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An idea of thin-plate thermal mirror
I1. Mirror created by a constant heat flux

Z. PLOCHOCKI (WARSZAWA)
and A. MIODUCHOWSKI (EDMONTON)

ForrowinGg Part I, an idea of thermal mirrors created on the surfaces of a sim-
ply supported thin plane circular plate of an isotropic thermoelastic solid material
by a uniform constant heat flux, which is applied to one of the plate surfaces, is
presented. Such a thermal mirror is — within the approximations applied for obtain-
ing the solutions of the heat conduction and thermoelasticity equations — an ideal
(aberration-free) optical mirror. The optical properties of the thermal mirror and
their time evolution are derived in two extreme cases: a) no energy losses through
both plate surfaces, and b) no losses through the perturbed surface and the maximum
losses through the opposite surface, and discussed in two asymptotical regimes: the
short-time and the long-time ones. Theoretical possibilities of application of the ther-
mal mirror to experimental determination of temperature conductivity of a material
are discussed,

1. Introduction

IN PART I OF THE PAPER [3], the idea and the theory of thin-plate thermal
mirror created on the surfaces of a simply supported thin plane circular plate of
an isotropic thermoelastic solid material by a uniform heat pulse applied to one
of the plate surfaces was presented. In the present part a similar problem, but
with different heat perturbation, is examined, namely: the heat pulse is replaced
by a constant heat flux (also uniform across the perturbed surface) applied in
the initial moment.

The aim is to calculate the fundamental optical properties of the mirror (i.e. -
its aberration characteristic, optical power, and the focal length), and their time
evolution. The goal will be achieved in the same way as in Part I, i.e. the tem-
perature field will be found first, next the deformation of the plate surfaces will
be determined, and finally the optical properties of the mirror will be calculated
and discussed.

The boundary conditions for the temperature field in the plate are assumed
in two extremal versions:

a. All the plate surfaces are adiabatically insulated (i.e. all the losses through
the plate surfaces are neglected).

b. The perturbed and the side surfaces are adiabatically insulated, and the
temperature of the opposite surface is equal to the the temperature of the plate
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220 Z. PLOCHOCKI AND A. MIODUCHOWSKI

surrounding (i.e. the losses through the perturbed surface are neglected, and the
losses through the opposite surface are maximum ones) (), (?).

All the remaining general assumptions are the same as in Part I. Also identical
are the general formulae determining the displacement field in the plate, those
determining the deformation of the plate surfaces, and those determining the
general optical properties of the mirror. They will be therefore used here without
derivation.

2. The thermal problem

Following the specification of the thermal perturbation, the temperature 7'
(counted from the initial (before perturbation) value) in the material is assumed
to be dependent on z and ¢ only: T' = T'(z,t), where z stands for z-coordinate
in the cylindrical coordinate system with the origin located in the center of the
plate and with z-axis directed perpendicularly from the plate center toward the
disturbed surface, and t stands for time. Therefore, according to the general
assumptions adopted, the heat conduction equation (in the dimensionless vari-
ables) is

00 9%*e 1
E;-Zd—cz+6(C—§)H(T—O)'
where
e AT (= —
o T ERE” 2h°
- Tz = t=t 2h)?
o¢r) = =LA = By,

stand, respectively, for: dimensionless time (x is temperature conductivity of
the material (heat conductivity divided by heat capacity per unit volume), 2h is
the plate thickness); dimensionless z-coordinate as referred to the plate thickness
2h; and dimensionless temperature (gg is density of the material (in unperturbed
state), ¢, — its specific heat (under constant pressure), go = const represents the
heat source function amplitude): §(z — zq) stands for Dirac delta distribution,
and H(r — 79) - for unit step function (Heaviside function).
The initial condition is assumed in the form

(2.2) O(r =0) =0.

The boundary conditions are assumed in two alternative versions, according to
the assumptions adopted in Sec. 1:

(2.3a) ég—éﬂ (C = :I:%) =0,

(*) The third extreme case: all the surface losses are maximum ones - is not interesting,
because in this case the temperature field inside the plate is not perturbed at all.
(?) The problem of finite surface losses (in the long-time regime) is mentioned in Sec. 7.
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(2.3b) agg(b} (C = %) =0,

4 (c:-%) =0

The solution of the problem expressed by Eqgs. (2.1)-(2.3) is found as follows.
The Green function to the (one-dimensional) heat conduction problem in the
half-space insulated adiabatically is the doubled Green function of that problem
in the whole space, and the latter Green function is known [1]. Applying therefore
the method of sources and sinks, one may find the Green function to the thermal
problem for the plate:

1 2
( b) 00 (2‘”1 = 5 = C)
ab) _ 2 1)me »
\/_ 2 (-1 exp ir

(2m+%+()2

+ (1P exp |- P -

where p = 0 in case a and p = 1 in case b. Next, convoluting the latter Green

function and the heat source function, the solution of the problem considered is
found:

1 3
(2.4a) e =27 Z 1erfc-— + ierfc

VAV A

=7+ 22 (?r—zlk): {1 S exp[—k27r21-]} cos [k‘rr (C + %)] ;

1 3
(b) - o ST oy Bl hG
(24b) OY =273 (-1) :erfc—-z—ﬁu - Ierch

1)k+l 271.2
"82w2(2k~1 {l—expl—(kal) Ifr]}
X sin [(2k 2 1)% (c+ %)] ,
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where the integral complementary error function is

o0

ierfe(z) = /erfc(y) dy, erfc(z) = '\/2777 /exp[—yz] dy

T

(erfc(x) stands for the complementary error function), and the first line (in
each equation) represents the original solution obtained using the method men-
tioned (*), and the second one — that solution after expansion into Fourier se-
ries (*) (the function ©(@) is symmetrical, and the function @) is antisymmet-
rical with respect to { + (1/2)).

3. Fundamental characteristics of the thermal mirror

According to the assumptions adopted, the general formulae determining the
displacement U of the plate surfaces with respect to their initial (before pertur-
bation) position (see Fig.1 in Part I) are the same as in the case considered in
Part 1. Using these formulae and the solutions of the thermal problem, we have

(see Part I, Egs. (4.2)):
2 2
Y e e
E To
2
= '“Umax [1 = (1) } s
o

E ro/ (1+d4)2
2
r 1
S o (S (_) =
i max l To (1 = 61)2
where the superscripts u and [ refer to the disturbed and the opposite surfaces
of the plate (the upper and the lower surfaces in Fig. 1 in Part I), respectively:
r stands for the coordinate of a given point in the cylindrical coordinate system
mentioned earlier; rq is the plate radius;

(3.1)

3r2
4h3E
(?) The same results are obtainable by applying the Laplace transformation method to solve
the following equivalent problems:

00  d*e 0e 1
23:—"='5C_‘1‘ 6(?:0):[}‘ —a'C—(<=§):H(T_O)r

(32) Uma.x — MT )

%(C:—%):D, in case a,

(2] (C = -—-%) =0, 1incaseb.

(') The same results are obtainable by applying the Fourier method of separation of inde-
pendent variables to solve the equivalent problems mentioned in the previous footnote (and
expanding the functions ¢ + (1/2) and (¢ + (1/2))? into Fourier series).
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1

S o = 5E

[:I:NT + MT]

Here the upper and the lower signs refer to the perturbed and the opposite sur-
faces of the plate (the upper and the lower ones in Fig. 1 in Part I), respectively;
E stands for the Young modulus (see Part I, Egs.(4.3) and (4.40)); and (cf.
Part 1, Eqs. (4.1))

(3.4) Nr = Ea / Tdz,

(34a) N\ = 2hEcwor,

g (b) - m 2m +1
(3.4b) Ny = 2hEawyt [1 -8 Z(— iZerfc N }
1)L+1 ‘TI'2
= hE‘awg { g —-ék—:-]T exp [ (Qk ) —4-‘1' )
h
(3.5) M7 = Ea / 2T dz,
—h
(@) _ op2 _ 8 1ymH 3
(3.5a) My’ = 2h*Eawet [1 1= \/_f T+32y7 Z erfe \/F]
1 96 &=
:—éthawg{ ——42 2k 1y exp[—(2k — 1)? ]}
(5) 2 : - 5 o 2m+1
(3.5b) My’ = 2h*Eowgt {1 mz [l erfe o
.3 m + 1]
+ 4y/Ti%erfc . }
- 96 X 4 — (-1)¥+1(2k — )7
_§h ano{l gg 2k — 1)1

X exp l—(% - 1)21:-;7] },

where, in turn, « stands for (linear) heat expansion coefficient;

i"erfc(z) = /i““lerfc(y) dy, n>2,
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and ierfc(x) was defined at the end of Sec.2; and the approximations (with an
accuracy to an assumed small number O*) hold if

(3.6) 6] < 50°

(for detailed argumentation for this criterion see Part I, Appendix).

The general formulae determining the aberration characteristic € = &(r), the
optical power D and the focal length f of the thermal mirror considered are the
same as in the case examined in Part I. The deflection angle ¢ is defined as an
angle between incident testing light beam parallel to the symmetry axis and this
ray after reflection from the mirror (see Fig.2 in Part I). The optical power is
defined as a reciprocal of the focal length f, and the latter quantity is defined
as a distance of the focal point from the mirror along the mirror symmetry axis
(see Fig.2 in Part 1). The deflection angle, the optical power and the focal length
are understood to be negative in the case of defocusing mirror (the perturbed,
or the upper surface in our case), and positive in the case of focusing mirror (the
opposite, or the lower surface in our case).

Using the general formulae mentioned above we have (in both cases a and b):

(3.7) g/ = F2arctan i o)

i :
=~ x2arctan [ZUm“ L] = Unmax L5
To To ro To
1 4 1 4
. Du = —= —_— = e L e 2
(3.8) = Fs 3!:?_3Umax(1 T :Frgumax

where the upper and the lower signs refer to the disturbed (upper) and the
opposite (lower) surfaces, respectively; Unax and 8} are given by Egs. (3.2) and
(3.3), respectively, with Egs. (3.4) and (3.5); the first approximation in Egs. (3.7)
and (3.8) holds, if Ineq. (3.6) is satisfied; the second approximation in Eq. (3.7)
(the so-called paraxial optics approximation) is valid if (in addition)

T 2.2 *
(3.9) (2—':;“35) £ o< 90 =~ 30*.
0

The results expressed by Egs. (3.7) and (3.8) denote, that the mirrors under
considerations (both the upper and the lower one, in both the cases a and b) are
- within the approximations applied - the ideal (parabolic) ones, i.e. they are free
of optical aberrations (their optical power and focal length are independent of
r). In principle, no paraxial optics approximation is therefore needed to idealize
them.

As it is seen from the formulae given above, the time evolution of the displace-
ment function U and the optical properties of the thermal mirror is governed by
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AN IDEA OF THIN-PLATE THERMAL MIRROR. PART II 225

the dependence of the functions: Nt (Egs. (3.4)), Unax (Egs. (3.2) and (3.5)), and
 (Egs. (3.3) with (3.4) and (3.5)) — on time. This dependence is complicated and
difficult for a simple interpretation. Significant simplification can be obtained for
sufficiently short or long time and under the additional condition that the term
0 can be neglected in comparison with unity in the suitable formulae.

4. The short-time regime

For sufficiently short time (7 < 7gnort) and for not very strong heat perturba-
tion (wy < woshort), the characteristics of the thermal mirrors (Egs. (3.2), (3.1),
(3.7) and (3.8)) can be approximated (with an accuracy to (14 0*)? —1 = 20*
in case a, and (1 + O*)® — 1 = 30* in case b, where O* is an assumed small
number) by the following formulae (in both cases a and b; cf. Egs. (7.5) and
(7.6) in Part I):

(4.1) Umax = [}max(o) t (),

Ut — {J'mx(O)t{% (%)2+ ll = (%)zl w(r)},

(42) | L
U = "Umax(OJ [1 — (E) ] t(p(T),
(4.3) g/ = F2arctan [Mitw(r)] = :;:4233‘—’1(9)- 1tt,o('r},
To o Ty FTo
(4.4) D} = f]—u = :F%[}maxto)t?’('r)a
{ 0

where (see Eqs. (2.1)1.4):

_ : 3r2 K (ro )2 2hqo (r{, )2 gL,
ot I = — e == i — =3 e T
(45)" Unu(0) =3 0up GnE ~ 5%\ 2n 20c,  \2h) mriooc

(here, in turn, th stands for the total power applied to the perturbed surface),
(4.6) (N=1-"=v7
: S

and the approximation in Eq. (4.3) (the paraxial optics approximation) holds, if

6o 2h 30 =
2h)? Eﬁrtg@(ﬂ < T V30*.
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226 Z. PLocHOCKI AND A. MIODUCHOWSKI

Thus, the functions: Upax, U}, tan(e}/2), D} and f}* divided by ¢ are linear
functions of v/ (see Eq. (2.1);) in the short-time regime.

The approximate formulae given above are the same in both cases a and b.
The main difference depends on different criteria of applicability of the short-time
approximation. These criteria will be therefore deduced and specified separately
for each case.

4.1. Criteria of applicability of the short-time approximation — Case a

The analysis will be performed according to the following program:

o first, Ineq. (3.6) is assumed to be satisfied;

e second, a possibility of simplification of the function My for simplifying the
equations for Uy, €}, and D' = 1/f} will be analyzed, since — after neglecting
the functions § — these quantities depend on time through the function My only
(see Egs. (3.1)2, (3.2), (3.5), (3.7) and (3.8));

e third, a possibility of simplification of equation for the function U" will be
examined;

e fourth, consequence of Ineq. (3.6) will be analyzed, with comments on addi-
tional condition(-s), which should be taken into account in connection with this
point, and also - in connection with the time approximation discussed.

Thus, at the beginning Ineq. (3.6) is assumed to be satisfied.

Concerning the function M7 let us note that for sufficiently short time, the
sum in the brackets in Eq. (3.5a); can be truncated after the second term. Be-

: . . y ¥ 9
cause i’erfc(z) is a monotonically decreasing function, therefore for 7 < 6-4-1r =

0.44 this sum represents the Leibniz series (°). Then, the sum considered can be
approximated by the first two terms only, with an accuracy to O*, if

1
(47] 32\/;i381’fCﬂ = OF

8
11— —— T) .
T ( -k
(®) The Leibniz series (LS) is understood to be a converging series of the type

oo
LS = Z(—l)mﬂm s @m > Gm41 > 0.

m=0
Such a series can be precisely estimated as follows (Leibniz's theorem):
n—-1 2n n In+1
Y (-D)"am <LS< Y (-)"am, and Y (-1)"am>LS> Y (~1)"am.
m=0 m=0 m=0 m=0

In particular case one may obtain:
ag — a1 +az > LS > a0 —ax,
therefore LS = ag — a; with an accuracy to O°, if a2 < 0" (a0 — a1); also
ap > LS >a0—ay,

-

therefore LS = ag with an accuracy to O°, if a; < ﬁao.
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This inequality is satisfied, if

1
(4.8) = T(}(:grr 2’
where 2, stands for a solution of the equation i’erfcz = O* (;Eﬁ 12\/-) with

respect to z.
Assuming, for example
¢ O =10.01
one may find (%)
(4.9) <@ ~011.

short —

Assuming, in addition

e k= (1077 —107*) m?/s,
where the sign = reads: “is of the order of”, and the first value in the brackets
refers to the worst temperature conductors and the second one — to the best ones,

one may rewrite the criterion expressed by Ineq. (4.9) in the following dimensional
form (using Eq. (2.1)1) (7):

1.(1 —10~%)s, for 2h=10"%m,
1-(102-1071)s, for 2h=10"2m.

i (a) ~

— “ghort =

Concerning the function U" let us note — after substituting Eqgs. (3.4a) and
(3.5a); into Eq. (3.1); and using Eq. (4.5) — that this function is also the Leibniz

series (for 7 < —m) and it can be written in the form:

64
Ul(

1o 2 2\ 8VT
m={§/4 +(1—T)]—l(1~r)m]

+ [32\/’? (1 - 1‘*2) iderfc E—\/#_] — iy

where A = 2h/rg, and ¥ = r/rg. The right-hand side of this formula can be
truncated after the second term (with an accuracy to O*), if (cf. Ineq. (4.7))

327 (1 - 72) Perfe ﬁ s {{%Ag +(1 _Fz)] 3 [(1 ) g‘\:;]}

This inequality is always satisfied for ¥ = 1. For ¥ < 1 it can be rewritten in the
form: s /P
1 A 8
fc —= < O" -
32/7 i*erfc \/_ O{[+31_1__2} 3\/_}

(%) For O° = 0.001 (0.0001) one can find: %) 2 0.071 (0.050).

short —

(") For O = 0.001 (0.0001) the coefficient 1 before the brackets is replaced by 0.7 (0.5).
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228 Z. ProcHOCKI AND A. MIODUCHOWSKI

By comparing this inequality and Ineq. (4.7) it is seen, that it is weaker than
Ineq. (4.7). If therefore the criterion expressed by Ineq.(4.7) is satisfied, then
also the function U" can be approximated in the same way as the functions Uj,
e, and D} = 1/f!, as it is expressed by Eqgs. (4.2)-(4.4).

Concerning the functions 6} let us note that, according to Eq. (3.3), the be-
haviour of these functions in the case examined is determined by the functions
N(O) (Eq. (3.4a)) and M(a) (Eq. (3.5a)). As it is seen from Eqgs. (3.4a) and (3.5a)3,
both the latter funt‘tlons are positive and are monotonically increasing from 0 at
7=0{>).

The function §(*)%(7) is therefore also increasing from 0 as 7 = 0 to t.'S("‘J“(ﬁr
in the short-time regime; for (hgrt = ().11 (O* = 0.01 - see Eq.(4.9)) one can

obtain: 0 < 8@ ¥(r) < §@u(rg ) = 0.28awy (°). The function 5} }('r) is also
positive-valued in the short-time regime specified above, however it is not mono-
tonic. It starts from 0 as 7 = 0, and approaches a maximum value about 0.059awq
at 7= Ti(;i = (.090.

Thus, the criterion expressed by Ineq. (3.6) for neglecting the functions J in
the short-time regime may be written in the form:

(a)

su@) < su(r® ) < 050° ,

Tshort

(4.10) (a) :
6! S 61(7 S 0-50 "
where 7% = (“} = 0.090, if T(ggn > T{(ﬂ, or ™ = ihgn, if 'r(l?gn < 'r,{'?i. If
0* =0.01 (a.nd therefore :;’m =~ ().11), then (1°)
§u@ < §u(r{®) ) = 0.280wp < 0.50°,
(4‘11) ( S U[‘t) 0 —

8% < &(n%) = 0.059awy < 0.50".

Under the assumption:
ea=10"° 1/K,
this inequalities read (!!):

18-102K  for the perturbed (the upper) surface,
%0 =1985.102K for the opposite (the lower) surface.

(*) The series in Eq. (3.5a)2 at T = 0 is equal to unity (see [2]).

(°) For 7$2) . = 0.071 (0.050) (O 2 0.001 (0.0001)) the coefficient 0.28 is replaced by
0.20 (0.15).

(*°)If O° = 0.001 (0.0001), then the coefficient 0.28 is replaced by 0.20 (0.15), and the
coefficient 0.59 — by 0.057 (0.049).

(**) For O* = 0.001 (0.0001) the coefficient 18 is replaced by 2.5 (0.33), and the coefficient

85 - by 8.8 (1.0).

http://rcin.org.pl
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Using Eq. (2.1)4 and assuming (in addition to the assumptions adopted above)
® 0pc, = 5-10° J/(m3K),

one may rewrite the inequality given above as the following criterion for the

disturbing heat flux density (equivalent to the disturbing heat source):

{ B(105 — 10°) W/m?, for 2h=10"%m,
2hqo < B(10° 8 2 — 10-2
(10° —=10°) W/m*, for 2h =10"%m,
where B = (.9 for the perturbed (the upper) surface, and B = 4 for the opposite
(the lower) one (12).

Concerning the limitation of the heat perturbation, an additional condition
should be taken into account. The heat conduction and the mechanical processes
are treated in the linear approximation. It is therefore reasonable to require, that
the heat perturbation should not significantly change the properties of the ma-
terial. Let the maximum allowable temperature be 7*. Because the temperature
approaches its highest value at the perturbed surface, therefore this requirement
may be written in the form 7% (z = h) < T*. According to Egs. (2.1)23 and
(2.4a); we have

o0
T(a}(z = h,t) =wy Q(ﬂ-) (C = %‘T) = 211!0\/1_' [% + 2 Z ierfc% :
m=1

The function ierfc(z) is a decreasing function of its argument, therefore the
temperature of the perturbed surface increases monotonically with time. Under
the assumption

oT* = 100K,
the criterion analyzed may be therefore written in the following approximate
form:

o AR

(4.12) wy >~ 97.10%K,

i
2 Tshort
where TS(;:’;“ was assumed to be equal 0.11 (13). Using Eq. (2.1)4 one may rewrite
this inequality as the following criterion for the disturbing heat flux density
(equivalent to the disturbing heat source) (**):

0.1-(10 — 10°) W/m?, for 2h=10"3m,
0.1-(10° — 10%) W/m?, for 2h=10"?m.

(**) If O° = 0.001 (0.0001), then B = 0.1 (0.02) or B = 0.4 (0.05) for the perturbed (the
upper) surface or for the opposite (the lower) one, respectively.
(**) If 75*)  is put to be equal to 0.071 (0.050), then the coefficient 2.7 is replaced by 3.3 (4.0).

(") If 72 | is put to be equal to 0.071 (0.050), then the coefficient 0.1 before the brackets is

replaced by 0.2 (0.2).

2hqo < {
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Comparing these results with inequalities for wy and g obtained earlier as a
criterion for neglecting the functions ¢ in the short-time regime, one may see that
the former inequalities are weaker than the latter ones for O* = 0.01; if therefore
the temperature criterion of linearization is satisfied, then the functions § may be
neglected in the suitable formulae in the short-time regime. The reverse situation
takes place for O* = 0.0001.

At the end of this subsection two additional conditions should be mentioned.
The first concerns the assumption that all the mechanical phenomena are treated
in the quasi-static approximation, i.e. the observation time 7 can not be too short:
T 2> Tmin. The suitable criterion of this kind was proposed and commented in
Part I.

The second remark concerns the initial condition. The form of this condition
indicates that the time, during which the heat perturbation is switched on, should
be sufficiently short in the time scale applied.

4.2. Criteria of applicability of the short-time approximation — Case b

The analysis will be performed according to the same program as in Case a
(mentioned at the beginning of Subsec. 4.1).

Thus, at the beginning Ineq. (3.6) is assumed to be satisfied.

Concerning the function M7 let us note that for sufficiently short time, the
sum in the brackets in Eq.(3.5b); can be truncated after the second term.
Because the functions i%erfc(z) and i%erfc(z) are both monotonically decreas-
ing ones, therefore the sum examined can be treated as a Leibniz series(®) for

9
= é = (.44, and it can be approximated by its two first terms only with an
accuracy to O*, if

(4.13) i erfcﬁ—f-él\/*?l erch <0 (8 3\/\/1;) :
This inequality is satisfied if

b) 1
(4.14) <), = el

where z; stands for a solution of the equation

ar 4
+2 2 3 == O
zi‘erfcz + 2i° erfc 2z = 5 (z 3ﬁ)

with respect to . 2
Assuming, for example, O* = 0.01 one may find ('°):

(4.15) r< 7 =~0.083

(**) For O* = 0.001 (0.0001) one can find ), = 0.053 (0.038).

short

http://rcin.org.pl



AN IDEA OF THIN-PLATE THERMAL MIRROR. PART II 231

(cf. Ineq. (4.9)). Assuming, in addition & = (1077 — 10~%) m?/s (where the first
value in brackets refers to the worst temperature conductors and the second one
-~ to the best ones), one may rewrite the criterion expressed by Ineq.(4.15) in
the following dimensional form (using Eq. (2.1);) (1°):
® ~ )08:(1- 1073)s, for 2h =10"3m,
t < tnort = 2 _ 1n-1 —10-2

0.8:(10° —=107")s, for 2h=10""m.
Concerning the function U" let us note — after substituting Egs. (3.4b); and
(3.5b); into Eq. (3.1); and using Eq. (4.5) — that this function also represents the

Yo ; m . : <
Leibniz series (°) (for 7 < a), and it can be written in the form:

—I:Til;(})—t = {%Az + (1 = Fz)] [8A212erfc NG + (1 - ) %ﬁ]

[ A%i%erfe 2—-\/_—- +8 (l -7 ) (izerfc m + 4y/7 i%erfc %)] =l
where A = 2h/rg, and 7 = r/rg. The right-hand side of this formula can be
truncated after the second term (with an accuracy to O*), if

3 1
ZA%42 oL 5 e L i3 Rl
Alerfcz\/_+8(1 r)(lerfc V/_+4\/?1erfc\/1__)

< 0 {[347+ (1-7)] - [342Perte =+ (1-72) 7= vA| |

This inequality is satisfied if the following inequalities are fulfilled (sufficient
conditions):

i elfC "-——2\/_- + 0" l2erfC 2\—/_ N -8—0‘
1 1 1 V7
-2 4 :3 < = e )
1erfc—2\/?+ VTi erfc———2\/;_0 (8 ——-—3\/7?)

The second inequality is identical with Ineq. (4.13). The first inequality is weaker
than the second one.

Thus, if Ineq.(4.14) is satisfied, then the function U* can be approximated
by its first two terms (see formula for this function given above). Further approx-
imation depends on neglecting the function i%erfc 2—\% The maximum possible

error of the latter approximation does not exceed O*, if

O* 1 8T
2.2 2 72 Y
3A1erfc2\/__1 o A+(1 )(1 3\/_)]

(**) If O* = 0.001 (0.0001), then the coefficient 0.8 before the brackets is replaced by 0.5 (0.4).
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Because the right-hand side of this inequality is a decreasing function of ¥ (in
the short-time regime), therefore it is fulfilled for each 7, if

1 bt 1 e
27T 8140
Because the left-hand side of the latter inequality is an increasing function of

7, therefore it is sufficient to satisfy this inequality for 7 = ihirt In fact, if
Ineq. (4.14) is satisfied, then the inequality considered is satisfied too.

Thus, if the criterion expressed by Ineq. (4.15) is fulfilled, then the function
U* can be approximated in the same way as functions Uy, €}, and D} = 1/f",
as it is expressed by Eqgs. (4.2)-(4.4).

Concerning the functions ;' let us note — after substituting Egs. (3.4b); and
(3.5b), into Eq. (3.3) — that both these functions are positive-valued in the full
time interval (0 < 7 < o0). The function d% is monotonically increasing from 0

(at 7 = 0) to awy (at T = o0), therefore its maximum value in the short-time

s{hlﬂ) The function §; starts from 0 (at 7 = 0), approaches
(

the maximum value about 0.062 at 7 = 7, D) ey, 115, and next is monotonically
decreasing to 0 (at 7 = o). The criterion expressed by Ineq. (3.6) can be therefore
written in the case under consideration in the same form as in case a (Ineq (4.10))
with only the subscript (a) replaced by the subscript (b), T, thgn - by . short (see

Eqgs. (4.14) and (4.15)), and T(a) by 7, = 0.115. If O* = 0.01 (and therefore
) = 0.083), then (17):

Tshort

i2erfc

regime is equal to §%(

§u®) < 5u(7 %) ) = 0.23awy < 0.50°,
5 < 5= ) = 0.060aw, < 0.50".

Tshort

(4.16)

Under assumption a = 1075 1/K, this inequalities read (%)

22-102K  for the perturbed (the upper) surface,
AT} “0=183.102K for the opposite (the lower) surface.
Using Eq. (2.1)4 and assuming (in addition to the assumptions adopted above)
00cpy = 5-10%J/(m*K), one may rewrite the inequality given above as the follow-
ing criterion for the disturbing heat flux density (equivalent to the disturbing
heat source) (19):

C(10° — 10°) W/m?, for 2h=10"3m,
2hgo <

C(10° - 10®) W/m?, for 2h=10"%m,
(7)1t 7% | 2 0.053 (0.038) (0" = 0.001 (0.0001)), then the coefficient 0.23 is replaced by
0.16 (0.12), and the coefficient 0.060 - by 0.051 (0.043).
(**) For O* = 0.001 (0.0001) the coefficient 22 is replaced by 3.2 (0.42), and the coefficient
83 — by 9.8 (1.2).
(**)If 0" = 0.001 (0.0001), then C = 0.2 (0.02) for the perturbed (the upper) surface, and
C = 0.5 (0.06) for the opposite (the lower) one, respectively.
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where C' = 1 for the perturbed (the upper) surface, and C = 4 for the opposite
(the lower) one.

Concerning the restriction of the heat perturbation, which follows from the
requirement for the temperature value not exceeding an assumed value T, the
criterion has the same general form as in the previous case: T®)(z = h) < T*.
According to Eqgs. (2.1)23 and (2.4b);, we have

1

Wz

This is an increasing function of time. Under the assumption 7% = 100 K, the
criterion analyzed may be written in the identical approximate form as in case

a (Ineq. (4.12) for wp and the next inequality for 2hqg), with only Tsﬂﬂn replaced

by 7). the coefficient 2.7 - by 3.1 (for 7., = 0.083) (%), and the coefficient

short® short
0.1 - by 0.15 (for 'rs(]?iu = 0.083) (*!). Conclusions on the role of this criterion as
compared to the criteria obtained earlier for neglecting the functions § are the
same as in the previous case.

At the end of this subsection we note, that two remarks made at the end of

the previous subsection concern also the case considered here.

T®(z = h,t) = wy O (C - %7) = 2w0\/1-{ -2 Z (=1)™* jerfc -317_; ;
m=1

4.3. Conclusions

Estimations given in the two previous subsections show that the short-time
approximation seems to be realistic (except for very thin plates with the best
temperature conductors) and offering simple interpretation of the time evolution
of the properties of the mirror considered. Comparison of the two cases considered
shows, that for sufficiently short time there are no significant differences between
both the cases examined, i.e. - the energy losses through the lower surface can
be neglected.

5. The long-time regime

For sufficiently long time (7 > 7yoy,) and for not very strong heat perturbation
(wo < wo long), the characteristics of the thermal mirrors (Egs. (3.1), (3.2), (3.7)
and (3.8)) can be approximated (with an accuracy to (1+0*)?—1 = 20* in both
cases a and b, where O* is an assumed small number) by the following formulae
(cases a and b are distinguished by the superscript (j) = (a), (b), respectively;
cf. Egs. (8.3) and (8.4) in Part I):

(5.1) Ul = UG, (c0) ¢ (7),

(*°) Or by 3.8 (4.5) (for %) = = 0.053 (0.038)).

short

(*') Or by 0.2 (0.2) (for ¢ = 0.053 (0.038)).

short
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ue6) = ) ( { )qb(”( [ (%)2]¢53})(T)},

] 49(r),

) () .
=) L) J] SEPLL LORO)

To To

UEU} = —Ut(ﬁ’a.x(oc" [
(4
nax

(5.3) Efm = F2arctan le

R DIV = —5 = F SV ()7,
J PO M

where (see Eqgs. (2.1)1 4)

1 o '” 2hqo Q
5.5 Ula) (00) = =UWY = u - tot
(5.5) max (%) 9 max (00) Shcxw oo a47rngu )

(5.6a) qbf,ff} = &, ¢{“) 1-— i—ﬁexp[rrr 7],

(5.6b) (b(b} 1- -?;-2- exp[—i:fr 7, (f)( )=1- 9—6—(4 — ) exp [—4171'21'] ,

and the approximation in Eq. (5.3) (the paraxial optics approximation) holds, if

2Ul:1ax( {J} / \/3?
To

The approximate formulae given above are different in each case (a and b).
Criteria of applicability of the long-time approximation are also different in each
case. These criteria will be therefore deduced and specified separately for each
case.

5.1. Criteria of applicability of the long-time approximation — Case a

The analysis will be performed according to the same program as in Case
a for the short-time approximation (as it was mentioned at the beginning of
Subsec.4.1).

Thus, at the beginning Ineq. (3.6) is assumed to be satisfied.

Concerning the function Mr let us note that for sufficiently long time, the
sum in the brackets in Eq. (3.5a)2 can be truncated after the second term. For
this purpose it is sufficient to require:

e the third term of the whole sum to be much smaller than the sum of the
first and the second terms in the following sense:

96 1 0.90* 96
< e p—
8 exp[—9727] T (1 = 5 exp[—7 T])
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e and the n-th term of the sum ((k + 1)-th term of the series), n > 3 (k > 2),
to be not larger than 0.1 of the (n—1)-th term of the sum (the k-th term of the
series):

2k + 1\*
—87%k7] < 0.1
exp[—87°k7] <0 (2k— 1)
The first inequality is satisfied for
1

where z, is the suitable solution of the equation z°+81 L L ' i =0.

: iy ) 1+O* 06 14+0*
The second inequality is the strongest one for £ = 4, and then it is much

weaker than the former one for O* < 0.01.
Thus, assuming (as previously) O* = 0.01 one can obtain (

22}:

(5.8) T > T £ 0.021;
assuming also (as previously) &= (10~7=10~%) m?/s, one may rewrite the criterion
expressed by Ineq. (5.8) in the following dimensional form (using Eq. (2.1)1) (**):

£> 1

long —

0.2:(1-10-3)s, for 2h=10"%m
0.2:(10 - 1071)s, for 2h=10"%m

Concerning the function U" let us note — after substituting Eq. (3.4a) and
(3.5a)2 into Eq. (3.1); and using Eq. (5.5) — that applying analogous criteria for
truncation the function U" after the third term to the criteria used above for
truncation of the function M;L“}, we obtain also two inequalities. The first one
is always satisfied for r = rg, and it is weaker for r < ry than the suitable

inequality for truncation the function M{n) The second inequality is identical
with that in the case of the function M.}“}‘ Thus, if the criteria for truncating

the function M,‘Ef") after the second term are satisfied, than also the suitable sum
in the expression for the function U" can be truncated after the third term.
Concerning the functions §}' in the case under consideration let us note that
according to Eqgs. (3.3), (3.4a) and (3.5a) — the function §* monotonically in-
creases with time from 0 at 7 = 0 to infinity as 7 — oo, being asymptotically
limited as follows: 6%(7) < awyq ((1/4) + 7) — for arbitrary time. Because of ex-
ponential dependence on time, it seems to be reasonable to limit the long-time

interval by the values: {ng 10715;)8 Then Ineq. (3.6) can be rewritten in the
form 6“(9)(7) < §@ (1070 ) < = o*

(*2) For O° = 0.001 (0.0001) 74, = 0.041 (0.064).

orn

(**) For 0" = 0.001 (0.0001) the coefficient. 0.2 before the brackets is replaced by 0.4 (0.6).
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The function §; initially increases from 0 at 7 = 0 to the maximum value of
about 0.059awy at 7 = T!(;: = 0.090, and next monotonically decreases to minus
infinity as 7 — oo (asymptotically as awg ((1/4) — 7)). Inequality (3.6) can be
therefore rewritten in the long-time interval bounded as above in the form (for

both functions 5;‘(“] and 6*[“}]:

§u@) < §u@(107%) ) < 0.50°,

(5.9) i

16 < |6u(7*)] < 0.50*,
where 7% = T.'(.fr)x = 0.090, if 5;(7,.(.‘:,)1) = 0.059awy > [6}”{107’&38”, or 7% =
10?’1(;:3g in the opposite case. If O* = 0.01 (and therefore 7](;33 = (.021), then

approximately (cf. Ineq. (4.11)) (*%)

o) < 0440wy < 0.50*,

(5.10) i
165| < 0.059awp < 0.50* .

Under the assumption o = 107° 1/K this inequality reads (*°)

11-102K (for the perturbed (the upper) surface),
)
s 85-10%K (for the opposite (the lower) surface).

Using Eq. (2.1)4 and assuming: gpc, = 5-10° J/(m*®K), one may rewrite this in-
equality as the following criterion for the disturbing heat flux density (equivalent
to the disturbing heat source):

D(10° —10°) W/m?, for 2h =10"3m,
2hqo < =
{D(105 - 10%) W/m2, for 2h=10"2m,
where D = 0.6 for the perturbed (the upper) surface, and D = 4 for the opposite
(the lower) one (%).

As far as the limitation of the heat perturbation in the long-time regime
is concerned, two additional conditions should be taken into account. The first
such condition follows from the requirement, that the temperature cannot exceed
a certain value 7, as it was mentioned in Subsecs.4.1 and 4.2. The second
condition follows from the requirement that 7 cannot be too large, thus allowing

(*)If 0" = 0.001 (0.0001) (ra; = 0.041 (0.064)), then the coefficient 0.44 is replaced by
0.66 (0.89), and the coeflicient 0.059 - by 0.17 (0.39).

(**) For O* = 0.001 (0.0001) the coefficient 11 is replaced by 0.76 (0.056), and the coefficient
85 - by 3.0 (0.13).

(*%) If O = 0.001 (0.0001), then D 2= 0.04 (0.003) for the perturbed (the upper) surface, and
D = 0,15 (0.006) for the opposite (the lower) one, respectively.
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to neglect thermal losses through the surfaces (first of all - the radiation losses),
as it was mentioned in Part L.

The discussion of the first condition, performed in an analogous way as it was
done in Subsecs. 4.1 and 4.2 taking into account the previously adopted limits of
the long-time regime interval, leads to following approximate criterion:

(5.11)  wo < 7 4 £ = 99.10% K,

(a) _ 2 ] (a)
Z + 107};1;; EX])[—‘JT loTlong] Z = 10"'-11::1:11;

where T* was assumed to be equal to 100 K, and 'r]ong - to be equal to 0.021 (*7).

Using Eq. (2.1)4 one may rewrite this inequality as the following criterion for
the disturbing heat flux density (equivalent to the disturbing heat source) (?*):

S B 0.1-(10° — 10°) W/m?, for 2h =10"3m,
0= 190.1-(10° - 10% W/m?, for 2h=10"2m.

Comparing these results with inequalities for wg and go obtained earlier as a
criterion for neglecting the functions J in the long-time regime, one may see that
the former inequalities are weaker than the latter ones for O* = 0.01; if therefore
the temperature criterion of linearization is satisfied, then the functions J may be
neglected in the suitable formulae in the long-time regime. The reverse situation
takes place for O* = 0.0001.

The second condition mentioned above concerns the assumption concerning
the adiabatic insulation of the plate. In fact, the plate loses its energy at least
by thermal radiation through the perturbed and the opposite surfaces. These
radiation losses can be neglected, if 7 is not too large. The discussion of this
problem, performed in an analogous way as it was done in Part I (Sec. 8)(*9),

(Ea)at; -r,m is put to be equal to 0.041 (0.064), then the coefficient 2.2 is replaced by 1.5 (1.1).

ong

2 1f 7') s put to be equal to 0.041 (0.064), then the coefficient 0.1 before the brackets is
long p

replaced by 0.07 (0.05).
(**) For the problem:

e 9’ 39( =1

0-22. er=0=0 % ) =H-0-80(c=3),

22 (¢~ =se c-)

8= 2h 46035T[|3

R LoCp
stands for dimensionless coefficient of radiation losses as obtained from the linearized
Stefan-Boltzmann law (b stands here for a correction factor for a real body as compared with
the perfectly black one, osp - for the Stefan-Boltzmann constant, and Tp - for the absolute
initial temperature (before the perturbation)).

where
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leads to the following criterion of neglecting the radiation losses through the
surfaces (*°):

ootk %

( — O‘ = — =
C s oh 16bospTg’

where  and the remaining symbols used here are defined in footnote 29. As-
suming 0* = 0.01, k = (10~7 — 10~*) m/s?, goc, = 5-10° J/(m*K), and

e b=10.1,

e osp =5.67-1078 J/(m?sK?),

o Ty =300K,
we have (in dimensionless and in dimensional forms) (3!):

2:(1-10%), for 2h=10"3m,
T < Tmax =
2.(10°1—10%), for 2h=10"2m,

(5.12)
4 { 2-10s, for 2h=10"3m,
max

IA

2-10%s, for 2h=10"2m.

Comparing this result and Ineq. (5.8) one can see, that the criterion expressed
by Ineq.(5.12) can significantly restrict the applicability of the long-time ap-
proximation in the case under consideration, especially if high accuracy of the
approximation is required for thin plates and bad temperature conductors.

At the end of this subsection we note, that two remarks done at the end
of Subsec. 4.1 concern the case considered here too, although in the long-time
regime they are not so important as previously.

5.2. Criteria of applicability of the long-time approximation - Case b

The analysis will be performed according to the same programe as in Case
a for the short-time approximation (as it was mentioned at the beginning of
Subsec. 4.1).

Thus, at the beginning Ineq. (3.6) is assumed to be satisfied.

In connection with the function My let us note that, for sufficiently long
time, the sum in the brackets in Eq. (3.5b), can be truncated after the second
term. In fact, after merging the unity and the first term of the series one obtains
a new series. which can be treated as the Leibniz series. Then, the sum under
consideration can be truncated after the second term with an error not exceeding
O*, if (°)

(5.13) > 7

ong = "3 nTh,

(™) Note that in Part I there is a numerical mistake: number 8 in the formulae for Trad, Tmax

and fmax should be replaced by the number 16, and number 4 in Egs. (8.5) - by the number 2.
(*') For O" = 0.001 (0.0001) the coefficient 2 is replaced by 0.2 (0.02).
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where x; is the suitable solution of the equation

140" o g 47 8l =
)% In+4 3r+49

0.

Assuming (as previously) O* = 0.01 one can obtain (*?)

(5.14) T 2 Ting & 0.16;

assuming also (as previously) x = (1077 — 10~4) m?/s, one may rewrite the
criterion exepressed by Ineq.(5.14) in the following dimensional form (using
Eq. (2.1)) (*):

b 2:(1-10"3)s, for 2h =10"3m,
Z llong 2-(10° —107Y)s, for 2h=10"2m.

Concerning the function U" let us note, that the sum in the brackets in
Eq. (3.4b)2 can be written in the form:

Sv=1—ay+as— ...,

where a; stands for the absolute value of the k-th term of the series in these
brackets, and the sum in Eq. (3.5b)2 — in the form:

Sy =[1=-b] =by+..,

where by stands for the absolute value of the k-th term of the series in these
brackets, and the term [1 — b;] is treated as the first term of the series Sys.
The function U*®) can therefore be written in the form (after neglecting the
function §):

Uu(b} = Uf(ﬁix(oo)s, S = AzsN + (1 — FQJSM s

where A = 2h/rp, and 7 = r/rq.
Both series Sy and Sy represent the Leibniz series (°) in the long-time regime
specified above. They are limited as follows:

l1-a; £ Sv £1—a;+ay,
[1=b] b2 < Sm < [1 -1,
and therefore the series S may be estimated as follows:
A21—a))+ (1 =) (1 —by] —ba) < S < A%(1 — a1 +ag) + (1 = 7)[1 — by).
()£ 0" = 0.001 (0.0001), then Toong = 0.26 (0.35).

(**) If O° = 0.001 (0.0001), then the coefficient 2 before the brackets is replaced by 3 (4).
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The series Sys is approximated (with an accuracy to O*) by its first term
Sy = [1 —by], which specifies the long-time regime and requires by to satisfy the
condition: o’

by <

- 140"
The series Sy is approximated (with an accuracy to O7) by its first two terms
Sy = 1 — a;, which requires ay to satisfy the condition a; < O7(1 — a;); one
may verify that O] < O* in the long-time regime specified above, therefore the
condition for as can be written in the form:

as < O*(l = a]_)‘

(1 —b).

The series S can be approximated as follows:
S A%21—a1) + (1 -F)(1 - b)

with the maximum possible (relative) error not exceeding

1
Ofot = g[A202 + (1 —72) b);

one can prove, using inequalities for S, az, by given above, that
Oy < 0°

in the long-time regime.

Thus, if the functions: U,‘b), sf[b), D,“(b’, f,u(b) can be approximated (with an
accuracy to O*) as it is expressed by Egs. (5.1), (5.2)2, (5.3), (5.4), then also
the function U*") can be approximated as it is expressed by Eq. (5.2); (with an
accuracy not worse than O*).

In turn, because of the time evolution of the functions 4, as it was mentioned
in Subsec. 4.2, Ineq. (3.6) in the case examined in the long-time regime specified
above may be written in the form analogous to Ineq. (4.10), with the superscript

(a) replaced by (b), @ _ by IOT](b) and 7* - by 7). If O* = 0.01 (and

short ong! long*

therefore 'r}((fﬂg = ().16), then (3%)

§0) < §(107),) = 0.980wp < 0.50°
58 < §(r® ) =0.059ew < 0.50".

ong

(5.15)

Under the assumptions O* = 0.01, and a = 1075 1/K, these inequalities read ()

5.0-102K, for the perturbed (the upper) surface,
Wai= 1 84108 K, for the opposite (the lower) surface.

(**) For 0" = 0.001 (0.0001) (), = 0.26 (0.35)) the coefficient 0.98 is replaced by 1.0 (1.0),
and the coefficient 0.059 — by 0.049 (0.039).
(*%) For O* = 0.001 (0.0001) the coefficient 5.0 is replaced by 0.50 (0.050), and the coefficient

84 - by 10 (1.3).
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Using Eq. (2.1)4 and assuming goc, = 5-10° J/(m®K), one may rewrite the in-
equality given above as the following criterion for the disturbing heat flux density
(equivalent to the disturbing heat source):

oh E(10° — 10°) W/m?, for 2h=10"3m,
©=1 EQ0° —108) W/m?, for 2h=10"2m

where F = 0.25 for the perturbed (the upper) surface, and E = 4 for the opposite
(the lower) one (3).

As far as the limitation of the heat perturbation is concerned in the long-time
regime, two additional conditions mentioned in Subsec. 5.1 should be taken into
account in the case under consideration. The first such condition (following from
the requirement that the temperature can not exceed a certain value T*) ex-
amined in an analogous way as it was done in Subsecs.4.1, 4.2 and 5.1 along
with the fact that the temperature of the perturbed (the upper) surface is a
limited function of time (as it is seen in Eq.(2.4b)s for ¢ = 1/2(%7)), leads to
the following approximate criterion:

Tl
=S NIPK

(5.16) wp 5
(b)
1— -3 eXP [— 107, ong]

IA

where T* was assumed to be equal to 100 K, and Tl( ) 4o be equal to 0.16 (or
more). Using Eq. (2.1)4 one may rewrite this mequahty as the criterion for the
disturbing heat flux density (equivalent to the disturbing heat source), obtaining
the same result as expressed by the inequality following Ineq. (5.11) with the
coefficient 0.1 replaced by 0.05. Comparison of these results with inequalities for
wy and gy obtained earlier as the criterion for neglecting the functions é in the
long-time regime, leads to the same conclusions as those in the previous case (see
Subsec. 5.1).

The second condition concerning the limitation of the heat perturbation in
the long-time regime represents the criterion for neglecting the radiation losses in
the case considered. The discussion of this problem, performed in an analogous
way as it was done in Part I (Sec. 8) (3%), leads to the criterion which is weaker

(*) If 0* = 0.001 (0.0001), then E = 0.025 (0.0025) or E = 0.5 (0.06) for the perturbed (the
upper) surface or for the opposite (the lower) one, respectively.

(*") For the value of the number series occurring here — see [2].

(**) For the problem:

%:%}?, Q(r =0) =0,
99 (¢=1) - nr-0-so(i=E). ofe=-3)-0

where 3 is explained in footnote 29.
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(by the factor of 2) than the analogous criterion in case a (i.e. the numbers 4 and
16 in the denominators in the inequality precedeing Inegs. (5.12) are replaced by
the numbers 2 and 8, respectively, and the coefficient 2 in Inegs. (5.12) — by 4).
The conclusion concerning the role of this criterion in limiting the applicablity
of the long-time approximation is also the same as that applied to the previous
case.

At the end of this subsection we note, that two remarks made at the end
of Subsec.4.1 concern the case considered here too, although in the long-time
regime they are not so important as in the case of the short-time regime.

5.3. Conclusions

Estimates given in the two previous subsections show that the long-time
regime seems to be a realistic and useful (except the cases of thin plates with bad
temperature conductors, when higher accuracy is required, especially in Case b -
see and compare estimates of Tmay in Cases a and b). It starts relatively quickly
(especially in Case a). The function U,y increases significantly with time (at
least twice when 7 increases from 7gng 10 10 iong — in both the cases). By com-
paring Inegs. (4.9) and (5.8) one may see that in Case a for O* = 0.01 and 0.001,
both regimes — the short- and the long-time ones — cover the full time range
from Tmin t0 Tmax; for O* = 0.0001 the gap between the two regimes is relatively
small. Comparison of Inegs. (4.15) and (5.14) shows that in Case b situation is
not so comfortable — the gap between the two regimes is quite large (the smaller
O*, the larger the gap).

6. Estimates for possible experiments

The thermal mirror considered may be experimentally studied by investigat-
ing at least one of the funtions F = {U,e, D = 1/f}. Each of these functions
can be experimentally investigated and interpreted using the theoretical scheme
presented, if some conditions are fulfilled. Almost all such general conditions
were mentioned in the previous sections. Here the last such condition will be
noticed and shortly discussed. This condition is rather obvious: each of the func-
tions F can be observable in a given time 7 and at least on an assumed level
F* = {U*,e*,D* = 1/f*}, i.e. |[F| > F*, if the heat perturbation is sufficiently
strong.

The observability conditions for the functions F' will be examined in terms of
the quantities (see Eqgs. (3.1), (3.7), (3.8), (2.1) and (3.2) with Egs. (3.5)): Unax
(the functions U), 4Upax /7o (the functions £), and 4Umax/r§ (the functions D =
1/f). The heat perturbation level will be characterized alternatively by one of

the quantities G¥ = {(wo)F, (2hg0)F, (Quor)Fs (Quot)T)} for each of the functions
F, where: 2hqy = Kpocp/(2h) (see Eq.(2.1)4) stands for the perturbing heat
flux density (equivalent to the perturbing heat source) applied to the perturbed
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surface, th = mre2hq (see Eq. (4.5)) — for the total perturbing power applied

to the perturbed surface, and Qiot = Qi t — for the total perturbing energy
applied to the perturbed surface during the time t = 7 (2h)?/x.

The observability conditions considered will be formulated separately in the
short- and long-time regimes, and - also separately — in Cases a and b. Thus,
using Egs. (4.1) with Eq. (4.6) and Egs. (5.1) with Egs. (5.6)2, one can write down
the inequalities: |F| > F* in the form of 12 inequalities (3 functions F' in 2 time
regimes in two cases) in 4 alternative versions (for 4 quantities G'). All these 48
inequalities can be written in the following form:

(wo)®

(2hqo)" ¥ > F*(r)SE,
i A .oF > F*(1)SE

(Qtot)

(Qu)f > F*u(r)S,m
where

[re(r)]™! (in Cases a and b) - in the short-time regime,

(62) %(r) =14 [12[eh( r] (in Case a)

- in the long-time regime
6 [4yr (T)] (in Case b)

(the functions: ¢(7) and qb(}f; (7) are defined by Egs. (4.6) and (5.6)2, respectively),
and

; = 2h R
s 2N

Suo = 3arg’

P K00Cp

2hgo — 3ar? ' = r2

(6.3) { 3 se=-258  sii= =8¢ 1

S TEN 4
Qeot Ja

U = (Bh)zwgocp
Qtut 3a b J

For the numerical exemplification of the criteria expressed by Inegs. (6.1), it
is assumed that

T = Tshort *

This assumption gives sufficient conditions for |F| > F* at the end of the
short-time regime and at least in a part of the long-time regime in Case a or in the
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whole this regime in Case b (*%). Now, assuming (as previously): a = 10~° 1/K;
£ = (107" —10*) m?/s, where the first value in the brackets concerns the worst
and the second one - the best temperature conductors; gyc, = 5-10° J/(m*K
ro = 10-2h; and

1

e U*=10%m
* = 10~4 rad;
e f* =40 m:

(f:irt =0.11, T(,?B)n_ = 0.083 (which corresponds to O* = 0.01 39));
one may obtain the minimum perturbation power (or energy) as it is given in the

table in Case a (the minimum values of wg, 2hgg and Qtot are by a dozen percent
larger, and that value of Qo is by a dozen percent smaller in Case b) (7).

for Unase > 0 o=t 4Um“ et for 4U2 > 5 for 2h =
?’0 f.
Wo  Womin _.|)6 1.5 4 10%m
A e T | 1.5 40 107%m
2hgo 2hqo,min

W/m? W/m? 3-(10 — 10%) 8-(10 — 10*) 200-(10 - 10*) | 10™*m

(1-10%)
1—103

(1 -10%) 107*m
- (1 =10%) 107%m

25.
W (1—10%) 2.5-(

107%m

Qwr. Qtot.msn 6
0-10? 107%m

J

0.25
2.5-10°

02

2 {3 «(10° — 10%) { 8+(10° — 10%) {2-(103 -10°) | 107*m
étot C}tot.min s { 1—103 { {

Comparison of the values of Qior min given above with analogous values given
in Part I (Egs. (9.3)1, (9.4)1, (9.5);) shows, that the observability conditions (in
terms of the total perturbation energy) in the cases considered here are nearly
the same as those in the case considered in Part I. However, the continuous heat
flux perturbation may be more convenient for experimental organization than
the pulsed one.

(*") Note that: Umax is a monotonically increasing function (and 1 (7) is a decreasing function)
of time; and 7ghort decreases and mong inreases as the quantity O decreases (see also the remark
on the relation between both the regimes given in Subsec. 5.3).

(*°) Let us note that wo,min, 2hqo,min and Q o, min decrease with 7, increase as O" decreases
in the short-time regime and decrease as O" decreases in the long-time regime, and Qtot,min —

inversely. The observability conditions in terms of wo,min, 2ho,min a0d @ 44 i, ecome therefore
stronger (weaker), and those in terms of Qiot,min become weaker (stronger) as 7 decreases
(increases, resp.).
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7. Possible applications to determination of the temperature conductivity
(and the surface losses coefficients)

As it is seen from the suitable formulae given above (after returning back
to dimensional time t = 7 (2h)%/k), the time evolution of the thermal mirror
depends, among others, on the temperature conductivity s of the material. Mea-
suring suitable properties of the mirror it is therefore possible to determine x.
However, as it is seen from the formulae mentioned, such a procedure performed
in an arbitrary conditions may require some additional information (which should
be known or measured), and may prove to be complicated for interpretation.

The problem simplifies in the short-time and the long-time regimes. In fact,
as it follows from Eqgs. (4.2), (4.3), (4.4) and (4.6), in the short-time regime the
quantities [U"(r = 0) — U¥(r)]/t, Ui/t, [tan(e}'/2)]/t and D}'/t = 1/(f/'t), as
referred to their values at ¢ = 0 (which may be determined by an extrapolation
of the suitable experimental data to ¢ = 0) are linear functions of v/ with
the coefficient (at v/#) equal to 4\/x/(2h/7). Measuring the evolution of these
quantities one may therefore determine this coefficient and, knowing it and the
plate thickness 2h of the plate — find the values of s of a given material.

Analogously, as it follows from Eqs. (5.2), (5.3), (5.4) and (5.6), logarithms of
the absolute values of the time derivatives of the quantities U"(r = 0) — U%(r),
Uy, tan(ef/2) and Df' = 1/f in the long-time regime are linear functions of
t with the coefficient (at t) equal to m2x/(2h)? (in Case a) or m°x/[4(2h)?] (in
Case b). Measuring the evolution of these quantities one may therefore determine
this coefficient and, knowing it and the plate thickness 2h — determine & of a
given material.

Additionally let us briefly note that one may think also on applying the
thermal mirror considered to experimental determination of the surface losses,
if the temperature conductivity of a given material is known. In such a case the
thermal problem is formulated as follows:

i_fszf. or=0, G (¢=3)=Hr-0-po(c=3),

Here H(r = 0) stands for the Heaviside step function, and g ~ for the dimen-
sionless surface losses coefficients (in particular case, when the plate loses its
energy through its main surfaces by heat radiation only, f; = 2 = [, where,
in turn, 3 is defined in Footnote 29). Solving this problem (by applying the
Fourier method of separating the independent variables) and calculating the op-
tical characteristics by means of the general formulae given earlier, one may
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conclude that for a sufficiently long time, logarithms of the absolute values of
the time derivatives of the quantities U%(r = 0) — U%(r), U,, tan(e}/2) and
D} = 1/ f* are linear functions of t with the coefficient (at t) equal to uf /(2h)?,
where p1; is the first positive solution of the following characteristic equation:
tanp = p (By + B2)/ (4% — B1 B2) (in case a) or: tanpu = —u /B (in case b). From
measurements of the time evolution of the quantities mentioned one may there-
fore determine the quantity p1. Then from the characteristic equation for p one
may determine (35 = p; tanpy, if §; = 0 (an ideal thermal insulation on the per-
turbed surface), or #y = py tanpy, if B2 = 0 (an ideal thermal insulation on the
opposite surface), or ; = —p;/ tan py, if f2 = oo (ideal losses on the opposite
surface, realized for instance by a thermostate, as it was assumed in case b).

8. Final remarks

Remark on the criteria for neglecting the distortion of properties of optical
mirrors due to absorption of light, as well as general conclusions are analogous
to those presented in Part 1.
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