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Symmetric forms of the equations of heat transport in a rigid
conductor of heat with internal state variables
I1. Alternative symmetric systems

W. LARECKI (WARSZAWA)

IN PART I OF THIS SERIES, it has been shown that the field equations corresponding
to the model of a rigid conductor of heat with (vector) internal state variable subject
to the entropy inequality can be represented as the respective system of N +1 conser-
vation equations for N unknowns, on which the “main dependency relation” (MDR)
is imposed. In this paper (Part II), it is demonstrated how two families of symmetric
systems corresponding to the consistent system of N conservation equations (family
of symmetric systems for original unknowns and the family of N + 1 symmetric con-
servative systems for transformed unknowns) can be directly derived with the aid of
the MDR. The condition of equivalence of symmetric systems to the original system
of conservation equations is analysed and alternatively formulated. For the consid-
ered model of a rigid conductor of heat, the conditions on free energy that assure
symmetric hyperbolicity of symmetric systems are established, and it is shown that
they are stronger than the conditions required for equivalence of symmetric systems
to the original system of conservation equations. Two alternative symmetric con-
servative systems are derived for the considered model of a rigid conductor of heat
and the conditions of symmetric hyperbolicity for those systems are established with
the aid of the relation between convexity (concavity) of the respective generating
potentials, and with the aid of the relation between symmetric hyperbolicity of the
symmetric systems for original unknowns and symmetric conservative system for the
transformed unknowns.

1. Introduction

IN PART I OF THIS PAPER [1], we have shown that the field equations corre-
sponding to the model of a rigid conductor of heat with vector internal state
variables, with the Clausius- Duhem entropy inequality taken into account, can
be represented by an overdetermined system of conservation equations (N + 1
equations for N unknowns)

019 (uK) + Dag™A(uF) = BA(K 1, X7),

(53
(ed) A= 1,2 0. N4, K =120 o =12
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where N =4, m = 3 and
W] = 8,4,
[¢°4(w)] = [00E (6, wp), 7w, 007 (6, wp)],

1
(1.2) 54K )) = [a7(0,05), ~11(0)8%, 576 s)]
" (w8, X*)] = (007 (8, wg, t, X), crwy, 005 (6, wp, t, X)),
‘T‘ 6 - 1?2’ 31

on which the “main dependency relation” (MDR) is imposed. In Egs. (1.1), (1.2)
6(t, X*) represents the temperature field, w(t, X*) = [w,(t, X®)] is the field of
internal state variables. In this model fy, &, g%, 7, and & are postulated as the

constitutive functions
=

E= €(91 w"(]! q 60(91 w"!)! T= F(g'w'}"t‘xa)‘
n=1(0,w,), ¢ =o(0,wy,t,X%), fi = fi(6).

(1.3)

The first equation of the system (1.1), (1.2) corresponds to balance of energy, the
next three equations are the components of the evolution equation for internal
state variable w, and the last equation can be interpreted as the equation of
balance of entropy.

In this paper, the possibilities of expressing the system (1.1), (1.2) in the
form of symmetric systems of the first order partial differential equations are
investigated. The emphasis is put on the employed method of symmetrization
which directly leads to alternative symmetric systems. This method is based
on direct application of the MDR which, as we have proved in Sec.3.2 of Part
I, can be used for derivation of thermodynamic restrictions. From the point
of view of thermodynamics, the MDR formulated by FRIEDRICHS (2], can be
regarded as a generalization of the “entropy principle” of extended thermody-
namics of MULLER and LIu [3, 4, 5], in the sense that it assigns an analogue
of Lagrange - Liu multiplier also to the balance of entropy. The advantage of
employing the MDR instead of the “entropy principle” is that it enables one to
derive equivalent (for classical solutions) alternative symmetric systems directly.
In this approach, a family of symmetric systems (parameterized by real differen-
tiable functions) with respect to original dependent variables as well as a family
of N + 1 symmetric conservative systems with respect to transformed dependent
variables can be obtained, offering a possibility of selecting or constructing sym-
metric systems optimal from the point of view of the chosen numerical method
and /or which are most suitable for the considered initial-boundary value prob-
lem. The symmetrization may be utilized in the design and analysis of numerical
solutions. As it is mentioned by HARTEN [6], it offers the possibility of linearizing
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locally the equations in a way which preserves the hyperbolicity and conservation
properties if the symmetric system is in the conservative form. Since the Cauchy
problem is locally well-posed for the quasi-linear symmetric hyperbolic systems
[7, 8], symmetrization enables the application of this result provided that the
condition of symmetric hyperbolicity is satisfied.

In Secs.2.1, 2.2 and 2.3 we recall restrictions on constitutive functions (1.3)
and the family of solutions of the “main dependency relation” derived in Part 1.
Then, in Sec. 3.1, the general procedure of obtaining symmetric systems for the
original unknowns is presented and a family of symmetric systems with respect
to [0, w,], parameterized by differentiable functions is given in Sec. 3.2.

The condition of equivalence of the symmetric systems to original system of
conservation equations is discussed in Sec. 3.3. Two Observations, which provide
alternative formulation of this condition are proved with the aid of three Lemmas
given in the Appendix A. Then, in Sec.3.4, the restrictions on the free energy
Ve (6, w,) that assure equivalence of the symmetric systems for [f,w,] to the
system (1.1), (1.2) are derived. Further conditions on the free energy @0(9, W)
that assure symmetric hyperbolicity of the symmetric systems for [0, w,] are
derived in Secs. 3.5.1 - 3.5.4. It is shown that the restriction on ':T;C(G. w~) imposed
by the condition of symmetric hyperbolicity is much stronger than the condition
ensuring the equivalence of the symmetric systems and the original system of
conservation equations or, in other words, that symmetric hyperbolicity implies
equivalence to the original system of conservation equations (1.1).

In Secs.4.1.1, 4.1.2, we present the general procedure of simultaneous deriva-
tion of N + 1 alternative symmetric conservative systems corresponding to the
system (1.1) that satisfies the MDR. Taking into account Observations stated
in Sec. 3.3, we show that the condition of equivalence of symmetric systems for
original unknowns to (1.1), together with the assumption that (1.1) contains N
independent equations (is determined), suffices for transformation of (1.1) into
symmetric conservative form in N + 1 ways. In Sec.4.1.4, we derive the gen-
eral relations between alternative symmetric conservative systems that enable
transformation of the given symmetric conservative system into the remaining
N symmetric conservative systems, as well as to establish the relation between
convexity (concavity) of the respective potentials (hence, symmetric hyprbolicity
of those systems).

The procedure developed in Secs. 4.1.1, 4.1.2 is employed for derivation of two
alternative symmetric conservative systems governing heat transport in a rigid
heat conductor with (vector) internal state variable. The first one (Sec.4.2.2)
corresponds to the case of the equation of balance of energy treated as the ad-
ditional conservation equation implied by the equation of balance of entropy
and the equation of evolution for the internal state variable, while the second
(Sec.4.2.3) corresponds to the case of the equation of balance of entropy treated
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as the additional conservation equation implied by the equation of balance of
energy and by the equation of evolution for the internal state variable. The
possibility of interchanging (“switching”) the role of the (“original”) conserved
quantity (like energy) and the role of the additional (“derived”) conserved quan-
tity (like entropy) in analysing systems of conservation equations admitting the
additional conservation equation (“equations with convex extensions”), was for
the first time discussed by FRIEDRICHS and LAX [9].

Finally, the conditions of symmetric hyperbolicity for both the symmetric
conservative systems are established with the aid of the relation between the
respective potentials generating those two systems (Sec.4.3.1), and with the
aid of the relation between symmetric hyperbolicity of the symmetric system
for original dependent variables and the corresponding symmetric conservative
system (Sec.4.3.2). The proof that one of the potentials is covex (concave) if and
only if the second one is concave(convex) is given in the Appendix B.

It has been shown in Part I that the model of a rigid conductor of heat
with (vector) internal state variable considered here comprises, as special cases,
various phenomenological models proposed in the literature. In particular, the
equations (1.1), (1.2), (1.3), when supplemented by the respective involutive con-
straints, can be interpreted as corresponding to the special case of the model of a
rigid conductor of heat with scalar internal state variable called “semi-empirical
temperature”. Symmetrization of the first-order system of equations correspond-
ing to the more general version of the “semi-empirical temperature” model (five
conservation equations for five unknowns) has been considered by DOMANSKI,
JABLONSKI and KOSINSKI [14] with the aid of the converse to the condition of
Friedrichs and Lax, and the results obtained there are discussed by the author
in a separate note [15].

2. Basic equations, restrictions on constitutive functions and solutions
of the MDR

2.1. Basic equations in a matrix form

Performing the respective differentiation, we rewrite the system (1.1) in a
matrix form

A%y () ouM + A“AM(uK)aauM = bA(uK,t.X“),

_ag(}A(uK)
T guM

(2.1)

A pr (uF) Ay (") =
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with the 5 x 4 matrices [A%1 4], [.A"AM] of the form
[ 0g € o€ 0 “
2o a0 20 By 20 D 20 Bws
o 0 T 0 0
[AUAn-f] = [gﬂ_‘”} - 0 0 T 0 )
0 0 0 T
on  on an on
(22) 9059_ Oé‘w] ng 2 6‘11)3 A
- o G 0P O T
E 8‘{01 ng 8103
—6%, f1(0) 0 0 0
424 y] < [ﬂ‘ﬂ] = | —d%f(6) 0 0 0
uM fi
—46%3f1(8) 0 0 0
P 1 5™ 19> 105> 1ag*
LBt EW 600w, 600wy 6w

For completness, we recall that, according to FRIEDRICHS [2], the MDR requires

the existence of N + 1 functions y4

:RY 5 R, 4 =1,2,...

identically zero, such that (Property CI in [2])

(2.3)

holds for all functions u® (¢, X®), K =1,2,...

9 OA(uK
K\9%9
ZICHS b v

aAf., K
)BwM - y,l(u"{)_—agau{M ]aa =0,
ya(uf)pt(uX) = 0,
IV

N + 1, not all

The identity (2.3); is equivalent to the following system of identities (Property

CT in [2)):
(2.4)

ya(u™)

K\ 99
uM
The set of N +1 functions y(uf€

OA( K]

=0,

ya(u®)

) is obtained as a solution of the overdetermined

¥ agcm (uK )
ouM

0.

system of linear homogeneous equations (2.3)2, (2.4) and therefore, if it exists,

it is not unique.

2.2. Restrictions on constitutive functions

In Secs. 3.3, 3.4 of Part I, it has been found that the system (1.1) (1.2) satisfies

the MDR if and only if constitutive functions &, 7 and (}'E‘

relations:

LT
=2

(2.5)

_000f{(6) 8¢

_wbi(6) (08 _, 00
T Jw Ow.

o _ 102

a6 — 006’
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and 4, .
o Ve . = oW

2. = —e—— — _— e

(2.6) ] 59 Ct=Ye—0or,

where the free energy tl';c is introduced
(2.7) T (0, w,) = &(6, w,) — 67(8, w,).
The entropy inequality implies
C1 < o0 C1 ¢ 5ﬁ fo 1 6!3’(:‘
28) Wy == o [ = | wy = —= 2 —Fwy > 0.
28  Emt TG (aw., aw.,)“"r T 0w, 1=

The restrictions on constitutive functions (2.5), (2.6), (2.7) enable us to transform
the systems (1.1), (1.2) into quasi-linear symmetric systems of 4 equations for
4 unknowns. We recall that, in Part I (Sec.3.2) of this paper, we have assumed

— 2"" 9
that M # 0 (or, equivalently 8_&!7(;5(51:13_7) # 0) for all 8, w, in order to

make it possible to derive thermodynamic restrictions via the MDR.
2.3. Family of solutions of the MDR

In Sec. 3.4 of Part I, a family of solutions y7 = [y,] of the MDR (2.3), (2.4)
has been calculated. Introducing the notation for y4, [ya] = [\, 27, u] where by
A, 27, i we mean functions A(6,w-,), z°(0,w,) and u(6,w,), we have obtained

= S
A —
te @ 08 GO Y b0V
ol S A T (319", 8w7) s T OQw,
_ Wm0 01 _ elddc
b g ow, Ow- e Wy
1 L. 1Ls

= ,\—h"".—_— — 5
oo = M)

Thus, the family of solutions of the MDR can be written as

(2.10) [y41=—x[—1, o 2. e]=—p [1 R -1],

3 ] = )
T OJw, 6 T Ow,y

where A\ and p are arbitrary functions of [f,w,], and A = —1 and [g4] =
l 20 35?1:

-1, = 3 ,0| correspond to the case when the equation of balance of en-
3 ’UJ-:,

ergy is treated as the additional conservation equation, while p = —1 and
e |2 Lo O
M= 1970 T o,
ance of entropy is treated as the additional conservation equation.

,—1| correspond to the case when the equation of bal-
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3. Symmetric systems for unknowns [0, w.
3.1. General procedure

The procedure of symmetrization of consistent systems of N + 1 conserva-
tion equations for N unknown fields, that is systems of the type (1.1) given by
FREDRICHS [2], is employed to obtain the symmetric systems of the equations
for [#, w,]. Differentiation of the identities (2.4) yields

dya 0°4 _ g™
(3.1) BuS 9uM A puSguM

oya 8g* %"

ou’s uM YA 5uSauM

It follows from (3.1) that the N x (N + 1) matrix [Ks4(u€)] with entries

- Ay (u®)
K yA
(3.2) K:SA(“» )= W

is the left symmetrizer of the matrices [A% /], [A%4 ). Left multiplication of
the system (2.1) by the matrix [Ks,] gives therefore a symmetric system of N
first order partial differential equations for N unknowns

(3.3) A (u)BpuM + A% 5 (uF)BuM = ps(uX,t, X®),
where

K 0A¢, K
AUSM(UK) = ’CSA(HK)AMM(uK) = Oya(u”) 9g”"*(u™)

ous ouM '’
y a Ky §g0A (X
(34) AQSM(UK) = K:SA(UK)AQAM(HK) = y;;g; ) gau(;' ),
K
ps(uf t, X%) = Ksa(uX)A(uf, t,a) = %b}l(uﬁ,t,){{’).

The set of N+1 functions 34 (u*) which are solution of the MDR (2.3), (2.4), can
be treated as a vector in RV *1. Since it is a solution of a homogeneous system of
equations (2.4) and (2.3)2, it is not unique. It can be easily verified that, in the
case of the system (1.1) containing N independent equations, the solution set of
the MDR takes the form of a family of collinear vectors. As a system (1.1) con-
taining N independent equations, we understand here the system (1.1) for which
at least one of the (N + 1) x N matrices A% 5 (u), A% pr(u¥) is of rank N for
all u®. It follows from (2.2) that, in the case of the considered system (1.1), (1.2),

(0
rank A%y (uX) = N for all u¥ if fEf.e # 0 for all 6, w,, what means that
internal energy £ is a monotone function of the temperature 6 for all w,. This

http://rcin.org.pl



182 W. LARECKI

condition coincides with the condition (3.14) of Part I, which has been assumed
as necessary for application of the MDR for derivation of the restrictions on con-
stitutive functions implied by the Clausius - Duhem entropy inequality. Therefore
the considered system (1.1), (1.2) is assumed to contain N independent equations
and if y = [y, is a particular solution of (2.3); and (2.4), then any other solu-
tion ¥ = [4] of (2.3)2, (2.4) can be expressed as § = £, 74 (u) = £(u®)ga(u’),
A=1,2.,N +1 and £(u”) is a differentiable function of uX, not identically
zero. It immediately follows from (2.1), (2.3) and (2.4) that symmetric systems
corresponding to [74] and [7,], that is ﬁgM(uK)atuM+ﬁ‘5‘M(-uK)3QuM = ps(u’)
and A%, (u®)gu™ + A% M{u‘r{)aauM = 335( K], reSpectively, differ by a scalar
factor &(u’) SIHCGA ( K) = g(uX) Ay (uX), AGp(uF) = E(uX)AGp (uF)
and pg(u®) = £(uf }ps( K). Hence, a symmetrlc system (3.3) can be associated
to each solution of the MDR and, therefore, we have one-parameter family of sym-
metric systems (3.3) parameterized by suitably differentiable functions &(u”)

3.2. Family of symmetric systems for [0, w,]

In order to symmetrize the system (2.1), (2.2), (2.
the matrix

5), (2.6), (2.8), we calculate

[ 20 U 2 82':!';0 2o azjc 1-
T 39611)1 T Bﬁawg T 693103
0 Q_{] 62!3'(; @ 32'5'5' @ 32!1:’6' 0
~ A T Ow? T Ow 0wy T Owdws
(8.5) [”C“] =8| = 25 2 23
du 0 Q0 Ve 20 o !Pc 2 o' 7o 0
T Jwsdun T 3w2 T Owodwz
@ 82% gg 62§PC @32!17(;- 0
T Owgdw; T dwzdws T Ow? ]
. : s o 3'17 =
for particular solution of the MDR [§4] = |1, = 5‘ and, taking into

account (2.5), (2.6), express the matrices .A?{} and A

derivatives of ¥

3 3151‘(; aﬁc - azi‘ic ?Ec_" —0 3260 & A 6260 i
0255 ©\ 5w 300us ) ©\ Fw; ~ 900w; ) ©°\ ows " 500ws
0 T 0
0 0 0 T
agﬁc 3 aﬁc [ 32@3 3 525(:
| T@0592 0 566w, 2 560w, ° 360w
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; % -
- £1(8)5¢ 0 0 .
(A3 = | —fi(8)83 0 0 0
~£1(6)3 0 0 i
a 20 az;pbc Fil ﬁc 00 3266
afi =Rpes o SR R |
o mc a!‘pc Qﬂ ! 32!,1-70
pies G111 = f1( )6wn (9) S - 0f;( )_3wa36 ,
| - - QD " BWC 3 g’c
ag; == Alllme-~ fl( ) 5006

Then, we obtain the matrices A%, ASM and the productmn term ps of the
symmetric system of four equations for four unknowns [u¥] = [0, w]

A% (uF)BuM + A2 (uF)BuuM = ps(uX,t, X9),

2 1
o PV PTe ¢
= = Ow? OwyOws  Owy0ws
A%y = [Ksal[AY) = 2 = = s
[ SM] [ SA][ M) = Q0 : P PUc 2T
Owadun  Ow:  Owydws
" PV Ve Ve
L Owzdw; OwsOws w3
ey 9*Ue e PUc T
m Owa 0w, Owadwy Owa0ws
i
83 ‘;C 0 0 0
~ —~ o unow
[A%x] = [KsallAS] = ——fl( ) 21- % .
0¥ 0 0 0
6‘[1}2311}&
W
0 0 0
| Jw30w, —

o0, fi(0) alc
900w, f1(0) Owa

(37) a]_]_ — 2

http://rcin.org.pl



184 W. LARECKI

(3.7) 7 e (32@70 1 aﬁc T
fcont.] [ps] = [*’CSA 1[67] CI 306w, We @Wawcx*‘a

9?Ue " e . e ”
OwiOw, © Owadw, © Owzdw,

T

_ It should be noted that if we take the 4 x 4 minor [R}M] of the 4 x 5 matrix
[Ks4], obtained by deleting the first column composed of zeros and take the 4 x 4
minors [A3X] and [A$K] of the respective 5 x 4 matrices [A}] and [A$/] obtained
by deleting the first row in each matrix, then the symmetric 4 x 4_ matmces
ASM] and [ASM] in the system (4. 8) can be expressed as [A Ml = [Kgp][A
and [A Ml = [Ksp][A“P] That is, [K_gp] is the left symmetrizer of the square
matrices [AF], [A$F].

Since the considered system (1.1), (1.2), (2.5), (2.6), (2.8) contains four inde-
pendent equations, all symmetric systems with respect to the unknowns [u”] =
[0, w,] can be obtained from (3.7) as the family of symmetric systems param-
etrized by differentiable functions &(u®),

(3.8)  &(uf)ALp (uF)BuM + £(uF) AG 0 (uF)BauM = E(uF)ps (w8, X°),

where AA%M, A‘EM and pg are given by (3.7). It follows from (2.10), (3.4), (3.7)
that, for £ = 1 we obtain the symmetric system corresponding to the case of
balance of energy treated as the additional conservation equation and, for £ =
—1/6, we obtain the symmetric system corresponding to the case of balance of
entropy treated as the additional conservation equation.

3.3. Equivalence of symmetric systems to original system of conservation equations

Sufficient condition. It has been proved by FRIEDRICHS [2] that nonsingularity

of the (N + 1) x (N + 1) matrix composed of y,(u’), %QM—)
yn{uk) !;"A{“K)
(3.9) ] = K
i dya(u™)
K:Mfl(u ) W
A=12,....N+1, KM=12....N

for all u”, for given solution y7 (®) = [y (u*)] of the MDR, ensures the equiv-
alence, for the classical (differentiable) solutions, of the symmetric system (3.3),
(3.4) corresponding to y* (), to the original system of conservation equations
(1.1). Equivalence is understood here in the sense that every classical (differen-
tiable) solution of the symmetric system (3.8) satisfies the original system (1.1),
and conversely. The matrices (3.9) have two interesting properties which can be
formulated as the following Observations:
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OBSERVATION 1. For the system (1.1) containing N independent equations,
nonsingularity (singularity) of the matrix (3.9) for particular solution of the MDR
implies nonsingularity (singularity) of all matrices of the type (3.9) corresponding
to the family of solutions of the MDR.

OBSERVATION 2. Alternative sufficient condition of equivalence. The matrix
(3.9) is nonsingular if and only if among N + 1 functions

[y (w), g2 (u®), .. ys_1 (W), ys (W), ysa (@), .. yn (), ynsa (@)
there are N independent functions (say,

¥

1 (), g2 (u®), .y 1 (65), yg i (uF), . oy (05F), yngr (W)

are independent, what means that the transformation

[ul,u?,...,u™] = [y1,92, .- Y1, YT +1; - - - YN UN+1]

is invertible), and the remaining one (say, yx) is not a homogeneous function of
degree one of those independent functions (that is, the function yx (u (y1,v2, . . .,
YE-1,YS+1,-- - UN:UN+1)) = To(U1, %2, -+ YE-1, Y241, - YN, YN+1) is not a
homogeneous function of degree one of the arguments y1,92,...,¥c-1,¥£+1,-
YN+ YN+1)-

Observation 1 is a direct consequence of Lemma 1, and Observation 2 imme-
diately follows from Lemma 2 and Lemma 3 proved in the Appendix A.

If rank [Kg(u f )] = N for all u® € D (D - convex domain in R¥) and conse-
quently, y1,..., Ys_1,YS+1,- - - YN+1 can be taken as new dependent variables,
then the condition that §s(y1,... . ¥s—1,¥54+1,---.YN+1) is not a homogeneous
function of degree one with respect to all arguments expresses the fact that,
roughly speaking, all equations of the system (1.1) are nontrivially involved in
the MDR. It means that in the system (1.1) none of the equations is merely a
linear combination with certain numerical factors of other equations or, in other
words, any system of N equations selected from N + 1 equations of (1.1) is the
system of N independent equations. Equivalently, the solution set of the MDR
takes the form of a family of collinear vectors in RV*! in which there are no
components y, differing only by a numerical factor, and/or none of the compo-
nents y, identically vanishes (74(zx) = 0 is a homogeneous function of degree
one of z1,29,...2x5).

ey

3.4. Equivalence of the family of symmetric systems for (6, w. ]

It follows from Observation 1 that in order to establish the sufficient condition
of equivalence for the system (1.1), (1.2), (2.5), (2.6), (2.8), it suffices to consider
the matrix of the type (3.9) for one particular solution of the MDR selected from

http://rcin.org.pl



186 W. LARECKI

the family (2.10). Hence, we select the solution [§] = [—1,Z,, 4], 2, = @g?l’c‘
T OWwy
i =6, and take the following 5 x 5 matrix

1 % B & B
o6 a8 90 00

Jdzy 0zZy 0zz 9In

/e SN =l IR

(310) [E l - ow, Owy Ow; Ouy
021 07zy 0z3 On
ng 3&12 61!)2 8w2
0zy 0zs 0z3 OJp
| Oows Ows Ows Jw; |

B e M. 7]
0 0wy Jws dws o
g Plo Fee B 1
ow,00 Ow.d8  Owzdl g
=40 0 o? ‘j}c o? @C 9, c 0
T 0w,  Ounlws Owdws
5 PV e e o
Ow 0wy  Pwy  Ouwgdws
’ P Ve e 5
k Jundws Owgedws  O%ws il

The matrix (3.10) is nonsingular and, as a consequence, the equivalence of the

symmetric systems is ensured if the constitutive function ¥¢ (€, w,) satisfies the
condition

Rz 0% ]
; ol oA X f f :
(3.11) det [Bwaawﬁ] det lawa ; Gawaawg #0 forall [0,w,] €D

3.5. Symmetric hyperbolicity of symmetric systems for [6, w,]

3.5.1. Definition. According to the definition of FRIEDRICHS [2], a symmetric
system (3.3) is symmetric hyperbolic (in time direction ) in an open convex
domain D C R¥ if the matrix [A%,,] is positive definite for all u® € D.

3.5.2. Symmetric hyperbolicity of the system (3.7). It follows from (3.7)2 that
[A%,,] is positive (negative) definite for [0, w;,ws, ws] from a convex domain
D c R* if an only if ¥ (8, wy, w2, ws) has the following properties:

0*Ue e
202 <0 (-———892 >0
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(@c is a concave Aw(convex) function of # while wy, wy, w3 play the role of fixed
parameters) and ¥¢ is a convex (concave) function of the three arguments w, wy,
w3 while 6 plays the role of a fixed parameter, for all [#, w;, w;,w3] € D. In the
case of [,E%M] positive definite, the system (3.7); is symmetric hyperbolic while,
in the case of [A%,,] negative definite, it can be transformed to the equivalent

symmetric hyperbolic system by multiplying each equation by the factor (—1).

3.5.3. Symmetric hyperbolicity of the family (3.8). In choosing &(u), the condi-
tion of symmetric hyperbolicity (positive definite [SE%M]) should be taken into
account. Since the conditions of positive (negative) definiteness of the matrix
[A%,/] are established above, the conditions on &(u¢) ensuring positive definite-
ness of [{ﬁgM] follow from the fact that, if [E%M(ul")] is positive (negative)
definite for [u] € D then [¢(u/) A%, (uX)] is positive (negative) for £(u¥) > 0,
[u*] € D and negative (positive) definite for £(u’) < 0, [u”] € D.

3.5.4. Relation to the condition of equivalence to the original system of conservation
equations (1.1). It should be noted that the condition rank [Kss(u®)] = N for
all uf € D (which means that among N + 1 functions y(u) there are N inde-
pendent functions of u’, u® € D) is necessary for symmetric hyperbolicity of
the symmetric system (3.3), (3.4) (necessary for positive definiteness of [A%,,] =
[Ks4)[A%,]) and necessary for nonsingularity of the matrix (3.9). It is the nec-
essary and sufficient condition for transformation of dependent variables u* =
WKy, ... ys-1, ys41, . yn41) (where y1 (u¥), . .., ys-1(uX), ysp(uf),...,
yn+1(u™) are independent functions of uX) and such transformations will be
employed in the following to obtain symmetric conservative systems. The re-
striction on ¥ (0, w,) imposed by the condition of symmetric hyperbolicity of
the system (3.7) is much stronger (positive definiteness of (92Wc)/(Owqdwg) for
all [#,w,] € D) than the condition (3.11) ensuring the equivalence of the sym-
metric systems and the original system of conservation equations or, in other
words, symmetric hyperbolicity of (3.7) implies equivalence to original system of
conservation equations (1.1).

4. Alternative symmetric conservative systems
4.1. Basic relations

4.1.1. Class of symmetric conservative systems. In [10], GODUNOV introduced the
class of quasi-linear symmetric conservative systems of the following form

9@ (In) (3@“(3&:)) R
(4.1) 9, (73“‘, +00 () = 45,
a=1. . K =19 N
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The system (4.1) of N equations for N unknowns [g(t, X*) is specified com-
pletely by m + 1 functions @°(l5), @*(ly) and N functions b% (lys). It implies
the additional conservation equation which is obtained by multiplying (4.1) by
the row vector [l1,l2,...,IN]

=0 =0
(4.2) ) gi\,M - +a, (I;{M & @ﬂ) = lbX (Ly).
ajh' ath’

4.1.2. Direct derivation of N + 1 alternative symmetric conservative systems. For
derivation of alternative symmetric conservative systems, we assume that the
system of N + 1 conservation equations (1.1) contains N independent equations,
satisfies the MDR (2.3), (2.4) (hence, solution set of the MDR takes the form of
a family of collinear row vectors in R¥*1) and the matrices (3.9) corresponding
to the solutions of the MDR are nonsingular for all u¥ € D. In order to derive
alternative symmetric conservative systems, we define the potentials

(4.3) @° = ya(uF)g* (W®), o = ya(u®)g* ().

According to Observation 1 and Observation 2, nonsingularity of the matrix (3.9)
(for any solution of the MDR) for all u* € D implies that the family of solutions

() .
of the MDR contains N + 1 vectors ¥ such that X-th component is —1, namely,

(Z) () (Z) (2) (2)

Y=\|¥%1..., ¥o_1,-1, ¥ 2414..-s Y N11|, ¥ = 1,2,...,N + 1, and each
(2) (2) (Z) (%)

of N + 1 transformations [ul,...,uN] — ly T S U I 5 T T NH] 3

o . (L) (Z) (Z) (£)

is invertible. Hence, the components [¥ 1,..., ¥ -1, ¥ £41,---, ¥ nN41] can

be taken as new dependent variables and the respective potentials (4.3) can be
expressed as functions of these new variables,

(E)  N+1 (5 (2) (L) (Z) (Z)
¢p0= Z Y (‘UK ( /G VRS I T I 1Y, TR T TS
AzE
(Z) (2) () (2)
_gnz(uK(yls"wy2—11y2+11"'1yN+l))v
(£) Nil(g) (2) = ©® (2)
%= yAgM uK(y1,.-.1y}:—hyzu,---,ywﬂ
e () (2) (Z)
—g“'s uX (y Tybmeny W —gi Wi ogyaiic, 1Y N+1)) .
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(2)
Differentiating (4.4) with respect to ¥4, 4=1,2,..., 2 -1, 2 +1,...,N +1,
and taking into account the MDR (2.4), we obtain

e

a ° . (2 () (2) (2)
:;) = gﬁzﬂ. (Uh (y lLyeoos ¥ 51 ¥ 2415000y Y N-l-l)) 3
a5 2va
3““2 (2) (2) (£) (£)
@ -
) - ga‘d (Uh (y R atoe iy Iy t ¥ A T P N+1)) i
dya
and

(Z)
N+1 g ()
(&) a9 (%) (£) (£) (2)
E yA g:)_‘p'}:gnz(u!{(yls""ys—:[} ya‘:+l$"'r yN+1))1

o 9 ya
AR
(44 (2)
N+1
(£) 8 p* (2) - (D) (2) () (2)
YA z.}“so":QQE uff Yayines Yipety ¥ Bits-q00 ¥nvga )
dx 9va

Thus, the introduced transformation of dependent variables enables us to express
the equations 8;%4 (u¥) + 9,9%4(uX) = bA(uK,t,X7), A=1,2,..., -1, 5+

l,...,N +1 of the system (1.1) in symmetric conservative form (4.1)
B
@n  a|e | e | 5] =vt (w0 (i) 6 7).
(Z) (£)
dya d ya

A,2=12,....,2-1841,...;.N+1,

while the equation 9,¢%* (u®) 4 9,9°% (uX) = b¥ (uX, t, X7) takes the form (4.2)
and is interpreted as the additional conservation equation

(£) (%)
N+1 g (&) N+1 a (X)
(£ o9 (2) 0
48) a| Y Va=G-¢|+0%| X va—5-¢"
ize 9va aze Ova
N+1
z - (2
= 3 Roa (w (1) 0 x7).
a=1
A#X

In this way, N + 1 alternative symmetric conservative systems corresponding to
the system (1.1) can be obtained.
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4.1.3. Symmetric hyperbolicity of symmetric conservative systems. According to the
definition of symmetric hyperboliccity of symmetric systems (see Sec.3.5.1), the
symmetric conservative system (4.7) is symmetric hyperbolic if the Hessian ma-
trix
()
d ¢°
294 0 Yo

. i : : . : L
is positive definite, what is equivalent to convexity of the potential ¢ °. In the
(L)
case of concave ¥ ? and
()

32 (po
(Z) o (2)
dya 0 ya

negative definite, the system (4.7) can be brought into equivalent symmetric
conservative system simply by multiplying each equation by the factor (—1).

4.1.4. Relations between alternative symmetric conservative systems. In order to
demonstrate the relations betwen different symmetric conservative systems cor-
responding to the same system of N + 1 conservation equations (satisfying the
assumptions mentioned in Sec. 4.1.2), we take two arbitrarily chosen solutions of

the MDR

= [® (2) (2) (2)

Y= yl‘---nyg-lm_lryz-{-la---s Y N4
and )

() [ (4) (4) (4)

Y = yl‘---\ yd__l,“l,yd.q-l,---,y}\f_pi

(without loss of generality, we may assume 1 < £ < A < N +1). The symmetric
conservative system can be assigned to each of them according to (4.4) - (4.8).

() (4)
The components of ¥ and ¥ are mutualy related

(4) (5) (D) {-g)
ya=-—rt,  Ua=-gn  A#FA A#E
(2) (4)
(4.9) Ya Vg
(4) (=®) (4 (2
Ys Ya=1, Ya=Ygp=-1

: ; . [@, @ (4), (4),
According to (4.3), (4.4), the respective potentials | ¥ *, ¢ “|and | ¥ °, ¥ |,

(2) (4) _ )
corresponding to ¥ and ¥ , can be obtained and, in view of (4.9), they satisfy
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the following relations:

(4), [(4) (4) (4) (4) (4) (4) (4)
© Vrgoon ¥ g, Yigy Yimggsensy ¥ A=10Y Aptseens ¥ N1
(4) (4) (4)
__ @ @ _v1 _Ysa  Vsn
. i 7 i 7 RN R
Yx Ys sy
(4) (4) (4)
_Yaa 1 Yan _Ynnn
a ')’ (4 7 (4) '
(4.10) Yy Yy Yis Vsx
(4, (4 (4) (4a) (4) (4) (4) (4)
w ylv !y2+11 y}:? ys-f—l!"'! yﬂ-—ls yﬂ-i-l!"'s yN+1
(4) (4) (4)
___(-;\J (;‘;;)a _ Y1 Yz Yzu
A A R R T T
'8 > Ys Yz
(4) (4) (4)
_Yaa 1 Yan _Yn
(AT L Ayt (4) ;
Yo ¥z Yy Yy
and
(Z) (Z) (Z) (Z) () (Z) (&) ()
P YVieeoy Y-, Y 241509 Y a-1, ¥ 4 ¥ A1y Y N4
(2) (Z) ()
__fE) (é‘))g _ U _VYVza 1  Ygen
Smha i R
Ya Ya Ya va
(2) (&) ()
_Yaa _Yan _YN#
I T A (Z) :
(4.11) Ya Ya Ya
(), () (Z) (Z) (£) (2) (2) (Z)
© ylu'-'ay5+11yz+11'“ryd——lsyda yﬁ+ls"'syN+l
(2) (Z) ()
. @@, Yy, Yz 1 _Ysn
& o @y T R
Ya Ya Ya Ya
() () ()
_Yaa1 Yan _YnNn
() ° @y AR (2)
Ya ¥ya Ya
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(£)
If the system (4.7), (4.8) corresponding to ¥ is given, then, with the aid of
the relations (4.9), (4._10)‘ (4.11), the “new” system (4.7), (4.8) corresponding

(4)
to ¥ can be obtained. Of course, in such transformations the “role” of the
equations in the system (4.7), (4.8) changes, namely, the equation (4.8) of the

. (£ .
system (4.7), (4.8) corresponding to ¥ will be, according to (4.9), (4.10), (4.11),
. (4)
transformed to a “member” of the system (4.7) for ¥ , while this member of the

() .
system (4.7) for ¥ which corresponds to the conservation equation g% (u®) +
0092 (u®) = b3 (€, t, X7) in (1.1) will be transformed to the equation (4.8) of

the system (4.7), (4.8) for (?} . This transformation can be easily demonstrated
by substituting (4.9) into (4.7), (4.8), performing the respective differentiations
and taking into account (4.9), (4.10), (4.11), (4.4).

With the aid of (4.10);, (4.11)1, the relation between convexity (concavity)

A
of {‘P)G and concavity (convexity) of [g}u can be established provided that either
(3—}\}2 (u®) > 0 or (g}z (u™) < 0 for all u¥. Since the proof of this relation in
a general case requires lengthy calculations, we restrict ourselvs to demonstrat-
ing this relation for the case of two symmetric conservative systems given in
Secs. 4.2.2 and 4.2.3. Therefore, for those systems we derive the relations (4.9),
(4.10), (4.11) in Sec.4.3.1 and examine convexity (concavity) of the respective
potentials in Appendix B. The reasoning given in Appendix B can be directly
generalized for (4.10);, (4.11);. It should be noted that the problem of transfor-
mation of the given symmetric conservative system (4.1) in one spatial dimension
into another symmetric conservative system has been considered by GobDuNoOv
and SULTANGAZIAN [11, 12]. For such transformation, the relations differing by
numerical factor (—1) from (4.9); » were postulated in [11, 12]. Hence, the pro-
cedure of derivation of “new” symmetric conservative system from the “old” one
proposed by GODUNOV and SULTANGAZIN [11, 12] results in changing the sign
of that conservation equation in “new” symmetric conservative system which is
the additional conservation equation implied by the “old” symmetric conserva-
tive system and, as a consequence, the potential ©%(Ix) (see, (4.1)) for “new”
symmetric conservative system and the potential % (I ) for “old” symmetric con-
servative system are both convex (concave). In our approach to the derivation of
alternative symmetric conservative systems, the signs of all N + 1 conservation
equations are preserved.

4.2. Two alternative symmetric conservative systems corresponding to (1.1), (1.2)

4.2.1. Family of potentials corresponding to (1.1), (1.2). According to the general
procedure developed in Sec.4.1.2, we derive in this paper two alternative sym-
metric conservative systems, one corresponding to the case of balance of en-
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ergy treated as the additional conservation equation and described by y =
Y = [-1,27, 7). and the second one corresponding to the case of balance of
entropy treated as the additional conservation equation and described by y =
y=[X2,-1].

In order to transform the system of field equations (1.1), (1.2) with constitu-
tive functions satisfying the conditions (2.5), (2.8) into symmetric conservative
systems with respect to the field variables [\, 7] or [27, ji], we therefore introduce
the following potentials (4.3):

0 ~ ~
= ApoE + 27 Twy + :
(4‘12) Yo 20 2 Hé’f?}'
wo = Aq* —2%f1(0) + #56‘“»

In view of (2.9), (2.5), (2.6), potentials (4.12) can be expressed as

ve = A\pg = —539(:-
(4.13) e
wo = —2°f1(0) = A\pg = —*éw‘c‘:,
where
- = @)= = B07
PL = 0o + il,L)-q"’wT — 0007 = 00 | Ve — —=w, |,
6f1(0) ow-,
(IR £1(0) o
e DA TS 20 c

4.2.2, Balance of energy treated as the additional conservation equation. When the
first equation of the system (1.1), (1.2) corresponding to the balance of energy
is treated as the additional conservation equation implied by the system of four
remaining equations, we put A = —1 in (2.10), (2.9), (4.13), and obtain

== 0
. 0F _, 07 s o1
Bw, awn, T ow, 0f(0)7"

(4.15) = b7 ]
&% = —Pp = —pgt — Yw + pobTi = —pp |Ye — Wn |,

“3

Il

z7

e
Ow,

R N L4 )..a
@

o
i = mhe== Gfl(g) = _?fl(g)

In (4.15); 2 fi and 27 are functions of # and w,. The condition (3.11) that the ma-
trix (3.10) is nonsingular coincides in this case with the condition that Jacobian
of the mapping [0, ws] — [Z,,/i] is nonsingular. Hence, there exists the inverse
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(27, i) — [0,w,]. Assuming that constitutive functions £(f,w,) and 7(6,w-)
are chosen such that (3.11) is satisfied, we define functions 8 = 6(zz) = i and
wy = W,(fi, 2*), and use them to express P&, % as functions of i and z°,

T SBOD). (5.3 Ga(h. 3°
(4‘16) ﬁf{Eﬁ)q ( p‘)?w“r(p‘!z ))wﬁ(ﬂ'az )
= —00E(0(R), Dy (7, 2%)) + ofin(0(/2), Dy (12, 2%)) + 7270, (12, 27),
~ (o fl(ﬁ)-a"ﬂﬁﬁﬂa ~\ o~
1 -~ - 9 ] 3 == b ]
since it follows from (4.15); 2 that
(4.17) q(0(n), Dy (B, 2%) = —Afi (D)2

Differentiating (4.16) with respect to z* and /i, and taking into account (2.5),
(2.6), (4.15); 2, we obtain

03 P

—a-g% = Tg(f,2%) = Twg,

0% o

255 = ~h(@8s=—h(0),
4.18
(4.18) o 1

5 = 007 (8(7), B (i, %)) = oo,
8(;3%' - 1""’0 Al ol = S }_'-a
3 = 53°0@)0,(5,7) = ga°.

Hence, the system of four equations of (1.1), (1.2)2345 can be written as an
equivalent symmetric conservative system for four unknown fields z%(t, X¢),
B(t, X*),

while the equation

~00% | p9PC _ (Aaﬂa‘é 5988 Aa)
(420) 3; (uﬁ+z W—‘(ﬂc +30_ ﬂaﬁ + 2z 82‘6 Yo

= cliﬁtﬁg + pojid = poT,
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which is a consequence of the system (4.19), corresponds to the first equation of
the system (1.1), (1.2), since

~00C | 3990 E0(n), By (A 3
(4.21) g

i S0P8 | pOPC _ 5o _ zad(n). (5. 5P q°
ﬁa,u + 2 o2 — ¢ = 7°(6(p), &, (8, 7)) = 7°.

4.2.3. Balance of entropy treated as the additional conservation equation. In order
to obtain an alternative symmetric conservative system corresponding to (1.1),
(1.2), in which the balance of entropy is treated as the additional conservation
equation, we put g = —1 in (2.10), (2.9), (4.13), and obtain

)\:i:l
Ao Ll O 00 _n 1ok 1 PRSI
T 6 \ Qw, Jw-, T 0 3w¢ 92_}”( ) .
4,
(4.22) g AT ranw., e Wl il
s o Aoty h(0) o _ 00 fi(6) 8%

== "mre? T 0 ous’

where, A and 27 are functions of @ and w,. As it follows from Observation 1,
for the system of conservation equations considered in this paper, nonsingularity
of the matrix of the type (3.9) for one particular solution of the MDR implies
nonsingularity of that matrix for all other solutions of the MDR. Hence, the
condition (3.11) is necessary and sufficient for nonsingularity of the matrix (3.9)
for y = [\, 27, —1] and, as in the case of § = [—1,2",i], it obviously coincides
with the condition that Jacobian of the mapping [9 wa) — [A, 27] is nonsingular.
As in the previous case, assuming that constitutive functions £(0,w-), 7(6,w)

are chosen such that this condition holds, we define functions 6 = 6(}) = T and

w., = 1+(\, 2%). Then, we express potentials @%, @ as functions of A and 2%,

9. (X, 2%) = goAe(O(N), 4 (X, 2%)) — oM (B(N), by (X, 2%))
(4.23) + 7570, (, 2%,

pE(X,2%) = —fi ( ) 3,
taking into account that

e I (2. e
(4.24) §'=h (X) ﬁZT,

e
et
T

S| =
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according to (4.22); . Differentiating (4.23) with respect to A and 2% and em-
ploying (2.5), (2.6), (4.22), we obtain

a-ﬂ L >
% = 00E(B(X), 14 (}, 2%)) = 0oF,
P N v e S
— = fl (7) = = qa,
(4.25) £s s
OpL-

T Ty (A, 2%) = TW,,

0P 1
o = - (5) 5 =-ho5

The system of the first four equations of (1.1), (1.2) can therefore be written as
a symmetric conservative system for four unknown fields A(t, X¢), z*(t, X*)

9, (3%) +0, (@) = 0o (O(X), W~ (X, %), t, XP),

7)) [2))
(4.26) 5 5 ey
Yo o B o O S 2 0. 2
o) (az'f) + Oa (6‘27) = ciWy(A, £%) = iy

The conservation equation implied by (4.26)
(0P | 4088 _ o (3‘96 088 _u)
(4.27) Oy (/\ % + Z 957 b | + 0a E3 +z 5% — P

= Qg)\F-l- 27w = pyo,

corresponds to the equation of balance of entropy (the last equation in the system
(1.1), (1.2)) since

- O¢ 9% ’
36 | 2908 _ 50 o i B(N), (,\ %)) = oo,

2
(4.28) o i
WL+ 2 g = 11 (3) 320
oA g e
It should be noted that the potential (pc(ﬂ wﬂ,} is not the Legendre transform
of the entropy 7 since “multipliers” A(6,w,), 2%(#,w,) are not derivatives of

the entropy with respect to primitive field va.nables 0, w,, respectively. This is
because of the fact that internal energy &, which is an extensive variable, is not
a primitive field variable of the theory. It is well known (see, for example, [13])
that, in thermodynamic theories formulated in terms of extensive quantities as
primitive fields and balances of them, the Lagrange multipliers of the variational
problem of maximization of entropy or, equivalently, Liu multipliers in the en-
tropy principle of extended thermodynamics, which are intensive quantities, are
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the respective derivatives of the entropy with respect to extensive quantities. As
a consequence, the potential, which gives extensive quantities as derivatives with
respect to intensive quantities, is the Legendre transform of the entropy.

4.3. Symmetric hyperbolicity of symmmetric conservative systems (4.19), (4.26)

In Sec. 3.5, we have discussed the conditions upon which symmetric systems
(3.8) for unknowns [u* (¢, X®)] are symmetric hyperbolic. Now, the question of
symmetric hyperbolicity of symmetric conservative systems (4.19) and (4.26)
arises. There are various possibilities of establishing the conditions which ensure
that systems (4.26), (4.19) are symmetric hyperbolic (or can be transformed
to symmetric hyperbolic systems by multiplication by numerical factor (—1)),
namely: a) to investigate directly either convexity (concavity) of p%(Z, /i) and
@%(5\1 Z7) or positive (negative) definiteness of the respective Hessians, b) to in-
vestigate convexity (concavity) of one of the potentials (either p%(Z, 7i) or t,b?;()'\,
#7)) and employ the relations between @& (Z, fi) and n;':%(f\, Z7),, and c¢) to make
use of the relation between symmetric hyperbolicity of the symmetric systems
(3.8) and symmetric hyperbolicity of the symmetric conservative systems (4.7).
Since, in this paper, the emphasis is put on various aspects of the employed
method of symmetrization, we shall demonstrate here indirect examination of
symmetric hyperbolicity of the systems (4.19) and (4.26) with the aid of the
relation between potentials ¢2(2, ) and g% (X, 27), and with the aid of the rela-
tion between symmetric hyperbolicity of symmetric systems (3.8) and symmetric
conservative systems (4.7).

4.3.1. Relation between potentials generating alternative symmetric conservative sys-
tems. It follows from (4.15), (4.16), (4.22), (4.23) that the potentials @Uc(ﬁ, 2%)
and p% (A, 27) as well as the new field variables fi(t, X®), 27(t, X*) and A(t, X¢),
Z7(t, X“) of the respective symmetric conservative systems (4.19), (4.26) are
mutually related in accordance with the relations derived in Sec. 4.1.4.

T P
5 fi fi
T P (3, 27) = — A (i _El) 220, 27) = —he (.,1_ _ﬁ)
7 ) ] Fad A‘ A ] ‘B 3 {55 /\1 )\
d
an N 1 = 3
8= X: A= 71
e - G-2)  e@m=-me(3-3).
' C\&’ B aop

where /i = @ is positive. The relations (4.29), (4.30) lead to the following

PROPERTY. The potential @°(fi,z7) is convex (concave) if and only if the
potential ¢°(\, 27) is concave (convex).
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The proof of the Property is given in the Appendix B. Since we have es-
tablished the relation between convexity (concavity) of @%(Z, i) and concavity
(convexity) of t;sg‘(;\, £7), it now suffices to examine only the conditions of sym-
metric hyperbolicity for the system (4.19) (positive definiteness of Hessian matrix
of (2, 1))

4.3.2. Symmetric hyperbolicity of the symmetric system for [0, w,] and of the symmetric
conservative system, both corresponding to the same solution of the MDR. We recall
that the symmetric system (3.7) for unknowns [ug (¢, X)] = [0(t, X ), w (t, X )]
and the symmetric conservative system (4.19) for unknowns [27 (¢, X?), fi(t, X“)]
correspond to the same solution of the MDR, namely,

= [y 2 2 -l E’E%
y—y_{ 1)‘2 (Giw”r))#(a:w‘r]— [ 1: T awj;’gjl.

It follows from (4.18) that the components of Hessian of (27, /i) satisfy the
relations

PpL _ 0wa(p,2) _ _dwp(a,2)
0207 i Z0 = 6?3 )
way PP _ 00 _ | 0A0(E), 055 P) 00:(.2)
Sﬁa,‘z‘a op 3137 0z«
6?‘,3% - 31";7(@(!’;),@3(;2,23)) 8_6 i 3ﬁ{§(ﬁ)s@ﬁ(ﬁy ) 3137(;'31?)
8;;2 = 00 ag on 2o B‘Eﬁﬁr ER -

which enable us to represent this Hessian as the following product:
PP 020

0z%9z8% 0zZ°0u

2o 0B

9z o an®

(4.32)  [Bpg] =

T R S S 4
o
0 0 T 0 oly 6131 d1ly 3‘5‘}1
2 0z' 97 97 op

0 0 0 7 ||0% 0B OBy O
3 o = _ ||zt 8z 9 am
of 95 o7 o o 5. OG. OF

G—= 0= Q05— Op= dws Ows Ows Ows

L0 9 oy 0Bl | G Bz B o

The first term in the product (4.38) is the matrix [A°™g] which, as we have
mentioned in Sec. 3.2, is a 4 x 4 minor of the 5 x 4 matrix [4%4], given by (2.2),
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obtained by deleting the first row in [[A4°4g]. The second term is the Jacobi matrix
of the transformation [27,[i] — [#,w,] defined as 6 = 6(i) = i, wy = Wy(27, i)
in (4.16). In Sec.3.2, the 4 x 4 matrix [ESM] is introduced as a 4 x 4 minor
of the 4 x 5 matrix [Ks4) given by (3.5), which is obtained by deleting the
first column in [ESA]- This matrix can be obtained as a 4 x 4 minor of the 5 x 5
matrix (3.10) by deleting the first row and the first column. It follows from (3.10)

that [Kg4] corresponds to the transposed Jacobi matrix of the transformation
0, wy] = [27,4]. It will be convenient to employ the following notation for the

matrices B? := [};’?DQ] =[AY o) A% :=[A}M], K K := [Ksq] and rewrite (4.32)
in the form A = N
(4.33) B? = A%(K7)"! = BT,

since the transformation [27,7i] — [0, w,] is the inverse of the transformation
[0, w,] = [27, 7] and B? is symmetric. It is noted in Sec. 3.2 that K is the left
symmetrizer of A? and the symmetric matrix A° of the symmetric system (3.7)

can be obtained as by - y:
(4.34) A? = KA? = A7,
The relations (4.33), (4.34) imply that the symmetric matrices A° and BO are
mutually related by the following congruent transformation
B K- AO( I)T

o~

BYKT,

lI

(4.35) X
AO =t

R

where K is nonsingular. Positive (negative) definiteness of A° means that xTA%x >
0 (< 0) for all x # 0 and therefore xTKB'K x > 0 (< 0) for all x # 0. Hence,
yTﬁuy > 0 (< 0) for all y # 0 since y = KTx represents all nonzero vectors
for all x # 0. This shows that positive (negative) definiteness of A" implies
positive (negative) definiteness of BY. The converse can be proved in the same
way. Therefore, the restrictions on constitutive functions 'f'c-(ﬂ wy) (or £(0,wy)
and 7j(#, w,)) established in Sec. 3.5.2, which ensure symmetric hyperbolicity of
the system (3.7) (positive definiteness of [ASM] ), also ensure symmetric hyper-
bolicity of the symmetric conservative system (4.19) (couvexlt.y of p% (27, 1) or,
equivalently, positive definiteness of the Hessian matrix of ‘PC( s 5)):

The reasoning similar to that presented here for particular systems (3.7) and
(4.19) can be directly applied to each of the N + 1 symmetric conservative sys-
tems derived in Sec.4.1.2 and the corresponding symmetric systems for original
unknowns u® (derived in Sec. 3.1), thus leading to the following observation.

OBSERVATION 3. Symmetric conservative system (4.7) for unknowns

- R N w @ "
Yoy X% ¥ s X%, Y pai (0. X%)een ¥ e (6 X7)
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is symmetric hyperbolic if and only if the symmetric system (3.3), (3.4) for

unknowns u!(t, X?),...,u" (t, X®) corresponding to the solution
(&) (Z) () (£) (Z) -
y=F= | Vo (u ey ¥ pei (65)=1, 9 55 (05)s. <o 8 i (0F)

of the MDR is symmetric hyperbolic.

Now, it follows from the relation between convexity (concavity) of (,'5?:(2"’ \ Ji)
and concavity (convexity) of c,b“c(i, Z7), that the systems (3.7) and (4.19) are sym-
metric hyperbolic if and only if the system (4.26) can be brought to symmetric
hyperbolic form by multiplication by numerical factor (—1) and, conversely, the
systems (3.7) and (4.19) can be brought to symmetric hyperbolic form by multi-
plication by numerical factor (—1) if and only if the system (4.26) is symmetric
hyperbolic.

As it is emphasized by GODUNOV and SULTANGAZIAN [11, 12], alternative
symmetric conservative systems corresponding to the same consistent system of
N +1 conservation equations for N unknowns are not equivalent when weak (dis-
continuous) solutions are considered. This nonequivalence manifests itself in that
the different equations are to be replaced by inequalities for different symmet-
ric conservative systems. Namely, for the symmetric conservative system (4.19)
corresponding to the equation of balance of energy treated as the additional con-
servation equation (energy being a “derived” conserved quantity), Eqs. (4.19) are
now satisfied in the weak sense while the additional conservation equation (4.20)
should be replaced by the inequality (> 0), also in the weak sense. When the
symmetric conservative system (4.26) corresponding to the equation of balance
of entropy in the role of the additional conservation equation (entropy being a
“derived” conserved quantity) is considered for weak solutions, the equations
(4.26) are now satisfied in the weak sense but the equation (4.27) should be re-
placed by the inequality (> 0) in a weak sense. A physical interpretation of those
inequalities is mentioned in [9]. In the case of the energy taken as a “derived”
conserved quantity, we have an increase of energy across the surface of discon-
tinuity. This may be interpreted as energy production on the shock. Hence, in
the processes, in which the energy is conserved, it must be taken as one of the
“original” conserved quantities. If the entropy is taken as a “derived” conserved
quantity. the inequality for discontinuous solutions means that entropy increases
on the shock.

Appendix A

LEMMA 1. If the solution set of the MDR (2.3) (2.4) for the system (1.1) has
a form of a family of collinear N + 1 component row vectors yT (uK) = [ya(uX))
parametrized by differentiable functions a(u) (equivalently, if the system (1.1)
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contains N independent equations), then every matrix (3.9) corresponding to
the solution of the MDR has the same kernel.

Proof. Lety*"(u)and y**7 (u) be the two arbitrary different solutions of the
“main dependency relation” (2.3), (2.4) for the system (1.1). It is assumed that
there exists a differentiable function a(u’f), a(uf) # 0, such that y**7 (u¥) =
a(uf)y* T (uf). Let M*(u®) and M**(uX) be the (N + 1) x (N + 1) matrices
(3.9) corresponding to y*7 (u®) and y**T (ufC), respectively. Those matrices can
be written in the following form:

ytT(uI\’) ]
(Vuy @) |
il ]
(Vuy"('u""')}T

(A1) M*(uF):= {

T
(A2) M*"(@X):= :

a(uX)y T (u¥)

[a(-u“‘)(vuy* (@K)T + [Vua(uk)] @ y*T (uF)

L

where V,, denotes differentiation with respect to u’. Let z* (1) € Ker M*(uf).
It follws from (A.1) that

(4:8) y W) W) =0, [Vay'(@)]a (@) =0

and (A.3), (A.2) imply M** (u®)z* (u¥) = 0. Therefore, z*(uf) € Ker M“(LEK)‘
In the same way it can be proved that if z** (uX) € Ker M**(uX) then z**(u¥) €
Ker M*(u®). Hence Ker M*(u®) = Ker M** (u’).

LEMMA 2. The necessary condition for the (N + 1) x (N + 1) matrix (3.9)
to be nonsingular for all u” is that rank K(u®) = N for all u*, where

- uI" -
() = [Kara(uk)] = [935‘%4——}] = [Vuy@)[”

isa N x (N + 1) matrix.
Proof. According to (3.9),

T ,ulf g K
(A.4) detM(uK) —det |:Y ( : )] e [ yt(u ) ]

K:(‘u,h) K:MA(UK)
N+1 7 (r)
=Y (-1)"*yr(u®) det H (u¥),
=1
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() S
where H (uf) are N x N minors of K(u®). Suppose that rank K(u®) < N.
(r)
Then, all H (1) are singular and therefore (3.9) is singular according to (A.4).

LEMMA 3. If among N + 1 components y4(u) of the solution y7 (u*€) of the
MDR there are N independent, functions of u’, that is if rank K(u*) = N for all
u* | then the matrix (3.9) is singular for all «® if and only if the remaining (de-
pendent) component of y7 (uf") 1%‘ a homogeneous function of degree one of the
independent components of y7 (u) (if y; (u’), yg(u )y -y ys—1(uf), ypi1 (),

.. yn+1(u) are independent components of y7 (u”), then the remaining com-
ponent ys(u’) expressed as yo = Jc(Y1,---+Y2-1,Yo+1,- -, YN+1) is a homo-
geneous function of degree one with respect to all arguments).

Proof. Letyl( Ky . yp_1(uf), ysi (uf )...,y:\rH( )beNindepen-

dent functions of u. Then the N x N nonsingular minor H (uf) of K(uf)
cunespondmg to deletlon of the column X is a Jacobian of the invertible map-

pmg( coou?) = (Y1, Ys_1.Ysa1 -+ Yn+1). Employing the inverse =
a1y . Ys-1. Y841, -+ YN41)s K = 1,2,..., N, we may express yyx in a form
of the following composed function:

(A.5) ye = ys(@ (Y1, - ys-1, Y541, - YN+1))
= Je(y1,--,Yo-1,YS+1- -+, UN+1)
= Feln(X),...,ys-1(X), ysa (). .. yn+1 ().

According to the chain rule,

s _ Ail s (ya(u’)) dya(u’)
Juls § ech Aya ouk
ALE,
ARE

(A.6)

Assume that the matrix (3.9). denoted as M(uX), is singular for all u. Then,

there exists a nonzero solution z(uX) = [2%(u”), 2! (uX),... 2" (uK)] of the
equation ) )
(A.7) M@@F)z(w®) =0  forall o,
which corresponds to the following system of N+1 linear homogeneous equations:
Aya(u’)
0 I\ - 0
(A.8) Pt ok Z E

A=1,2,...,)_‘,‘ 1,E+1,...,N+1,

N ~ K
49 s + T R TEEN <0, a4
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Substituting (A.6) into (A.9) and taking into account (A.8), we obtain

N N+1 8-— N+1 N .-...
z ys Oya rOYa | Oz
(A.10) zﬂyg + 2R — ——= | =z2ys+ z l P
27| & s our 2| &7 o us
A£E A#E
N+1 ~
2 Yz
= 2| Y2= vaz— | =0.
k AZ:; dya
A$E
Suppose that z { ) E 0. Since z(u®) is a nonzero vector, among the compo-
nents z! (uf), ..., 2V (u¥) at least one cannot identically vanish. It then follows

from (A.8) that, in this case, the N x N minor {fl) («®) must be singular. There-
fore, the condition 2°(u’) = 0 contradicts the assumptions and (A.10) implies
that s(y1,...,¥Y5-1,Y5+1,.-.,Y~N+1) is a homogeneous function of degree one
with respect to all arguments. Assume that Js(y1,.-. Y51, ¥Y0+1,-- -, YN+1) I8
a homogeneous function of degree one with respect to all arguments. Then

J d (5] oy
(A.11) 23 N T LA
Yz OYN+1

Yg= =P+t

oy dys—1

and, according to (A.6),

(A.12) dys _ Oz Oy P Yz Oys-1

oukK — Ay Gul T Byp_q OuX
dr Oys4 0ys OyYyn41
P—— e N e, 5 K=1,2,...,N
dysn Ouk T Buns UK

It follows from (A.11), (A.12) that the column X of the matrix (4.14) is a linear
combination of the remaining N columns, so the matrix is singular.
Appendix B

For the proof we employ the reasoning analogous to that of GopuNov and
SULTANGAZIN [11, 12]. Convexity of $%(fi, Z7) means that the inequality

(B.1) 1@ (A", 2") + aPQ(A*,27) > GE(aufi® + o™, en 2 + aZ™7),

holds for all as > 0, ag > 0 such that a3 + a2 = 1, and for all @*, p**, 2*7, z**7
from a convex domain. Inequality (B.1) can be rearranged to the equwalent form

alﬁ* 1 o a?ﬁ** 1 ~) fokx oax
B.2 e S B o~ (™, 2*7)
(B.2) o + o B @e(p*,2*7) o + g i
1

o T Pe(B” + g™, en® + ™).
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The right-hand side of (B.2) can be expressed as

; 1 oy ii* 1 T
G e e e L B
’Ur QI,U- + azp.“* #tt Cl’],# + azp.'tt
~0 1
Pe 1 a’lﬁ* 1 32)']"**
ﬁt alﬁ* _+_a.2ﬁ*t ﬁu &,]ﬁ* +O.’2ﬁ’"
a 0'2;-2* G A 0:2;.3*‘
ﬁi alﬁ‘ +02’ax‘ ,u*“‘ alP'- +a2p¢t
1 o pt 1 asp™*

B* o fi* + oo™ it onfi* + agp*t

Taking into account (B.3), (4.29), (4.30), we obtain from (B.2) the following
inequality

£ 1 z‘:“'f 1 é"*'f
B4 Al ( . )+ Ao ( )
( ) 61 306‘ '\‘ ? A ﬁz C A;: Att
v AR G1EY + 2"
> ,\*+ﬁ2x*“°( P Sl LIRS
(ﬁl LPC 61A* + ‘62/\1-: ﬁlf\* + ﬁzl\“‘
where e s
B TG R [l
(B.5) a1 fi* + agpi**’ Qi fi* + agf**’
:\* == _j—T‘ "Xtt = _’% : %7 — _zﬁj . T = _i‘:
Y H H e

and 81 >0, B2 >0, B1 + B2 = 1 since i* = 6* > 0, i** = 6** > 0. From (5.4),
(B.5) and (4.29), (4.30), we finally obtain the inequality

(B6)  ApL(X',27) + BagG (A", 277) < GL(BIA + BA, 12" + BE™),

which implies that @% is concave since 5, and f; take all admissible values when
o and oy take all admissible values from the region a; > 0, a2 > 0, ay +az = 1.
In the same way, it can be proved that concavity of npc()\ Z7) implies convexity
of gog(,u, 27) as well as the opposite situation when @%(fi,27) is concave and
{,oc-(/\ Z7) is convex.
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