can be derived
from vector-valued and second order tensor-valued isotropic functions of the ex-
tended variables (u, A, p,,(q(A4)),N) (see X1A0 [35, 39]). Thus, we construct the
following table for irreducible generating sets.

V. (un)n,p,(q(A)) + azmer (An)n, 0 X py(a(A)) + Bams1 (An)n
Skw N, (u'm)nAp,(q(A)), (wn)nA (nx p,,(q(A)))

Sym I,n®mn,A, AN —NA, (u-n)nVp,,(q(A)),(u-n)nV (nx p,(q(A))).

The above results can easily be verified by means of the condition (6.6). We
mentioned that in the above table, the generic variables r, H,B € X € D are

[e]
treated as being subject to the conditions: r x n = 0, Hn = 0 and An = 0
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respectively (hence no new invariants appear), since any set X € D violating the
just-stated conditions has been covered by one of the preceding four cases.

Combining the above cases, we arrive at the main result of this section as
follows.

THEOREM 6.1. The four sets given by
Ig:(u)' ‘rgm--i—l(w)?fgnwl(A)?
u-v, (u-n)(v-n), [n,a,v);
n-WHn, [n, Wn, Hn|;
tr AB, tr ABN, n- iBRn, [n, .?&n, Bin];
n-WAn, [n, Wn, An|,n-WAWn, [n, Wn, WAn];
(u-n)u-Wn, (u-n)[n, u, Wnj, u-p,,,,(Wn), [0, u, p,,,(Wn)],
(u-n)agm+1(Wn), (u-n)SB2m+1(Wn);
u-Au, [n,u, Au), (u-n)u-An, (u-n)[n, u, An],
WPz, (An), [, 0, poy, (A0)], 1 () (), B 1 (Am) (wm);
u-Wvy, [n,u, Wy| + [n, v, Wul;
u-Av,[n,u, Av] + [n, v, Aul;
and
VO(u), Via (W), VA (A);
and
Skw?(u), Skw’ (W), Skw’(A);
uAv,(uxn) Av+ (vxn)Aw
(u-n)nAp,,(q(A)), (u-n)nA (n x py,(q(A)));

and

Sym®(u), Sym® (W), Sym°(A);

uVv,(uxn)Vv+(vxn)Vuy

(un)nVp,(q(A)), (u-n)nV (nxp,(q(A)));
where u,v=1uy, - U WH=Wy,--- Wy AB=A,, .-, Aju#v, W#H,
A # B, provide irreducible representations for scalar-, vector-, skewsymmetric
and symmetric tensor-valued anisotropic functions of the variables X € D under
the group Copmiyn(n) for each integer m > 1, respectively.

7. The classes Sy,12 and Cyyniq

The classes at issue include the trigonal crystal classes Sg and C3 as the
particular case when m = 1.
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7.1. The classes Sy,10

With the aid of the fact

I

Sdm+'2{n)1 X
(7.1) g(r) N Sgmi2(n) = { Comia(n), T
G, v

]

0
D; .ranz£0,
0

H

]

for any vector r € V, we infer that for any two vectors (u,v), there exists z €
{u, v} such that

g(u,v) N S‘lm+2(n) = g(z) N S4m+2 .
This indicates that the case for two vector variables can be reduced to the case

for a single vector variable. Accordingly, following the scheme outlined in Sec. 2,
five classes are discussed as follows.

CASE 1. A single vector variable u

A scalar-valued (resp. second order tensor-valued) anisotropic function of
the vector variable u under Sy,42(n) is equivalent to a scalar-valued (resp.
second order tensor-valued) anisotropic function of the symmetric tensor vari-
able u ® u under Sy,4+2(n). As a result, generating sets for the former can be
derived by taking A = u ® u in the corresponding generating sets listed in
the table for Case 3 below. Moreover, according to X1A0 [35, 39], generating
sets for vector-valued anisotropic functions of u under Sy,42(n) can be ob-
tained from those for vector-valued isotropic functions of the extended variables
(u, Epzm{ﬂ),N), where ps,, (1) is given by (1.11).

Basing on the above facts, we construct the following table.

Vo {uw@x 0, agmi (@), Bomr (@0} (= Vi3 (w)
Skw  {N,n APy, (11),n A (n X Py, (W)} (= Skwi, (u))
Sym {In®n, u®uuV(nxu),nV pzm(ﬁ), nV (nx pzm(ﬁ))} (= Sym?, (u))

R w07 (r-n)asmer (@), (r0)Bome (B);
tr HN, p,,, (1)-Hn, [n, Hn, p,,, (1)];
tr B,n-Bn, 0B, [n, 4, Bu), p,,, (1) - Bn, [n, Bn, p,, (0)];
< (w-n)agm+1 (W), (wn)Bam41 (W), cm 2 (W), Bim+2(8)> (= I (w)).
With the aid of (7.1) and (1.2) —(1.4), it can be verified that the first three
sets given above, denoted by V3 (u), Skw? (u) and Sym?,(u) henceforth, obey
the criterion (1.1) and hence they are the desired generating sets.

CASE 2. A single skewsymmetric tensor variable W

Every vector-valued anisotropic function of W under the group Sim+2
vanishes. Anisotropic functional bases of the variable W € Skw under Sy;42(n)
can be obtained from isotropic functional bases of the extended variables
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(W.Ep,,, (Wn),N) (see X140 [35, 39]). Moreover, the generating sets Skw®(W)
and SymG(W) under Copp(n) for each m > 2 (cf. Case 2 in Sec.4.1) also pro-
vide irreducible generating sets for skewsymmetric and symmetric tensor-valued
anisotropic functions of the variable W under S4;,42(n).

An irreducible functional basis of W under Sg,,12(n) is given by

(7.2) I3 (W) = {tt WN, agms+1(Wn), Boni1(Wn)}.

This result can be verified by means of the procedure used at Case 1 in Sec. 6.

CASE 3. A single symmetric tensor variable A

Every vector-valued anisotropic function of the variable A € Sym under
Sim+2(n) vanishes. Irreducible representations for scalar-valued and second or-
der tensor-valued anisotropic functions of the single variable A € Sym un-
der Sip42(n) can be obtained from those for scalar-valued and second order
tensor-valued isotropic functions of the extended variables

(A, Bp,,,,(An), Ep,, ((A)), N)

(see X140 [35, 39]).
Based on this fact, we construct the following table.

Skw {N,nA .?tn._n A (m x Rn),n Apm(q(A)),nA (nxp,(q(A)))} (=Skwfn(A))

Sym {I,n®n,A, AN — NA, An® An, AnV (n x An),
nVp,(q(A)),nV (nxp,(q(A)} (= Symj,(A))

FE  trHN;trB,n-Bn, tr BA,tr BAN,
n—RBRn‘ (n, in, Bin], p,.(q(A))-Bn,[n,Bn,p, (q(A))];
<I1(A)>

m

In the above, the set I3 (A) is an irreducible functional basis of a symmetric
tensor A under the group Sym,42, given by (see X1A0 [38])

[¢] o
(7.3) I3(A) = {n-An,tr A, tr A [n, An, A®n], ag,+1(An), Bom+1(An),
O’Zm+l(q(A))a Bom+1 (Q(A))}
By means of the criterion (1.1) and the facts
Sim+2(n), A=zl+yn®n,
(7-4) Q(A) n S4m+2(n) = 3 o
Sa, la(A)|* + |An|® # 0,

it can be verified that the first two sets in the above table, denoted by Skw?,(A)
and Sym?, (A) henceforth, are generating sets for skewsymmetric and symmetric
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tensor-valued anisotropic functions of the variable A € Sym under Sy,,+2(n) and
moreover, that the two sets are irreducible.

It should be pointed out that in the above table, the generic skewsymmetric
tensor variable H has been treated as being subject to the condition that Hn = 0,
since the case when Wn # 0 has been covered by the last case. As a result, of
the five invariants obtained by forming the inner product between H and each
of the five skewsymmetric tensor generators presented, only one, i.e. tr HN, does
not vanish.

REMARK. The generating set Sym? (A) consists of eight generators. For
m = 1, i.e. the trigonal crystal class Sg, a minimal generating set of six generators
is available (see X1A0 [37]). For the sake of consistency, here for all m > 1 we
employ the set Sym? (A), which supplies a unified form of all generating sets in
question.

CASE 4. A vector variable u and a skewsymmetric tensor variable W
The condition (2.6) yields
g(u, W) N Symi2(n) # g(x) N Sgm2(n), x=uW.

From (7.1) and the above condition we derive

W= an o= 0

(7.5) :
Wn #0, ie. g(W)NSynsa(n)=25>.

As a result, Skw”(W) and Sym’(W) supply the desired irreducible generating
sets for second order tensor-valued functions. It is evident that the union I3, (W)U
{(u-n)?} provides an irreducible functional basis of the variables (u, W) specified
by (7.5) under Sy 2(n). Moreover, the generic vector variable r is subject to

the condition that * = 0 (the other case has been covered at Case 1). Thus, we
need only to provide an irreducible generating set for vector-valued functions of
the variables (u, W) specified by (7.5) under Sgm+2(n), which is given as follows.

(7.6) V.2 (u, W) = {u, (u-n)p,,,(Wn), (u-n)n x p,,,(Wn)} .

CASE 5. A vector variable u and a symmetric tensor variable A
The condition (2.6) yields

g(1,A) N Sms2(n) # g(X) N Samsz(m),  xX=1A.
From (7.1) and (7.4) and the above condition we derive

u=an, a#0,

(7.7) g(A) N Sam42(n) = S>.
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As a result, Skw> (A) and Sym? (A) supply the desired irreducible generating
sets for second order tensor-valued functions. It is evident that the union I3, (A)U
{(u-n)?} provides an irreducible functional basis of the variables (u, A) specified
by (7.7) under Sy 2(n). Moreover, the generic vector variable r is subject to

the condition that r = 0 (the other case has been covered at Case 1). Thus, we
need only to provide an irreducible generating set for vector-valued functions of
the variables (u, A) specified by (7.7) under Sy 4+2(n), which is given by

(78)  V2(wA) = {u (u-n)An, (u-n)n x An, (u-n)p,,(q(A)),
(w-n)n x p,(a(A))}.

Combining the above cases, we arrive at the main result of this subsection as
follows.

THEOREM 7.1. The four sets given by
I3 (u), I3, (W), I3 (A);
U'V, [n$ {:‘ll g]' (u'n)a2m+1 (%)! (u'n)ﬂ2ﬂ1+1 ('?F);
n-WHn, [n, Wn, Hn|;
n-WAn, [n, Wn, An],n-WAWn, [n, Wn, AWn];

(4] (4] (4] o
tr AB,tr ABN,n-ABAn, [n, An, BAn|,p,,(q(B))-An, [n, An,p,,(q(B))];
p2m(ji) '“;Il, [Il, Wn, pgm (u)]; 5
u-Au, [n,u, Au, p,,, (1) - An, [n, An, p,,.. (0)];

and

V,,:';(u), Vnal(“aw)' v:'?l(u! A),
and

Skw? (u), Skw®(W), Skw? (A);
and

Sym? (u), Sym’(W), Sym (A);
where u,v =1y, -, Ug; WH=Wy,--- Wy, AB=A,- - Asu#v, W#H,
A # B, provide irreducible representations for scalar-, vector-, skewsymmetric
and symmetric tensor-valued anisotropic functions of the variables X € D under
the group Sim42(n) for each integer m > 1, respectively.

7.2. The classes Capmiy

Applying the argument given in Sec.4.2 and Theorem 7.1, we derive the
following result.

THEOREM 7.2. The four sets given by

I3, (W), I3,(A), u-n, @z 41 (8), a1 (W); u-v, [, v, n);

n-WHn, [n, Wn, Hnl;

n-WAn, [n, Wn, An|,n- WAWn, [n, Wn, AWn;

tr AB,tr ABN, n- RBRn‘ [n, f\n, Bf\n], pn(a(B))-An, [n, An,p,.(q(B))];
u-Wn, [n, u, Wnl;
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u-An, [n,u, An], u-Au, [n, u, Au;
and h

n,u,n x 1, Wn,n x Wn, An, n x Kn,pm(q(A)),n X pm(q(A));
and

Skw’(W),Skw? (A),n Au,nA (n x u);
and

Sym®’(W), Sym? (A), u®uwuV(nxu),nVuany (n x 0);
where u,v =uy, -, u,;; WH=Wy,--- Wy; AB=A;,--- A ;u#v, W#H,
A # B, provide irreducible representations for scalar-, vector-, skewsymmetric
and symmetric tensor-valued anisotropic functions of the variables X € D under
the group Copmi1(n) for each integer m > 1, respectively.

8. Remarks

In the previous sections, complete nonpolynomial representations for scalar-,
vector-, skewsymmetric and symmetric tensor-valued anisotropic functions of
any finite number of vector and second order tensor variables under all kinds
of subgroups of the transverse isotropy group C, are derived, each of which
consists of polynomial invariants or polynomial generators. The presented results
offer unified forms of general representations for infinitely many subgroup classes
concerned, respectively.

It can be seen that infinitely many different types of vector-valued or second
order-tensor-valued anisotropic functions may have a common generating set.
Indeed, the set Skw’(W) is a common generating set which applies to all sub-
groups of Coop, except the triclinic groups. Other examples are the sets Skw? (u),
Skw’(A), Sym®(W), Sym°(A), etc.

The presented results for generating sets are irreducible. It has been shown
that each presented invariant with a single variable is irreducible. Irreducibility
of each presented invariant with two or three variables will be proved elsewhere.

The unified scheme described in Sec. 2 and the method for isotropic extension
of anisotropic functions may be used to derive irreducible representations for
other types of anisotropic functions. The results will be reported elsewhere.
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