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A self-consistent model of rate-dependent plasticity
of polycrystals

R. KIRYK and H. PETRYK (WARSZAWA)

THE HiLL-HUTCHINSON self-consistent scheme for polycrystals is extended to rate-
dependent plasticity with work-hardening. A computational version of the model re-
quires three material parameters for a single crystal which are approximately identi-
fied from the experimental stress — plastic strain curve for a polycrystalline material.
Contours of the macroscopic plastic potential are calculated after different plastic
prestrains in uniaxial tension.

1. Introduction

IN THE CLASS of “self-consistent” models of a polycrystalline aggregate, an auxil-
iary problem is formulated for a single crystal (inclusion) embedded in a homoge-
neous medium (matrix) of some different material (HILL [1]). For path-dependent
plastic materials, the typical problem is that of incremental equilibrium, and a
deformation process is analyzed step by step. To take advantage of ESHELBY’S
[2] solution, which is uniform within an ellipsoidal inclusion, the auxiliary prob-
lem must be posed as linear, that is, at the current step of computations all
relevant parameters of the matrix material must be treated as constants. On
the other hand, for adequate modeling of the interaction between a crystal and
the surrounding aggregate of grains, it is proper to assign to the matrix the
actual overall properties of the polycrystal. It is not evident how to reconcile
both requirements when the grains undergo elastic-plastic deformation so that
the overall response of the polycrystal is not incrementally linear.

In a number of papers, the matrix material in the auxiliary problem was
characterized by the constants of linear elasticity. The aforementioned interaction
was in effect modeled as purely elastic, irrespectively of the average plastic strain
attributed to the matrix. That approach was originally developed for small-strain
rate-independent plasticity (KRONER [3], BUDIANSKY and WU [4]) and extended
to creep (BROWN [5]) and rate-dependent plasticity in the framework of small
strain (WENG [6]) and of large strain (NEMAT - NASSER and OBATA [7], HARREN
(8]). During advanced plastic flow, the flexibility of the constraints of a grain is
most likely underestimated in that way with respect to the actual constraints
within the aggregate.

That deficiency was removed in HILL'S [1] formulation who proposed to use,
in the auxiliary incremental problem for rate-independent plasticity, the instan-
taneous compliances that connect the actual rates of overall stress and strain
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of the polycrystal. This can be justified by appealing to the homogeneity of
degree zero of the compliances, and offers the possibility to incorporate plastic
anisotropy of the polycrystal to the definition of the matrix material. Since the
compliances are unknown in advance, the increased accuracy of that approach
is connected with a greater computational effort in comparison with the use of
elastic moduli. HUTCHINSON [9] demonstrated that the approach is numerically
applicable in the case of transversal isotropy at small strain. An extension to fi-
nite strain was formulated by IWAKUMA and NEMAT - NASSER [10] and applied to
two-dimensional problems. The behaviour of a three-dimensional self-consistent
model of a time-independent elastic-plastic polycrystal was analysed numerically
by LIPINSKI et al. [11].

An intermediate approach was proposed by BERVEILLER and ZAout [12] who
retained the formulae for an elastically isotropic matrix but with the material
stiffness parameter modified, e.g. in order to correspond to the secant modulus. A
similar concept was also applied to viscoplastic polycrystals (CAILLETAUD [13]).

Rate-dependent elasto-plastic polycrystals were also investigated by using the
self-consistent scheme with approximately defined inelastic properties of the ma-
trix. NEMAT - NASSER and OBATA [7] proposed the matrix moduli derived from
certain local moduli dependent explicitly on the assumed time step. MOLINARI
et al. [14] defined the moduli by linearizing around the current strain-rate the
nonlinear relationship between the plastic part of strain-rate and stress. Another
approach based on the adaptation of the self-consistent scheme developed for
linear viscoelasticity was recently proposed by NAVIDI et al. [15] and illustrated
by the example of an isotropic multiphase material.

HuTCcHINSON [16] showed that Hill's method can be applied to examining
steady creep without the need of approximating the actual nonlinear constitu-
tive relation between the strain-rate and stress. As the basic step in the absence
of elasticity effects, the linear auxiliary problem was posed in a natural way in
terms of the differentials of strain-rate and stress, related to each other in a given
state by the tensor of creep compliances independent of those differentials(?).
Hutchinson’s analysis was limited to steady deformations of non-hardening ma-
terials.

The aim of this paper(?) is to extend the Hill - Hutchinson self-consistent
model of polycrystals to rate-dependent plasticity with work-hardening. Certain
additional terms will appear in the basic equations since HILL'S 1] theory did not
deal with rate-dependence effects, and HUTCHINSON'S [16] model did not account
for work-hardening. To retain consistency, elastic compliances are neglected at
the outset. Accordingly, the model is suited for simulation of developed plastic
flow rather than of the range where the aggregate is predominantly elastic, just

(*) The restriction to a non-hardening material obeying a power crep law allowed the system
of incremental equation to be integrated to a total form.
(*) Based on the former author’s Ph.D. Thesis [17].
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contrary to the models which use elastic compliances for defining the matrix
material.

A three-parameter computational version of the model is applied here to simu-
late uniaxial tension of an aluminum alloy. An approximate procedure is proposed
for identifying the material parameters for a single crystal from the standard
uniaxial tension test of a polycrystalline specimen. The calculated stress-strain
curve and contours of a visco-plastic potential at various stages of the deforma-
tion serve as examples of the predictions of the model. A comparison is made
with the experimental stress-strain curve and conventional yield surfaces.

Throughout this paper any changes in geometry during deformation are dis-
regarded, i.e. the small strain formulation is used and lattice rotations are ne-
glected. Bold-face small letters, Roman or Greek, denote second-order symmetric
tensors, and bold-face capital letters denote fourth-order tensors possessing the
minor symmetries, with the respective unit tensor denoted by I and the trans-
pose indicated by a superscript 7. A juxtaposition of two tensor symbols denotes
double contraction. A superimposed dot over a symbol denotes the material time
derivative, understood as a forward rate.

2. General equations of the model
2.1. Constitutive framework of rate-dependent plasticity

Constitutive equations of isothermal rate-dependent plasticity are assumed
in the following general form

€ = €P + €%, £ =Mg,

Y e? = f(o,9,), 9, = 9¢(0,9,),
where f and g, are sufficiently smooth, given functions. In the small strain for-
mulation adopted, €¢ and €7 are the elastic and plastic parts, respectively, of the
small-strain rate, and o is the rate of the Cauchy stress. The elastic strain-rate
€° is related to ¢ by the fourth-order tensor M of elastic compliances, while
€” is a function of the current material state, represented here by the stress o
and a certain number P of material parameters g, (K = 1,..., P). The latter
need not be interpreted as internal state variables, and for anisotropic materials
they can be regarded as either scalars or components of tensor variables for a
fixed orientation of a material element relative to a given reference frame. In the
computational version of the model and at the level of a single crystal, g, will be
identified with the current critical resolved shear stress on the K-th slip system.
Elasticity effects during plastic flow will be neglected, so that we will substi-
tute

(2.2) Me0, ¢éP
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but conceptually the elastic compliances will be treated as vanishingly small
rather than as being exactly zero. The distinction will become important in the
presence of discontinuous changes in stress, in particular in the calculations of
an instantaneous overall plastic potential.

Assuming that f is differentiable with respect to its arguments, we can write

(2.3) € =Mo +€",
where M and €" are functions only of the material state, viz.

(2.4) M=M(o,g;) =fo(0,95), € =) £, (0,9,)9¢(9,9,);
K

a comma followed by an index denotes partial differentiation. It follows that
in a given state of the material, the second rate of strain is a linear, although
inhomogeneous, function of stress-rate. At the moment we do not assume that a
plastic potential exists so that M need not be symmetric in general.

Under the assumption (2.2) of negligible elastic compliances, the relationship
(2.3) characterizes a rate-dependent plastic response at either level of constitutive
description. By using a subscript ¢ for constitutive quantities at the level of a
single crystal (grain), we shall write

(2.5) €c=M.o.+E.

Overall (macroscopic) quantities will be distinguished by a superimposed bar,
while unweighted volume averaging will be denoted by curly brackets. By defining
the overall stress @ and strain € as

(2.6) g={o.}, E={e}

the constitutive relationship (2.3) for a polycrystal reads

(2.7) €E=Mzc +¢"

Our primary task is now to express M and €’ in terms of M. and i

2.2. Self-consistent method

Following HILL [1], consider the auxiliary incremental problem for an ellip-
soidal inclusion embedded in an infinite homogeneous matrix. The inclusion rep-
resents a single grain and the matrix replaces the polycrystalline material sur-
rounding the grain. A uniform stress o, within each grain and the average stress
in the matrix, taken equal to @ by assumption, are regarded as known, along with
the current values of all material parameters. Then, in contrast to Hill's work
concerned with rate-independent plasticity, the (plastic) strain rate €2 = €. in
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each grain (and also the average strain rate é) are also known from the consti-
tutive equations of rate-dependent plasticity at the micro-level. The auxiliary
problem is posed here in terms of the differentials do, de and d@, dg, or equwa—
lently, in terms of stress-rates &, & and of the second-order rates of strain, €, €.
From (2.5) and (2.7) it follows that the problem is linear but inhomogeneous; an
analogous problem but without the additive non-homogeneous term was exam-
ined by HUTCHINSON [16]. Here, d&@ = 0 does not imply do. = 0 so that stress
redistribution in the polycrystal takes place also at a constant overall stress. The
Hill - Hutchinson self-consistent scheme has thus to be modified ().

For this purpose, we observe first that the relationship between a difference
Ao in two uniform fields of stress-rate within an ellipsoidal hole in the matrix
and a difference A€ in the associated second-order rates of straining of the
ellipsoid is still linear homogeneous,

(2.8) A€ = -M*Ag,

where M* can be connected with the Eshelby tensor S [2] for the matrix with a
constant compliance tensor M by the equation [1]

(2.9) (I—S)M* =SM.

It should be noted that in the derivation of (2.8), the matrix is treated as being in
a uniform stress state at the instant under consideration, which is an additional
assumption [16].

By identifying A& with 6. — & and A€ with €, — €, and substituting (2.5)
and (2.7), from (2.8) we obtain

(2.10) (M* +M,)6, = (M" + M)7 — (£7 - € )

This relationship differs from an analogous equation given by HILL [1] merely by
the last additive term which is independent of the overall stress-rate. We may
thus define the “concentration-factor tensor” B, by the unchanged formula(?)

(2.11) B. = (M* + M) }(M* + M).

By introducing the following expression for a relaxation stress-rate
(2.12) or = —(M" +M,)7 (E1 - "),

we arrive af

(2.13) 6.=Bo +0d7.

(*) Similar modification was done in earlier papers in the context different from the present
one, without appealing to the second-order rate of strain.
(*) All matrices are implicity assumed to be invertible if needed.
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Note that B, and ¢’ are uniquely defined in the current state, independently of
the overall stress-rate.
By substituting (2.13) into (2.5), we obtain

(2.14) €. =M.B. T +M.6] +E7.

Now, by taking the volume averages of (2.13), (2.14) and comparing with
(2.6), we obtain the known pair of self-consistency conditions

(2.15) kg {M.B.} =M
along with another pair
(2.16) {6t} =0, {(M.ol+¢&7}=¢"

For spherical grains when M* depends only on M, the conditions in (2.16) are
equivalent to each other, as can be seen by taking the average of both sides of
(2.12) multiplied beforehand by (M* + M,).

The conditions (2.15) and (2.16) can further be transformed to a form which
will appear more convenient in calculations. From (2.15) we immediately obtain

(2.17) {(M - M.)B.} =0,

with an advantage that the averaged expression possesses diagonal symmetry if
M. and M do [16]. For spherical grains, or for M* dependent only on M, the
condition (2.16); rearranged with the help of (2.12), (2.11) and (2.15); yields

(2.18) i ={itB}, B.= (1\»1*%1\1’{)‘1 (M7 + M),

where B, reduces to B, if M, and M possess diagonal symmetry.
2.3. Plastic potential

Suppose now that the relationship between €? and o, admits a potential, viz.

- awc(omgk')
P
(2.19) e 3 :

For instance, let €7 in a given grain be a sum of the strain rates due to slipping

on N individual slip systems defined by the two unit vectors: the slip direction
m” and the normal n’ to the slip plane, so that

. . - 1 .
(220) ef= ZvKuf‘, aff = 3 (mK ®@nX +n” ®mK) o= Ay N,
K
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where 'irK is a slip rate on the K-th system. If any ’%K depends on o, only
through the shear stress resolved on the K-th slip system, that is, if
(2.21) 7 =4%(r%,9,), 1M =0ca®

then (2.19) is satisfied (Kestin and Rice [18]); this can be verified by substituting

a. 'l'h
(2.22) we(Te,g,) =/f(a,g’,_)dazz/’}"'(T,QL)dT.
0 K j

If (2.19) holds then M, = 0%w./d0.00, is diagonally symmetric. Then, we
can conclude (cf. HiLL [19], HiLL and RICE [20]) about diagonal symmetry of
M from the assumed equality of work differentials at the micro and macro-levels
expressed in the incremental form as

(2.23) €406 = {é do},

where 0o is a statically admissible field of a stress increment such that {do} = éo,
which need not be related to a (compatible) field €. In particular, (2.23) holds
if the prefix § refers to a purely elastic change of the stress field within the
aggregate; this is not in contradiction with our assumption that elastic compli-
ances are negligibly small (but not exactly zero) since the proportional scaling
down of elastic compliances does not influence the distribution of do obtained for
given da. Following RICE [21], or simply by substituting (2.2) and (2.19) into the
equality (2.23), the constitutive relationship for a polycrystal can be expressed
in terms of a macroscopic potential §2, viz.

2:2 = &P = — = :
( 4) Q {wl’.'}‘ € 361 M a-a.a-a

3. Three-parameter version of the model

For computational purposes we assume the constitutive equations for €7 in
the form (2.20) and, following many other authors (e.g. BROWN [5], PAN and
RICE [22], ASARO and NEEDLEMAN [23]), specify the rate-dependence expression
(2.21); as a power law

1/m

TK
—| sgn(7y)

(3.1) Ty =4°

K

with K = 1,..,12 (P = N = 12) and o, corresponding to fundamental slip
systems in fcc crystals. 4° is not an independent material parameter but plays
the role of a given time-scale factor. Evolution equations for the parameters g,
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(for 0 < m < 1 interpreted as critical values of the resolved shear stress) are
assumed in the usual rate form

(3.2) g =3 Hacsli |-
L

In the simplest version of the model, we will assume linear hardening obeying
the Taylor hypothesis, h,, = h = const. As the initial condition for (3.2) in a
virgin state of a macroscopically isotropic polycrystal we take g, = 70, where
70 is the initial critical value for 7,., the same for all slip systems.

The expression (2.22) for the local plastic potential reduces to

- m .
(3.3) We Z TV =

1+m 7

" g.€P
Tbm
To calculate the macroscopic plastic potential £2, we need a relationship be-
tween purely elastic stress increments at the micro and macro-levels. The sim-
plest assumption is to neglect elastic heterogeneity (and thus elastic anisotropy
of crystals), which means that éo = §o. Then, at a fixed distribution of g,
within the aggregate, we obtain

(3.4) Q@+ A5) =

—— {(oc + Av) 2 (o + A9)},

where & and o, are the current macro and micro-stresses, respectively, and Ag
stands for an instantaneously applied finite increment of the macroscopic stress,
corresponding to purely elastic response of the aggregate.

To summarize, in the simplest computational version of the proposed model
there are three independent material parameters assumed at the micro-level:
m, 7° and h. In the next section, an approximate procedure is proposed for
the identification of these parameters from the standard uniaxial tension test
performed on a polycrystalline specimen.

The numerical implementation of the self-consistent scheme (more details are
given in [17]) has followed closely that described by HUTCHINSON [16] and em-
ployed the (corrected) formulae given by KNEER [24] for a spherical inclusion in
a transversally isotropic matrix. Volume averaging in the simulation of uniaxial
tension was replaced by the averaging over 36 orientations of fcc crystals corre-
sponding to different values of two Buler angles. In the calculations of the plastic
potential, this has been complemented by additional averaging over 12 values of
the third Euler angle that defines rotation about the tensile axis.

4. An approximate identification procedure

Suppose that the stress — plastic strain curve obtained experimentally from
the standard uniaxial tension test, within some strain interval of developed
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plastic flow, can be approximated by a linear segment whose slope defines the
macroscopic hardening modulus, say H. A sample result of that type is pre-
sented in Fig. 1 which has been obtained for an aluminum alloy PA6 at the room
temperature(®). To eliminate the influence of an initial period of a constrained
plastic flow in the grains, the macroscopic initial yield stress, say X9, is defined
by backward extrapolation of the linear segment up to the zero plastic strain
offset. By performing at least two experiments at a different rate of stress or
of plastic strain, in the standard manner we can determine the exponent 7 of
strain-rate sensitivity of the polycrystalline material.

200—

150

3 Constant stress rate
100_‘ — O=50 MPa/s
A

Stress (MPa)

— O'=200 MPa/s

50

0 T 11 I-l T 101 1 ] T 1T 173 I L L L [ R L 1 Tr 171 ‘
0.000 0.005 0.010 0015 0020 0.025 0.030
Plastic strain

FiG. 1. Linear approximation of an initial segment of the uniaxial stress — plastic
strain curve for an aluminum alloy PA6.

In that way, an approximation of the experimental relationship between the
stress and plastic strain-rate in uniaxial tension of a polycrystalline specimen in
a certain range of strain is constructed as

= 1/m
Zp _ 20 g
(4.1) e =¢ (—EU +H€?’) :

The reference strain-rate £° is identified with the plastic strain rate correspond-
ing to stress-strain curve from which the parameters £° and H have been deter-
mined.

(°) All experimental data presented below are taken from the Thesis [17].
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We proceed now to identification of the material parameters at the micro-
level. The comparison of Egs. (4.1) and (3.1) shows that a natural assumption is
to take 71 as the rate sensitivity exponent also for a single crystal,

(4.2) m

IR

g ¥

For many metallic materials in the room temperature, the value of the rate
sensitivity parameter m is much smaller than unity. If m < 1 and if the hardening
is neglected then the macroscopic stress in the range of steady viscoplastic flow
under uniaxial tension is slightly smaller than 7 multiplied by the Taylor factor
3.06 (HUTCHINSON [16]). A similar value of that factor was found in the course
of present computations, including hardening. Guided by these results, we may
assume that

(4.3) & %EO

as an approximate value of the initial yield stress for a single crystal.
From HiLL's lemma [19] applied to the uniaxial tension with elastic hetero-
geneity neglected, we have

(4.4) GEP = {o€P} = {ZTKq}K}.
=

At small strains with @ = £° and 7,7, = 777, | for m < 1, from (4.4) and
(4.3) we obtain

(4.5) é*’%%{zw}-
K

Let, as mentioned above, €7 be taken as the reference strain-rate £% and
define 7" as the mean value of |9, |- Since the number of slip systems Ni=12.
(4.5) then gives

15
4.6 70 = _g0,
(4.6) P e E
In turn, on multiplying both sides of (4.5) by h and using the Taylor hypothesis,
we obtain
T
{4.7) hEp — §{gh'}

for any K. Now, on the basis of (4.3) and of numerical tests, the mean rate {9,}
of the critical shear stress in the range of stabilized plastic flow at m < 1 is
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postulated to be close to the macroscopic uniaxial stress-rate divided by 3. With
H as the macroscopic hardening modulus, from (4.7) we finally arrive at

I

| =

(4.8) he —H.

The material parameters m, 7p and h at the micro-level may can be estimated
from the simple formulae (4.2), (4.3) and (4.8) if the uniaxial macroscopic law
(4.1) has been given, with the relationship (4.6) between the respective time-scale
factors. The identification formulae might also be applied, as they stand, to a
nonlinear hardening law. A satisfactory agreement is shown below between the
experimental macroscopic curve and that calculated by using the self-consistent
model with the material parameters for a single crystal estimated as above.
However, the applicability of the proposed identification procedure remains yet
to be verified by other examples.

5. Example

In Fig. 2 the comparison is made between experimental stress — plastic strain
curves for uniaxial tension of a polycrystalline aluminum alloy PA6 and those
calculated numerically by using the micromechanical model described in Sec. 2.
The constitutive equations have been implemented in the version specified in
Sec. 3, and the material parameters have been determined according to the iden-
tification procedure described in Sec.4. The parameter values are listed in the
figure, with n = 1/m(®). It can be seen that the model predicts in a satisfactory
manner the character of the macroscopic stress-strain curve up to ~ 1.5% of the
plastic strain. This is not just an effect of curve-fitting since the three material
parameters for a single crystal have been determined beforehand and in an in-
direct manner. For larger strains the assumption of linear hardening has turned
out to be an oversimplification and should be replaced by a nonlinear law.

Figure 3 shows the evolution of the plastic potential during the uniaxial ten-
sion of the polycrystal model in z3-direction. The subsequent pictures corre-
spond to the initial state and to the plastic prestrain 5% and 7%. Characteristic
shape changes of the potential contours are observed: while the initial contours
are ellipsoidal, subsequent contours have a rounded-off nose in vicinity of the
(tensile) loading point(”) and are flattened on the opposite (compressive) side.
Simultaneously, a translation of the contours of the plastic potential towards
the loading point can be observed, accompanied first by lateral contraction and
then by expansion. The qualitative changes closely resemble those observed in

(®) hy/ha denotes the ratio of the diagonal to off-diagonal components of the hardening
matrix for a single crystal, equal to 1 by the Taylor hypothesis.

(") The sharp corners that appear in the figures are due to the adopted way of graphical
presentation where calculated points have been connected by straight lines.
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FiG. 4. Experimental yield surfaces for an aluminum alloy PA6 for various definitions
of the yield offset after plastic prestrain in uniaxial tension in x3-direction.
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experimental yield surfaces for a small yield offset for the polycrystalline alloy
tested, as shown in Fig.4. This is not surprising since the contours of the plas-
tic potential in the layer in the stress space where the potential starts to grow
very rapidly, can be identified with a conventional yield surface (RICE [21]). The
qualitative agreement between the calculated contours of the plastic potential
for the micromechanical model shown in Fig. 3, and the respective experimental
yield surfaces shown in Fig. 4, is perhaps unexpectedly good in view of the small
number of material parameters in the model. This indicates that the assumptions
used are likely to reflect, to a reasonable extent, the nature of plastic deformation
of a polycrystalline metal under the selected monotonic loading.
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