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FIFTY YEARS OF THE ARCHIVES OF MECHANICS

Continuum damage and failure evolution in inhomogeneous
ceramic rods

J. NAJAR and V. SILBERSCHMIDT (MUNICH)

A WELL-POSED CDM model and an adequate representation of deterministic and
random inhomogeneity factors, combined with an efficient numerical algorithm of
modified lattices, yield a realistic simulation of the rupture properties of alumina
ceramic specimens at tensile tests. Effects of energy dissipation and acoustic emission,
the load-carrying capacity and the post-critical response are analysed in dependence
of the heterogeneity realisations, which are related to the initial damage distribution
within the specimen. This distribution is shown to be a crucial factor determining
the response of brittle damaging ceramics at rupture.

1. Introduction

THE MECHANICAL RESPONSE and failure of brittle materials, monolithic alumina
ceramics in particular, are commonly described by means of linear elasticity
capped by some rupture condition [1]. Basically, models of this kind are not in
the position to explain various experimental observations; these are e.g. acoustic
emission and energy dissipation at subcritical loads [2, 3], excessive energy spent
at rupture, as compared with single crack-based fracture energy estimates (4],
post-critical response [5], size effects in the rupture strength [6], and many others.
On the other hand, continuum damage mechanics (CDM) models [7], although
reflecting some of the above effects, seem to be not flexible enough to encompass
the whole variety of experimental observations, as long as the most fundamental
feature of these materials, namely, their inhomogeneity, is not properly accounted
for.

The aim of the present paper is to show that a well-posed continuum damage
model, 8, 9], and an adequate representation of the deterministic and stochastic
factors influencing the inhomogeneity of a sintered ceramic rod, combined with
an efficient numerical procedure, result in a realistic simulation of the rupture
properties of an alumina specimen in uniaxial tension. The results show also
the influence of various realisations of the inhomogeneity on the rod rupture
evolution.

The calculations presented in the paper are based on the simulations of the
experimental results, [4], obtained with sintered cylindrical specimens of alu-
mina ceramics (diameters 4 to 12mm, grain size 10 — 20 pm, tensile strength
ca. 300 MPa, compressive strength ca. 3000 MPa, Young modulus 350 GPa); for
computational details see [10]. Micromechanical aspects of the damage model
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22 J. NAJAR AND V. SILBERSCHMIDT

(8, 9], to be presented in Sec. 2, are not discussed in the paper. The applied dis-
cretisation, Sec. 3.1, represents rather a mesoscale model (discrete element size
ca. 300pm as compared to the grain size), mainly of the inhomogeneity and
randomness of mechanical parameters, Sec. 3.2, as well as mechanisms of local
failure development and energy balance of interactions between the elements,
Sec. 3.4.

2. Damage evolution law and local failure condition

Basic results on the continuum damage model for brittle ceramics presented
in [8, 9] are recalled and extended in this section. The stress-strain relation for
uniaxial tensile loading

(2.1) o= FE(1 - D)e,

contains the damage variable D, which is governed by the damage evolution law

E¢?
(2.2) D = Dyexp (2W‘)'

Here, Dy denotes the initial damage at the onset of the tensile deformation € in
the current tensile loading branch of the process; the parameter W*, character-
ising material’s intake of the energy at damage, is denoted further as damage
absorbing capacity. The stress-strain relation at damage (2.1)-(2.2) reaches a
maximum, see Fig. 1, at the damage value D,,, which can be calculated from the
relation

Dm - 1
2 D e =0
2.3 mexp (=) = Dy
depending thus solely on the initial damage Dy. The corresponding values of
stress o, and strain &,, characterise the load-carrying capacity and material’'s
compliance. The latter can be expressed as a function of initial damage D, by
the relation

[2W* Dy

Expressions (2.3), (2.4) serve as the basis for the determination of the falure
criterion in damage. It can be shown, namely, that shortly beyond the siress
maximum (m) the uniaxial extension becomes unstable at a point (s) of a
strain-controlled process, Fig. 1. Therefore, it can be further assumed that at
arriving at the (m)-point, the material undergoes a rapid decay and the damage
grows from the value D,, to the nominal value D = 1 corresponding to complete
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F1G. 1. Stress- and damage-strain curves at tensile loading, unloading and rupture;
data for alumina ceramics: E = 350 GPa, W* = 59 kJ/m?; initial damage Dy = 0.73%
corresponds to a,, = 350 MPa and ¢,, = 0.1%.

failure. Although at increasing initial damage Dy the failure damage D, also

increases, cf. Eq. (2.3), the load-carrying capacity o, and the strain at failure
em drop substantially, Fig. 2.

At a strain increment from ¢; to €3, deformation work is performed

£2
= — E 2 2 * E‘E% EE%
(2.5) AW, = [crds =i (52 — sl) — DoW (exp s~ P oys |
€1

It can be split into increments of recoverable strain energy AW, and the dissi-
pation related to material damage and associated acoustic and heat losses [8].
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FiG. 2. Damage D,, and strain £, at failure, in dependence of the initial damage Dy
(data for alumina, see Fig.1).

At modest compressive loads, or in unloading from tensile branches of the
process, the ceramics follow the incremental Hooke's law Ao = FAe, where E
denotes the Young's modulus of the undamaged material [8]; here, no change of
damage and no dissipation increment take place. The recoverable strain energy
released at complete unloading from a stress o equals o /2E. Failure at o,, leads
to the release of the whole stored energy o2 /2F in a violent event.

Consider partial unloading from the state characterised by stress o and dam-
age D to the stress o, > 0, see Fig.3. Under the branch-invariance conditions
discussed in [9], it follows that the state of damage remains unchanged, i.e.
D, = D; the strain ¢, undergoes a shift de; to a secondary state of reference 0,,
from which the secondary strain € is counted. The secondary state corresponds
also to a secondary initial damage value Dy,. The following relations are valid
for these quantities:

2.6 o — ~0—t+ED,
E
E. — €D
2 =] PEe A
(2.7) R e
D
(2.8) e, = 75l —e),

E¢?
(2.9) Dys = Dexp (~ 2W*)'

During the partial unloading, the following amount of strain energy is released,
see Fig. 3:

(2.10) AW, = % (02 — af) = %[e. + (1 —2D)] (¢ — &4).

The tensile reloading branch, which begins at the state (o,, D) is governed by
the branch-invariant relations Eq. (2.1) -(2.4), as applied to the secondary initial
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F1G. 3. Partial unloading and reloading in tension (data for alumina, see Fig.1);
the secondary reference state 0, corresponds to the strain shift Ae,, Eq. (2.8).

damage Do, and the secondary strain e, while preserving the material parame-
ters E and W+,

3. Formulation of the problem

A ceramic cylindrical rod will be considered under the conditions of a uniform
extension. The modelling of the rod inhomogeneity within its cross-section is
based on the combination of a discretization procedure, given in Sec.3.1, and
the material modelling presented in Sec. 2, as applied to single discrete elements.
This is complemented by an analysis of the initial damage distribution within a
ceramic rod based on experimental data, Sec. 3.2, and by modelling of element’s
interactions at extension and local failures, Sec. 3.4.

3.1. Discretization

A nonuniform distribution of microdefects in a ceramic rod must result in its
inhomogeneous response even at uniform uniaxial extension. A 2d-formulation,
with parameters of the ceramics depending on the position within the cross-
section, becomes thus necessary for the analysis of its damage evelution. Such
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formulation is implemented in this paper for a cylindrical rod by means of a
cross-section discretization into elements of equal area, Fig.4. The size of the
elements must secure the applicability of the continuum damage model presented
in Sec. 2. In the following computations, corresponding to the evaluations of the
ceramics test presented in [4], the typical size of the elements is ca. 300 um, as
compared to the grain size of the alumina not exceeding 20 pm, which seems to
fit well the above mentioned condition. A 3d-discretization, although basically
possible, is not presently considered due to the lack of particular data on the axial
distribution of the inhomogeneities along ceramic specimens under investigation.

FiG. 4. Cross-section discretisation for N =4, M = 81; double indexation of elements
facilitates the local failure interaction analysis, see Sec. 3.4.

The cross-section of radius R is divided into N rings of elements, with a
circular central element of radius rg = R/(2N + 1); all other elements have the
radial height h = 2rg and the angular width 8 = 7/4k. Here, k denotes the ring

number, with k& = 1 for the ring next to the central element and k = N for the
N

external ring. The cross-section is divided thus into M =1+ 8 Z k elements,
k=1

each having the same area of mR?/M. Element dimensions are chosen to meet

the requirements for a representative unit cell, being small enough with respect

to the characteristic length R of the macroscopic field of the rod, and sufficiently

large as compared to the size of the microscopic structure of the ceramic material.

3.2. Inhomogeneity

Two main factors determine the features of the distribution of mechanical
properties in the rod cross-section:
a) general heterogeneity, linked to the randomness of imperfections in ceram-

ics [11];
b) specific radial distribution, due to the rod-manufacturing technology.
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For the case under study, we may assume that all the nonuniformity of the
process is based on the features of the initial damage distribution. For the given
ceramic material it is, namely, this parameter that influences both the damage
accumulation and the response at failure, see Sec. 2. Introducing a 2d-distribution
of initial damage, and putting it at the basis of the two above factors, we express
the rod response problem in terms of a 2d stochastics.
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F1G. 5. Initial damage distributions: a) deterministic, over rod radius; b) random,
over circumference; exemplary realisation at ring k = 8, with scatter band width
constant k, = 0.1.

In order to model the Dgy-distribution, we recall the elementary notion of
damage as a volumetric ratio of voids in a material [12]; the ratio is inversely
related to the material’s density. We take the radial distribution of density in
sintered rods [13] with its drop from the centre to the periphery of the specimen
as indicative for the following initial damage function of the radius r:

: i v el AP
(3.1) Do(r) = DP® 4 (DP** — D§™") sin® B
Here, D{f‘i“ relates to the maximum material density, i.e. to the lowest level of
initial defects, in the rod centre, while DF*** corresponds to lower density at
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r = R, Fig.5a. A reference value

M—00

(3.2) Dy = %/Do dA = (DE)|
A

for the distribution (3.1) is given by

3 : , 2 1
Do — Dg:m + (D(r]nax e Dg]lﬂ) (;2_ + 5)’
corresponding in the discretization to the M — oo limit of the initial damage
Dy (i = 1,..,M) averaged over all M elements; (3.2) means averaging over
the cross-section area A. The reference quantity Dy can be used for comparing
various discretization and statistical realisations.
To account for the randomness in the 2d-distribution of defects, we introduce
a stochastic sample of the initial damage within each ring separately. It is based
on the experimental observations, [13, 14], showing a substantial density scatter
within sintered specimens. Here, uniform probability distribution of Dy within a
range [Df™; DE™aX] j5 assumed for each k-th ring separately. The bounds are
related to the Dy(r)-dependence given by Eq. (3.1), and take the form

k min
D{)

(33) ngax

} = Do(ro(2k F 1))(1 F ky),

where k; 1s a scatter band width constant. In numerical simulations, a random
number generator is used for the distribution of initial damage. A typical distri-
bution is shown in Fig. 5b.

3.3. Damage evolution in elements

The cross-section discretization and the distribution of Da over the elements
imply the application of the constitutive equations (2.1) - (2.3) to each i-th ele-
ment separately in the form

o' = E(1 — DY),

. : E¢?
4 DY =Dhe — |,
(3.4) 0 €Xp (2W‘)

q Dk = .
D:nexp( ;"D‘. ) = i=1,..,. M.
i m

It is assumed here that all the elements in the cross-section are exposed to the
same external strain £. They exhibit the same material properties regarding the
elasticity modulus E and the damage absorbing capacity W*. The differences in
the response of the elements are in the first stage of the loading solely due to the
initial damage distributions (3.2) - (3.3).
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The situation changes somewhat as soon as the rod extension e arrives at
the strain-at-failure €); of the weakest w-th element with the highest initial
damage within the cross-section, cf. Eq.(2.4). In order to further the numerical
simulation of the rod response under tension, Eqs. (3.4) need to be now completed
by interaction-at-failure conditions for the elements.

3.4, Local failure and interaction of elements

Until the failure of the w-th element, see Sec. 3.3, there is no interaction be-
tween the uniformly extended finite elements assumed to be in the uniaxial state
of strain. With the failure of the first element, considered within the framework
of the damage model described in Sec. 2, the standard situation is the following
one: an i-th element, with a higher initial damage D} than all p elements in
its vicinity, reaches its respective failure strain e sooner than any j-th element
of the neighbourhood, compare Eq.(2.4) and Fig.2. Upon reaching the state
of failure, the element loses its carrying capacity, and its damage catastrophi-
cally grows from D} to the nominal level D' = 1 corresponding to 0! = 0, see
Eq.(2.1).

Such events occur randomly in various regions of the cross-section and at
various instants of the strain history. Each spatially separate event increases the
connectivity of the region under study. These features make the use of estab-
lished numerical codes based on the finite elements method (FEM) rather cum-
bersome; the modelling would demand a reformulation of the boundary-value
problem nearly at each strain step after the first element’s failure. An alter-
native is provided by utilisation of the modified lattice algorithms, developed
originally in statistical physics, and lately applied in stochastic fracture prob-
lems, [15, 16]. An advantage of this approach lies in the possibility to analyse
highly heterogeneous media and complicated failure morphology. Recently, this
modelling approach has been considered in the analysis of the macroscopic re-
sponse to the development of defect ensembles in disordered brittle materials
under stress-controlled tension [17, 18], as a unification of the CDM and lattice
algorithms.

In order to describe the strain-controlled process, the following simplified
algorithm is suggested, Fig. 6. The failure of the i-th element results in a violent
release of its stored elastic energy, 0;2/(2.8), see Sec. 2. The energy is transferred
to p nearest neighbours possessing a common boundary with the failed one. It
is equally partitioned between them, independently of the size of their contact.
The j-th element, which has been in the state 1, (¢,07, D{), receives thus at best
a (1/p)-th share of the released energy. Under unconstrained circumstances, the
energy share is transformed into the deformation work performed on the j-th
element, see the area under the stress-strain curve segment 1 - 2, Fig.6. The
state 2, (¢,0%, D}), corresponds to the increments in strain del, stress 6o and
damage 5D/, cf. Egs. (2.5) and (3.4).
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F1G. 6. Energy release at failure of the i-th element and interaction with the j-th
element: loading 1 - 2, unloading 2 - 3, acoustic crackling emission.

Due to the kinematical constraint of the common external strain £, however,
the j-th element must undergo simultaneously an unloading by the strain decre-
ment —d§e’, resulting in the relaxation path 2 - 3, Fig.6. The element returns
to the strain ¢, although at lower stress o3, and remains at the damage value of
D} = DJ. The energy released at this relaxation process, cf. Eq. (2.10), causes
acoustic effects, further referred to as crackling.

The energy flux due to the failure of one element induces thus in all neighbour-
ing elements transitions analogous to the path 1 - 2 - 3: from their respective
states 1, the elements undergo intermediate loading I - 2, followed by relaxation
2 - 3. Has one of the neighbouring elements been already broken in a previous
event, its share of the violently released energy is irradiated directly into the
environment as an acoustic snap.

The energy balance for the j-th element in the vicinity of the failed i-th
element is

(3.5)

02| b

(

2 2 i2
32 8\ - pinre By _ . EE) _on
& — & ) D; exp T exp e 2Ep
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cf. (2.5), and yields the strain e{; at the state 2. The resulting damage in state 3

;2
R Ee]
3.6 D} =D =D} 2
{ } 0 €Xp |:2W‘]

and the relaxation 2 - % lead to a secondary state of reference [9], with a strain
shift

: D! :
Ji= 2 o
(3.7) A = = Dg (52 s) ;

cf. Eq.(2.8) and Fig. 3, and to a secondary initial damage, cf. Eq. (2.9)

<2
_ : Eel
(38) Dy, = Djexp {‘ 214;.],

where ¢J = ¢ — Ael is the secondary strain in the j-th element, cf. Sec. 2.

The damage increment in the j-th element may lead to the damage D},
Eq. (3.6), exceeding the respective damage at failure D;"R(Dg,), see Eqgs. (3.4)
and (3.8). This would mean that the local failure of the i-th element induces the
failure of the j-th element. The latter, in its turn, may further induce failures

in its own neighbourhood. Thus, a cascade of events of local failures can be
generated.

4. Numerical realisation and results

In the numerical realisation, extension of a cylindrical rod made of alumina
ceramics Al23 (Frialit - Degussit), tested in [4], has been modelled. The material
data E and W* have been taken according to the average response of the tested
specimens. At 12 mm diameter, the cross-section has been divided into 20 rings
with 1521 elements, cf. the procedure of Sec. 3.1. The characteristic size of the
element is thus about 300 pm, i.e. by an order of magnitude larger than the
mean grain size (10 — 20 pum) in the ceramics, allowing for the application of the
CDM model to single elements. A program assigns to each element not only its
“global” number from 1 to M but also a pair of indices, cf. Fig. 4, denoting its
ring and position within the ring. An effective algorithm for finding the nearest
neighbours has been based on it, generalising the experience with orthogonal
grids in [17, 18]. _

In the first step, initial values of damage D} are distributed with the use of a
random number generator on the basis of relations (3.1), (3.3). In the following
examples, we take ky = 1, which results in the presence of some initially un-
damaged elements in each ring and thus in an overestimation of the post-critical
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deformation. In order to exclude the effect of the variation of the mean value
: fo ke

4.1 DAy =-——"%"Dt

( ] ( 0) M E 0

for different realisations, the random values D} are corrected by multiplication
with a renormalisation parameter ken = Do/(D}), cf. Eq. (3.2).

The next step is the determination of the local failure conditions for all ele-
ments from the relation (3.4);. Applying in steps equal strain increments Ae to
all elements, we obtain that damage evolves with different rates, see Eq. (3.4)2,
due to different initial conditions. The evolution in the elements is independent
of each other up to the moment of the first local failure.

Here, a transition according to Sec. 3.4 takes place in the neighbourhood of
the weakest element w = 1. The solution of Eq. (3.5) with respect to £} is carried
out by an iterative Newton procedure, until the criterion “5‘;(”1} - e::,(q}H <
ae is fulfilled. Here, q is the step of iteration, parameter o equals 107% in our
simulations.

After each event of local failure and interaction, see Sec. 3.4, the neighbour-
hood is examined with the purpose to check the induced failure conditions, and
to account for the possibility of a failure cascade. After the completion of all
cascades within the current step, the value of the load is computed as

M .
F= Ael Zal}
i=1

where Ag is the element area. Also, the current damage level D is obtained by
averaging of D’ over all elements by a formula analogous to Eq. (4.1), and the
number of failed elements n is calculated in the cross-section. To the elements,
which have undergone the 1 - 2 - § - transition, the algorithm assigns their
secondary strain £, and secondary initial damage Dy, values to be reckoned with
at further steps.

At this instance, the algorithm goes into the next step, resulting in depen-
dences F(¢), D(¢) and n(e), see Fig. 7. The load-strain relation, Fig. 7 a, demon-
strates a response that is characteristic for brittle ceramics [1]: a practically lin-
early ascending loading curve arrives at the limit which may be identified with
rupture load, followed by a rapid descent. The latter can be roughly subdivided
into two stages: a sharp drop after the rupture load, and a tail of dropping resid-
ual load-carrying capacity. This result follows alone from the collective response
of the set of elements exhibiting the CDM properties under consideration: no
specific rod rupture cap was needed in these simulations.

A comparison of F(g) with D(g) and n(e) explains the strongly non-linear
behaviour. After the monotonous damage accumulation, stage 1, Fig.7b-c, a
substantial share of elements approaches the pre-failure state. A relatively small
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F1G. 7. Computational results for Dy = 0.73%, in a 12mm diameter ceramic rod (data
for alumina, see Fig.1): a) load F, b) mean damage D, ¢) number of failed elements n,
as function of rod extension ¢.

increase in the strain e causes now an extensive process of element failures, stage
2, enhanced by the energy release effects, Sec.3.4. Elements with low initial
damage (close to ilﬁf DE™) are responsible for the third characteristic stage

of the curve: an extended post-critical response of the few remaining elements.
These three stages are reflected also in the D(¢) diagram, see Fig. Tb.
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F1G. 8. Radial distributions of (a) the damage (mean values in rings) and (b) the
number of failed elements (percentage of elements in rings), in dependence of rod
extension.

Figure 8 demonstrates the evolution of radial distributions of damage and of
the number of failed elements in rings. It is obvious, that damage at the stage 2
of extensive failure shows a high extent of localisation in peripheral rings (here:
above ¢ = 0.085, Fig. 8a). This is also reflected in the localisation of the number
of failed elements (Fig.8b): failures occur initially in external rings only; with
the strain development they increasingly take place in the central rings.
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Fic. 9. Comparison of load-extension curves (specimen data, see Fig.7) for two
opposite radial distributions of the initial damage Dy at the same value Dy = 0.73%;
for the dense core specimen, see Eq. (3.1); for the dense periphery specimen, D§'**
isatr=0:

In order to analyse the effect of the type of randomness on the mechanical
response of ceramics, let us study an opposite radial distribution of initial dam-
age. We assume now the maximum of Dy in the rod centre, and its minimum in
external rings, i.e. consider a rod with a denser periphery than its core, compare
Sec. 3.2. The resulting rupture load and the post-critical response, Fig. 9, differ
substantially from the previously studied case. At the same level of mean initial
damage Dy, Eq. (3.2), the load-carrying capacity of the rod with a more porous
core is by 10.3 percent lower than that for a more dense core, and the respec-
tive strain value is also lower by 9.5 percent. On the other hand, the descending
branch of the F(g)-curve is more protracted for the rod with more porous core.

The analysis of the released acoustic energy at failure evolution, Fig. 10, ob-
tained by our numerical simulation, reflects the non-uniformity of the process.
The distribution of the irradiated energy density over the strain closely reminds
the data on acoustic emission in ceramics [2, 3]. With the progress of rod exten-
sion, the snapping component of the energy increases faster than the crackling
one, cf. Sec.3.4. It is the result of the advancing failure of elements and the in-
crease of the connectivity of the cross-section, at which the relative portion of
unbroken elements in immediate neighbourhoods at local failure events continu-
ously diminishes.
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F1G. 10. Energy release at elements’ failure, interpreted as acoustic effects of crackling
and snapping, as functions of rod extension.

One of the much discussed problems of the mechanical response of damaging
materials is the analysis of their unloading properties in the post-critical state.
According to most CDM models, e.g. (7], the unloading modulus of a damaged
material is Ey, = E(1 — Dy), where D, denotes the damage at unloading. The
non-unique relation between E,, and D,, would yield thus the basis for experimen-
tal determination of damage, mostly for ductile materials, [7]. Experimental data
on unloading in brittle materials are limited mainly to the bending of notched
specimens with initial cracks [5], while data on uniaxial tensile tests with smooth
specimens are practically nonexistent due to the difficulties, [19], connected with
the extremely low strain-to-failure values in ceramics and to their rapid rupture.

In our numerical simulations, unloading was performed at a certain share of
failed elements (between 5 and 70 percent) in the cross-section, Fig. 11. Thus, the
unloading begins at some load F, and strain ¢, of the descending branch of the
load characteristic, and can be characterised by the corresponding mean damage
D, exceeding the damage at the onset of rupture. The slopes of the unloading
branches steadily decrease with the increase of D, and with the advance of
the rupture. They yield some non-vanishing residual strain ¢, which seems to

http://rcin.org.pl



CONTINUUM DAMAGE AND FAILURE EVOLUTION IN INHOMOGENEOUS RODS 37

|

L e e o s i

35

")
o
i

0 PG o (AL I A i L P e L e

0_ : I| ..... ;1{.11111|||=|||||||11i:||11||t||
|

0 0.02 0.04 0.06 0.08 0.1

strain, %

F1c. 11. Unloading characteristics at a given percentage number of failed elements
(specimen data, see Fig. 7).

be nearly independent of D,, although it clearly depends on the choice of the
inhomogeneity realisation, cf. Fig. 9.

However, the dependence of the unloading slope on the mean damage at
unloading D, differs substantially from the predictions in [7]. Moreover, there is
an obvious difference in the dependence of the slope on D, for the two different
inhomogeneity realisations discussed above. Let us compare the mean unloading
modulus

E, = R ¥he

Ay — &r)
with the value E(1 — D,), as predicted in [7]; Fig. 12 presents their ratio against
the mean damage at unloading D,. We observe that in both inhomogeneity
realisations, the unloading modulus steadily exceeds the predictions by values
up to more than 10 per cent. This indicates that a phenomenological extraction
of the damage values from measurements in unloading must be done with care;
it may yield doubtful results when no data on the inhomogeneity distribution in
specimens are available.
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F1G. 12. Comparison of the mean unloading modulus E,, and the quantity £(1 — D,)
based on the mean damage D, at unloading, for two radial distributions of Dy,
compare Fig. 9.

5. Conclusions

The proposed 2d approach, based on the damage evolution law [8] as applied
to a set of discrete elements with deterministically and randomly distributed
initial damage, allows for efficient numerical simulations of a whole range of
characteristic response features of brittle specimens. The qualitative differences
in response between homogeneous and heterogeneous specimens become quite
obvious in the proposed numerical procedure, [17], since the process can be fol-
lowed in all details concerning each single element of the system.

For the particular problem under consideration, it has been shown that certain
characteristics of the damage evolution and rupture strongly depend on the kind
of the cross-section heterogeneity of the specimen. This should be treated as a
call for caution at certain CDM interpretations of experimental results, which
may lead to doubtful conclusions when the type of inhomogeneity within the
tested specimens is not known a priori.

The tensile rod simulations presented here can easily be extended to the study
of heterogeneity scale effects, i.e. the dependence of the rupture strength on the
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specimen size, [10], damage evolution and failure in ceramic beams and similar
problems. The procedure contains further capabilities with regard to unloading
and reloading under strain-controlled conditions, being thus potentially applica-
ble to problems of cyclic fatigue. Finally, the applications of the procedure in
composite mechanics represent an obviously important field of further research.
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