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Symmetric forms of the equations of heat transport in a rigid
conductor of heat with internal state variables

I. Analysis of the model and thermodynamic restrictions
via the “main dependency relation”

W. LARECKI (WARSZAWA)

THE OBJECTIVE of this series of two papers is twofold: to analyse the phenomeno-
logical model of a rigid conductor of heat with (vector) internal state variable, and
to promote the application of the “main dependency relation” (MDR) as a tool for
derivation of the restrictions on constitutive functions implied by the entropy in-
equality as well as a tool for direct derivation of alternative symmetric systems of
field equations. In this paper (Part 1), the analysis of the model of a rigid conductor
of heat with (vector) internal state variable is focused on two aspects, namely, on the
form of the respective field equations and on the relation to other phenomenological
models proposed in the literature, with the emphasis put on those models which have
been succestully adjusted to experimental data on heat transport at finite speeds.
The relation to the model of a rigid conductor of heat with scalar internal state vari-
able, called “semi-empirical temperature” is demonstrated. It is proved that, for the
system of IV conservation equations, consistency with the entropy inequality (in the
form of first-order unilateral differential constrains) is equivalent to the requirement
that the corresponding system of N + 1 conservation equations satisfies the “main
depency relation” (MDR). For the model of a rigid conductor of heat with conser-
vative evolution equation for internal state variable, the procedure of derivation of
thermodynamic restrictions via the MDR is demonstrated.

1. Introduction

THE OBJECTIVE of this series of two papers is twofold: to analyse the phe-
nomenological model of a rigid conductor of heat with (vector) internal state
variable from the point of view of relations (consistency and/or possible gen-
eralization) to some other proposed (and applied to fit the experimental data,
like Maxwell - Cattaneo - Vernotte equation [1, 2, 3], or the model proposed by
Morro and RUGGERI [4, 5, 6]) phenomenological models of hyperbolic heat
transport as well as from the point of view of symmetrizability (and consequently,
symmmetric hyperbolicity) of the resulting field equations; and to promote the
application the “main dependency relation” (MDR) introduced by FRIEDRICHS
[7] which, in fact, is a natural generalization of the “entropy principle” of Ex-
tended Thermodynamics [8, 9, 10] as a tool for derivation of thermodynamic
restrictions on constitutive functions. Therefore, Part I in this series is focused
on the analysis of the phenomenological model of a rigid conductor of heat with
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(vector) internal state variable, on the proof of the equivalence of the “main
dependency relation” (MDR) and the entropy inequality, and on application of
the MDR for derivation of the restrictions on constitutive functions for the spe-
cific model of a rigid conductor of heat with (vector) internal state variable that
admits conservative form of field equations.

Various types of heat conduction equations leading to finite speed of propaga-
tion of thermal waves were postulated for rigid and deformable heat conductors
in the last four decades. Different formulations of continuum thermodynamics
(for example, Rational Thermodynamics, Extended Thermodynamics, Extended
Irreversible Thermodynamics (EIT)) proved useful in deriving the heat transport
equations leading to finite wave speeds. The literature on the subject is too exten-
sive to be quoted here and therefore we refer the interested readers to the review
papers by Jou and CAssAz-VASQUEZ [11, 12] and to the general overeview by
JosepH and PREZIOSI [13, 14].

Some phenolmenological modeles of heat transport with finite speeds are mo-
tivated by or even directly related ([15, 16, 5, 6]) to the second sound in solids.
The second sound was detected in crystalline He?, NaF and Bi in heat pulse
experiments at very low temperatures but very few quantitative data concern-
ing second sound measurements were published in early 70-ties (extensive list
of references can be found in [17]). Besides the results of the second sound
measurements, there is other published interesting experimental evidence (for
example, [18, 19, 20]) of the wave nature of heat propagation (or dominance of
wave behaviour over diffussion) at moderate temperature ranges in materials of
practical applications in technology and engineering. KAMINsKI [18] determined
the constant 7 of the Maxwell - Cattoneo - Vernotte equation for various ma-
terials with “nonhomogeneous inner structure” (“complex systems made up of
solid, liquid and gas, e.g., porous-capillary bodies, cellular systems, suspensions,
etc.”) with the aid of the original experimental method. MITRA, KUMAR, VE-
DAVARZ and MOALLEMI [19] presented an experimental evidence of the wave-type
heat transport in processed meat and showed that Maxwell - Cattaneo - Vernotte
equation provides an accurate description, on a macroscopic level, of the heat
conduction process in such biological materials. In [18, 19], the investigated
materials had refined complex inner structure and, as a consequence, the ob-
served heat transport was due to cummulative effect of different transfer mech-
anisms, for instance, particle-to-particle contact, free convection in closed space,
radiation, etc. Even in the absence of such inner structure, the effect of fi-
nite speed of heat transport has been confirmed experimentally, namely, TZou
[20] concluded the wave nature of heat conduction from the comparison of the
wave solution of the Maxwell - Cattaneo - Vernotte equation for the temperature
rise induced by a propagating crack tip with the experimental results obtained
by ZEHNDER and ROSAKIS [21] for 4340 steel. In [18, 19, 20], the wave fea-
tures of heat transport were concluded by means of adjusting the experimental
data to the simplest phenomenological model of hyperbolic heat conduction, i.e.
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Maxwell - Cattaneo - Vernotte equation in which the single munerical constant 7
is the only material parameter responsible for wave features. It can be supposed
that this simplest model will be insufficient to describe properly the material
thermal response in wide range of thermal and mechanical conditions, especially
in the case of materials with inner structure where different transport mecha-
nisms are simultaneously involved with relative intensities dependent on thermal
and mechanical conditions. The phenomenological model of hyperbolic heat con-
duction that can be proposed for practical use should involve relatively simple
but sufficiently general constitutive relations, should enable one to analyse waves
of weak and of strong discontinouity and should lead to the system of field equa-
tions for which the Cauchy problem is well-posed and numerical methods are
easily applicable. One of the purely phenomenological models of heat transport
with finite speed that seems to meet those requirements is the model of a rigid
conductor of heat with (vector) internal state variable.

Basic constitutive assumptions for modelling heat transport at finite speed by
means of internal state variable, formulated by KOSINSKI [22], are recalled and
the general form of the model of a rigid conductor of heat with (vector) internal
state variable is introduced in Sec. 2.2.1. Then. two types of the additional con-
stitutive assumptions are analysed subsequently in Secs. 2.2.2 and 2.2.3, namely,
assumptions concerning the form of the evolution equation for the vector inter-
nal state variable and the assumptions concerning dependence of the heat flux
vector and the internal energy on the vector internal state variable and on the
temperature.

In Secs.2.2.4, 2.2.5, 2.2.6, further constitutive assumptions corresponding to
specific forms of free energy and specific forms of the source term in the evo-
lution equation for internal state variable are investigated in the case of the
model of a rigid conductor of heat with conservative form of the evolution equa-
tion for internal state variable. It is shown that this model can be interpreted
as a representation of the class of phenomenological models comprising both
the Maxwell - Cattaneo - Vernotte equation and the models proposed in [4, 5, 6,
23]. Within this class, various particular generalizations or corrections to those
models can be easily introduced.

Recently, a phenomenological model of rigid conductor of heat with scalar
internal state variable called “semi-empirical temperature” has been proposed
[24 - 29]. This model is discussed in Sec. 2.3, and it is shown that the same sys-
tem of field equations as suggested in Sec.2.2.6 for the model of a rigid con-
ductor of heat with (vector) internal state variable also describes the model
with “semi-empirical temperature”, if supplemented by additional involutive con-
straints.

In order to promote the “main dependency relation” [7] as a tool for deriva-
tion of thermodynamic restrictions, its equivalence to the entropy inequality is
established. Namely, we prove in Sec. 3.2 that if the system of N conservation
equations has nonsingular N x N matrix multiplying time derivatives of the
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unknows, then every Lipschitz continuous solution of this system satisfies the
entropy inequality (in the form of first-order unilateral differential constraints) if
and only if the MDR . is satisfied by the respective system of N + 1 conservation
equations (system of N conservation equations supplemented by the conserva-
tion equation corresponding to the entropy inequality). For the proof, the results
established by Kosinski [30, 31] for systems of conservation equations in normal
(Cauchy) form are employed. From the point of view of thermodynamics, the
MDR can be regarded as a generalization of the “entropy principle” of extended
thermodynamics of MULLER and Livu [8, 9, 10] in the sense that it assigns an
analogue of Lagrange - Liu multiplier also to the balance of entropy. It reduces
to the “entropy principle” for the value of that additional multiplier equal to —1.
The advantage of employing the MDR instead the “entropy principle” is that it
enables one to derive equivalent (for classical solutions) alternative symmetric
systems directly (see, Part II).

For the model of a rigid conductor of heat with conservative evolution equa-
tion for internal state variable, the procedure of derivation of thermodynamic
restrictions on constitutive functions via the MDR is demonstrated in Sec. 3.3.
According to this procedure, a family of solutions of the MDR is determined in
Sec. 3.4 and the restrictions on constitutive functions are derived in Sec. 3.5.

2. Rigid conductor of heat with internal state vriables

2.1. Rigid heat conductor

By a rigid heat conductor we mean the undeformable (rigid) continnous mate-
rial body which can conduct the heat. It is assumed that for an inertial observer,
the body remains at rest and the materal points (particles) are identified with
points of the tree-dimensional Euclidean point space E*. For a rigid heat con-
ductor, all balance laws of continuum mechanics are satisfied trivially except the
energy balance, which assumes the following local form:

(2.1) 00€ +divg = gor,

where g is a constant mass density, € denotes energy density referred to the unit
mass, q = [¢%], @ = 1,2,3 is a heat flux and r is a heat source.

In the order to formulate the model of a rigid conductor of heat in the frame-
work of Rational Mechanics, the Clausius-Duhem entropy inequality

=ML et 1
(2.2) 000 = pon + div (gq) > g™

should be taken into account, where 7 is the entropy density referred to the unit
mass,  denotes the temperature and o is the entropy production.
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In this paper, the usual summation convention over repeated lower and upper

indices is employed and the notation @, := £ Jo := —— is used for time and

(4]
spatial derivatives, respectively. Spatial coordinates Xt?:‘xcorrespond here to the
fixed Cartesian frame, for simplicity. Dot over a letter denotes material time
«derivative which, in our case (rigid, unmoving body), corresponds to the partial
time derivative ;.

2.2. Model of a rigid conductor of heat with (vector) internal variable

2.2.1. General form of the model. The concept of constitutive modelling (in the
framework of Rational Mechanics) with the aid of internal state variables is
due to COLEMAN and CURTIN [32]. Constitutive modelling of heat propagation
at finite speeds (thermal waves of weak and strong discontinuity) by means of
internal state variables was proposed by KosiNski [22] (1) for the general case
of deformable (inelastic) body. It can be easily reduced to the model of a rigid
conductor of heat, simply by neglecting the dependence on deformation.

The following constitutive assumptions were intrduced in [22]:

e response of the material in particle X at time ¢ depends on the values of
the temperature 8(¢, X*) and the internal state variables w(t, X?) = [w, (¢, X)];

e the evolution of the internal state variables w(t, X%) = [w,(t, X®)] during
the thermodynamic processes is governed by a vector differential equation of the
first order, dependent on the temperature gradient as the additional variable.

Taking into account those assumptions and conforming to the equipresence
principle of Rational Mechanics, we postulate, according to [22], the constitutive
equations

(2.3) e=¢0,w), q=q0,w), r=70,w,t,X%), n=n0,w)
and the following evolution equation for internal state variable w
(2.4) w(t, X)) =g(0(t, X),grad (¢, X*), w(t, X))

with the initial-value problem

(2.5) wito, X*) = wo(X).

It is assumed that the initial-value problem has a unique solution and this implies
that the function g is Lipshitz continuous with respect to w and continuous with
respect to the other remaining arguments.

(') In this paper, we restrict considerations to the models of a rigid conductor of heat de-
veloped in the framework of Rational Mechanics, and therefore we do not discuss those phe-
nomenological models employing internal state variables which violate the axioms of Rational
Mechanics, like, for example, the model proposed by Bampi, MORRO and Jou [33], where the
entropy flux vector is assumed to be different from (1/6)q.
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Substitution of the constitutive functions (2.3); 2,3 into the balance of energy
(2.1) together with the evolution equation (2.4), results in the nonlinear (for
general g(@, grad 6, w)) system of the four first-order partial differential equations
for the unknowns 6, w.,

(2 ()) Q{]dfg(g w“r) + aﬂé—n(gl T.LL],) — QUF(G w-},, f,, )(':‘k),J
‘ dwg = g5(8, 0ab, w,), o, fBr=1,23

subject to unilateral first-order differential constraints
et s 1. a
(2.7) 000 = po1(0, w,) + O0a gq 0,wy)| > g{)ar(ﬂ,w,t,X ¥

obtained by substituting the constitutive functions (2.3)2 4 into the entropy in-
equality (2.2).
With the aid of the free energy function ¥c (6, w-)

(2.8) De (6, w) = (6, w) — 07(0, w),

it has been derived in [22] that the entropy inequality (2.7) imposed on the
system (2.6) implies .
: Ve (0, w)

(29) ??(wa“}) == _Ts

and the following inequality holds

_OW(6,w)

(2.10) 3

1
dhwa — —q°(0,w)0,0 > 0.

€o
2.2.2. Assumption leading to the quasi-linear system of field equations. The addi-
tional general assumption that the function g(#,gradf,w) is linear in grad@,

namely
(2.11) g(0,grad §, w) = M(#, w)grad 6 + b(6, w),

where M(#, w) is a tensor function of # and w, makes the system (2.6) quasi-linear
but not in a conservative form.

Assuming that, besides (2.9), (2.10), no other restrictions are imposed, it is
apparently possible to find specific restrictions on the components M3® (0, wy)
of the matrix representation of M(#, w) and on the functions £(0,w-), g*(6, w)
such that the system (2.6), (2.11) can be transformed into equivalent quasi-linear
symmetric hyperbolic system by premultiplication (left multiplication) by a non-
singular 4 x 4 matrix $7/(8,w,) I,J = 1,2,3,4. It can be done simply by rewrit-
ing the system (2.6), (2.11) in a matrix form and requiring the resulting matrices
to have common nonsingular left symmetrizer S’ (8, w,) such that symmetrized
matrix multiplying [9;6, 6¢w.,}T is positive definite. In this context, the question
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arises wheather the restrictions on M%?(6,w.), £(6, w,) and 3°(#,w,) imposed
by this procedure are related to the restrictions imposed by the inequality (2.7).
LEFLOCH [34, 35] introduced the concept of the additional conservation equa-
tion (“balance of entropy”) for quasi-linear systems in non-conservative form
in one spatial dimension and related the consistency of the non-conservative
quasi-linear systems with the additional conservation equation to the existence
of the left symmetrizer of this quasi-linear system in the form of matrix repre-
sentation of transposed gradient of a vector function of the unknowns (gradient
with respect to these unknowns). Therefore, for the system (2.6), (2.11) with
assumed dependence of the unknowns 6, w, on only one spatial coordinate, the
answer can be expected to be affirmative provided that it will be proved, for a
non-conservative first-order quasi-linear system (at least in the one-dimensional
case), that the restrictions imposed by consistency with the additional conserva-
tion equation (“balance of enfropy”) are equivalent to the restrictions imposed
by the corresponding first-order differential unilateral constraints (“entropy in-
equality”, like (2.7)). Hence, the problem is still open even in the one-dimensional
case.

2.2.3. Conservative form of field equations. The system of field equations (2.6),
(2.11) takes a conservative form if the next additional assumption that M(6, w)
is an isotropic tensor function of the temperature is introduced since, without
loss of generality, we may write

12 Mew=-rOL fO =L pe#o

and, consequently, rearrange the evolution equation for w to the form

(2.13) w = —div(f(€)I) + b(8,w).

The evolution equation for internal state variable with the source linear in w
(2.14) b(f,w) = —N(0)w,

and N(@) positive definite, was assumed for the model of a rigid conductor of heat
proposed by MORRO and RUGGERI [4] and, therefore, it can be considered as a
special case of the model developed previously in [22]. It has been shown in [4]
that, in the case of evolution equation of the type (2.13), the entropy inequality
(2.7) implies

= (0, w.,)
(2.15) (0, w,) = goef’(s)%Ta"’.
and .
N (0,wy) =,
(2.16) —go$b (6,wy) = 0.
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To this end, we note that (2.8), (2.9) imply

3‘:[;6‘ (91 w"f)
a6
and therefore, the considered model of a rigid conductor of heat is entirely de-

termined by the free energy ¥ (@, w), scalar function of the temperature f() and
the source terms 7(0, w, X%, t), b(6,w).

(2.17) £(0,w,) = Ve (6,w,) — 0

2.2.4. Further constitutive assumptions

A. q(0,w) linear in w

According to (2.15), the additional constitutive assumption that q(6,w) is a
linear function of w
(2.18) q(0, w) = 5(6)w,

with S(f) symmetric nonsingular tensor function of f > 0, is equivalent to the
postulate that free energy takes the following special form:

1
" 307 0)e0

As a consequence of this assumption, we obtain from (2.8), (2.9)

(2.19) T (0, w) = Feo(6) w-S(6)w.

16.%) = 0) ~ 5w [ (57550 | w

" 20 0f'(6)
: . s Rl g a. i s AL =
(2.20) Z(68,w) = &(0) + T {ﬂf,(g)sw) 0= (ef,w)sw))] :

0(0) = —Teo(60),  E0(8) = Fo(6) — 6((6).
In this case, the inequality (2.16) implies

1 =

and, for the source term linear in w (2.14), it gives the following condition:

(2.22) w-S(6)N(0)w > 0,

1
“or®)
which requires S(8)N(f) to be positive semi-definite for f'(f) > 0 or negative
semi-definite for f'(#) < 0. This additional constitutive assumption (2.18), to-
gether with the assumption (2.14), was introduced in [4] and motivated by the
requirement that, in stationary conditions defined as q = 0 and 6 = 0, the evo-
lution equation (2.13), (2.14) should coincide with Fourier’s law assumed in the

following form:
(2.23) q=—Kgrad#,
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where K is positive definite heat conductivity tensor which may be generalized
to be temperature-dependent K = K(#). In fact, taking the evolution equation

(2.13), (2.14) for w = 0 (in view of (2.18), this corresponds to q = 0, 6 = 0) and
comparing with (2.23), one obtains

kil
f'(6)
With the additional assumptions (2.18), (2.14), the model considered is com-
pletely determined by the constitutive functions dependent only on the temper-
ature f(0), Yco(@), S(A), N(#), except the source term in the balance of energy.

The corresponding system of equations, in view of (2.18), (2.20), (2.14), assumes
the following form:

(2.24) qf,w) =S(0)w,  S(6) = ——K(O)N(6).

o0y {iFca(0) — 0860(6) + - | 77:5(0) = 05 (7775)) | v}

(2.25) + div(S(8)w) = 007 (6, W),
ayw + div(f()I) = —N(8)w,

and is consistent with the entropy inequality

(2.26) 000¢ {4@&0(9) - %w— [% (ﬁsw))] w}

1 S
+ div [E(S(ﬁ)w] > an?'(Q,w,t,X“]
provided that the inequality (2.22) holds for all w and 6 > 0.
In the case of “thermally” isotropic body, the relations (2.18) - (2.20) simplify

according to the well known representation theorems for tensor functions
(2.27) S(0) = a(0)1, N(0) = v(0)1, K(0) = x(0)L.
B. £(0,w) = £y(0)

The next simplifying assumption introduced in [4] together with the assump-
tions (2.14), (2.18) is that internal energy £(6, w) does not depend on the internal
state variable w
(2.28) &0, w) = 5(0).

According to (2.20),, the following equation for S(6) results as a consequence of
this assumption:

R el |
(2.29) S(0) = *10) % | 7775759 -
In [4], the following solution of (2.29) was found
(2.30) S(9) = 6*f(6)B,

http://rcin.org.pl



152 W. LARECKI

where B is a positive definite constant tensor, and, according to (2.24), it relates
the source factor N(f) to the temperature-dependent heat conductivity K(6)

(2.31) N(9) = 6°[f'(6)]*K~1()B.

It follows from (2.19), (2.20), (2.15) that (2.30), (2.31) additionally imply

Weo(0, w) = Teo(6) + —1-3w~Bw,
200

232) (6w = -2 —(0) - sw Bw,
0(0) = —T5o(0),  E(0,w) = E(0) = Fco(8) — 0T (6),
(2.33) @(0,u") = b (0) 3 = 621/ (0)Bw,

and the system of field equations (2.25) further simplifies

0004E0(0) + div po* f'(8)Bw) = po7 (6, W),

(2.34) 5 ' i
ow + div(f(0)I) = —N(8)w = —62[f'(0)]K () Bw.

In the isotropic case (2.27), Eqs.(2.30), (2.31) yield

(2.35) ald) = c2|92f(9), ¢y = const,
(2.36) v(0) = cab®(f'(0)]*[x(6)] "

and the corrsponding field equations are

000hE0(6) + div(caf' (0)w) = o7 (60, [w]),
%[ f'(0)]?
KO)

(2.37)
Oyw + div(f(0)I) = —v(0)w = —co

In [4], the systems (2.34) and (2.37) were transformed, with the aid of (2.18),
(2.24), (2.36), to the corresponding equivalent systems with respect to €, q. Then
in [5, 6], the transformed system (2.37) was alternatively derived as a special
(linear in q) version of the extended thermodynamics of a rigid conductor of
heat, and successively applied for phenomenological modelling of some observed
features of the second sound propagation in dielectric crystals.

2.2.5. Comparison with the Maxwell-Cattoneo—Vernotte equation. Assumption that
q(@,w) is linear in w together with the assumption that the source term b(6, w) is
also linear in w, make it possible to express the evolution equation for w equiva-
lently as the evolution equation for the heat flux vector q, and to replace the cor-
responding constitutive functions (2.19), (2.20) and by £(0,q) = £(6,57'(6)q),
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6.q) = 7(0,5S71(0)q), and 'tBC(B.q) = @c(ﬁ,s_l(ﬂ)q). Substitution of (2.18)
into (2.13), (2.14) yields the following evolution equation for the heat flux vector

(2.38) (57 (0)a)" +div(f(6)I) = —N(8)S'(6)q.

This fact leads to the question, under which further additional constitutive as-
sumptions the evolution equation for the heat flux (2.38), coincides with (or can
be reduced to) the Maxwell - Cattoneo - Vernotte equation

(2.39) 7q+q= —xgradd,

where 7 > 0 is constant thermal relaxation time and & > 0 is constant heat
conductivity, or with its generalization proposed by PA0 and BANERJEE [23]

(2.40) T(6)q + q = —K(0) grad 6,

where T(#) is a temperature-dependent thermal relaxation tensor and K(#) is a
temperature-dependent heat conductivity tensor. For arbitrary positive definite
S(#) and for arbitrary f(6), the evolution equation (2.38), when rearranged to
the respective form similar to (2.40)

(2.41)  S(ON(0)S7'(8)q + {1 —S(ON"1(8)S~*(9) [%5(9)] s-l(e)é} q
= —S(O)N"1f'(0) grad @,
contains a term proportional to 0. Tt takes the form (2.40) if
(2.42) S(8) =Sy, a(f) = g,
and the following identification holds
(2.43) T(6) = SgN~1(0)S;',  K(0) = f'(6)SoN~1(8).
In this case, the evolution equation (2.41) for the heat flux vector takes the form

, sail Latee o Wlal s .
(2.44) 0 K(0)S;'q +q= —K(6) grad,

while the corresponding evolution equations for the internal state variable is
(2.45) w + div(f(O)1) = —f'(0)K(9)Sow = —N(6)w.

The model is completely determined by prescribing f(6), W (), positive definite
constant tensor Sg, the source factor N(8) related to So, K(#) and f'(f) and the
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source term 7(6, w,t, X*), and, according to (2.42), (2.43), (2.18), (2.19),

o (6,w) = Fcol6) + —gzmw-Sow.
= £ 1 d ik
(0, w) = io(0) — 500 0 (W) w-Sow,
846) e - 1 1 d 1
E(Q,W) = 50(6) + % [W = 33&‘ (W)] w-Sgw,
. Ve (0
7(0,0) = 0000 S22 = 530

It follows from (2.44) that the model of a rigid conductor of heat with vec-
tor internal state variable subject to additional constitutive assumptions (2.14),

(2.18), (2.42) is not able to reproduce the generalization of the Maxwell - Catta-
neo-Vernotte equation (2.40) since the relations (2.43) imply T(6)= f—r:m K(ﬂ)SJI.
thus admitting only such temperature-dependent thermal relaxation tensors T(6)
which are related to K(6) by scalar function of # and positive definite con-
stant tensor. The thermodynamic restrictions imposed on T(#) and K(@) by
Clausius - Duhem entropy inequality were investigated by COLEMAN, FABRIZIO
and OWEN [16, 17] and it was shown that K(8) should be positive definite and
K~1(#)T(6) should be symmetric. The model (2.45), (2.46), (2.43) satisfies those
conditions provided that K(f) = f'(8)SoN~1(8) is positive definite (see also
(2.22)) while K~1(0)T(0) = ?%SS()'I is symmetric since Sy is positive definite.

The Maxwell - Cattaneo - Vernotte equation (2.39) is recovered if we take the
isotropic case (2.27) and put

(247)  f(6)=0, v(B)=2=const, off) =ag, K(8)=aoT =k = const.

Fc (6, 1wl) = Teo(6) + 5—o—|wl?,

2000
.z e Aol 2
(0, lw) = () ~ 5= ga= Wl
- o K 2
(2.48) £(6.Iw)) = &0(6) + Il

fio(0) = —Fho(8),  Z0(6) = Tco(6) — 89, (6),
% Y 2z AL
q (g‘w) T gug 6wa = ;w 1
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and the system of field equations with respect to 8, w for a rigid conductor of heat
described by the Maxwell - Cattaneo - Vernotte equation (2.39) can be obtained
by substituting (2.47), (2.48)3 5 into (2.25), (2.24)

000, |€0(0) + %lwﬁ] + div (Ew) = por(0,w,t, X%),

(2.49) £ & ;

Oyw + div(fI) = ——w.
R

This description of a rigid conductor of heat governed by the Maxwell - Cattaneo —
Vernotte equation in terms of internal state variable was obtained by KOSINSKI
[22] as a special case of the general model of a deformable (inelastic) conductor
of heat with internal state variables. Substituting (2.48)s into (2.48)2 3 we may
express internal energy £(#, |w|) and entropy 7(8,|w|) as £(6,|q|) and 7(8, |q]|),
respectively, and then calculate

O 7, ey T

(2.50) i = 7 03036' + 5 ——atpde” = Zdé - Wqﬁdqﬁ,

what agrees with the result of the analysis of the Maxwell - Cattaneo - Vernotte
equation performed in the framework of EIT by Jou and CASSAS-VAZQUEZ [36].
It follows from (2.48)3, (2.46)3 that the model of a rigid conductor of heat with
vector internal state variables satisfying additional assumptions (2.14), (2.18)
and subject to the requirement £(0, w) = £y(#) (discussed in Sec.2.2.4.B) cannot
reproduce the Maxwell - Cattaneo - Vernotte equation (2.39), (2.48), (2.49) but
it can reproduce a special form of the generalized Maxwell - Cattaneo - Vernotte
equation (2.40), (2.43) for f((?) = —¢/f (c - const) and, consequently, in this

case the relation T(A) = z K(Q)Sal must be satisfied. This special form of

the generalized Maxwell - Catraneo Vernotte equation was discussed in [16, 17,
23]. Hence, the model of a rigid conductor with vector internal state variable
(2.32) - (2.34) based on all three assumptions (2.13), (2.14), (2.18), (2.28), devel-
oped in [4, 5, 6], cannot be considered as a “generalization” of the Ma.xwell Cat-
taneo - Vernotte equation but should be understood as the “alternative” to the
generalized Maxwell - Cattaneo - Vernotte equation (2.40).

2.2.6. Generalization of the the Maxwell-Cattoneo-Vernotte equation and other specific
models through the model with internal state variables. Further analysis will be
focused on the model described by the equation (2.6); corresponding to the
balance of energy, the evolution equation for the internal state variable w in the
form (2.13) and the inequality (2.7). In order to emphasize the relation to the
model of a rigid conductor of heat with “semi-empirical temperature” discussed
in the next section and the resemblance to the Maxwell - Cattaneo - Vernotte
equation, we denote

(2.51) f1(8) := —7f(0), c(f,w) = 7b(0,w), T = const

http://rcin.org.pl



156 W. LARECKI

and, substituting (2.51) into (2.13), (2.6)1, (2.7), we rewrite the system of cor-
responding field equations together with Clausius— Duhem entropy inequality in
the following form:

Qnatg(g,'wg) + 3a§a(9,wH) = QO'F(Q,LU@),

(2.52) : :
TO Wy — a[f1(0)0%,] = ¢4 (0, w5),
4 1 )
(2.53) e [ga‘*(e,wﬁ)] > o5 (6,w,t, X°)

In (2.51), (2.52) constant 7 > 0 can be interpreted as a thermal relaxation
time. According to the analysis performed in Secs.2.2.3, 2.2.4, 2.2.5, the model
corresponding to the field equations (2.52) and consistent with the inequality
(2.53) is completely determined by prescribing fi(@), constant 7, free energy
function @c(ﬂ,w} which, without loss of generality, may be assumed as

(2.54) De (0, w) = Ueo(6) + 1 (6, w),

and the source terms 7(0, wg, t, X), ¢y (6, ws). This model comprises all particu-
lar models discussed in Secs. 2.2.4, 2.2.5 as special cases corresponding to specific
forms of constitutive quantities f;(6), ¥; (A, w) and ¢(@, w). For comparison, those
specific forms are presented in the Table 1.

The system of field equations (2.52) and the entropy inequality (2.53) can be
considered as a representation of the class of phenomenological models of heat
transport at finite speeds containing posible generalizations of both the men-
tioned models of practical applicability. Constitutive functions f1(€), ¥1(6, w),
¢(f,w) can be arranged to the form representing explicitly the corrections to,

or derivations from those models. For example, taking fi(0) = —716 + m(6).
@y (0, w) = ﬁmﬁ + £(6,w) and ¢(f,w) = —w + d(f,w), we may introduce

corrections to the Maxwell - Cattoneo — Vernotte equation by means of functions
m(f), £(6, w) and d(0, w).

In the remaining part of this paper, the source term in (2.52); will be as-
sumed as

(2.55) c(6,w) = c1w, c1 = const.

This simplifying assumption does not restrict the generality of further analysis
concerning the application of the MDR for derivation of the thermodynamic
restrictions, and of the procedures of symmetrization (together with conditions
of symmetric hyperbolicity) applied in Part II. To obtain the results valid for
arbitrary c(6, w) it suffices simply to replace c;w by ¢(#, w). Hence, the symmetric
systems obtained in Part II for particular source term (2.55) also apply to general
c(6, w) if this replacement is done.
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Table 1.
Specific model (additional -
constitutive assumption) h(9) 50 %) sify =)
7
—————w-S(f)w f =1
i 2 | S| s
78, w) = S(O)w specific | (isotropic case) y’ (9};;9)
[4] form __ta(f) w|? ITW
2000f1(6) G
21 £ ray12
(2.18), (2.24), (2.28) L —MK"‘(G)B\N
q(0,w) = S(8)w and = 200 ‘ 3
~ ~ specific | (isotropic case) (isotropic case)
Efg'.w = &o(8) form 2 et _c:@z[f{(g)]gw
i 200 x(0)
(2.42), (2.43) ——pr=w-Sow | fi(6)K}(8)Sow
Generalized 'I.smeciﬁc (is?)i?gf:égc)ase} (isuteopic cas)
Maxwell — Cattoneo —Vernotte P .mp aof1(6)
tion [16, 17, 23 far T @)
equation [16, 17, 23] " 2000](8) x(8)
(2.42), (2.43), (2.28) & ’
Generalized —fw-Sow _82 g-19)8
2 2 (6)So
Maxwell — Cattoneo —Vernotte caT o . . 0 X
: 7 =255 (isotropic case) (isotropic case)
equation with (0] c2’aod, ., ea?ao
(0, w) = 50(0) =W} ———
(16, 17] 200 02k(8)
(2.48), (2.49) %
Maxwell - Cattoneo —Vernotte | —76 3 [w|? -w
0001

equation [22]

2.3. Relation to the model of a rigid heat conductor with “semi-empirical temperature”

Recently in a series of papers: KosINsKI [24], CIMMELLI and KOSINSKI [25,
26], KosINskl and SAXTON [28], CiIMMELLI, KOsINskI and SAXTON (27, 29],
a model of heat conduction with finite wave speed based on the concept of
“semi-empirical temperature” has been developed. In this approach, a scalar
internal state variable [ called “semi-empirical temperature” is introduced and
the equation relating the evolution of 3 to the temperature is postulated

(2.56)

8 = £(6,8),

where the presence of the constant dimension parameter 7 (thermal relaxation
time) is motivated by dimensional analysis [27]. According to [25, 27], § is

uniquely defined by (2.56) if a suitable initial condition

(2.57)

B(tﬂvxa) =

Po(X?)

http://rcin.org.pl



158 W. LARECKI

is given, and f(-, -) is Lipschitz continuous. It is also assumed [25, 27] that

of of
(2.58) 5% > 0, 95 = <0
since (2.58); ensures the stability of the solutions of (2.56), (2.57). For 7 = 0,
the inequality (2.58), makes 3 an increasing function of f and ensures the order
relation between different temperatures.
In [25, 27], a rigid conductor of heat with “semi-empirical temperature” was
considered with the following constitutive assumptions:

e = (0, grad B),
(2.59) q= E(G-gradﬁ),

r = 7(0,grad B, t, X¢),

n = (0, grad B),

and the analysis performed in [27] showed that, in this case, f(#, 3) must be of
the form

(2.60) £(8,8) = £1(6) + f2(B).

Substitution of constitutive functions (2.59) into (2.1) and substitution of (2.60)
into (2.56) yield the following system of two field equations for 6, 3:

00€ (0, grad B) + div(6, grad B) = po7 (6, grad 3, t, X©),
8 = f1(0) + f2(B),

subject to differential unilateral constraints resulting from substitution of (2.59)
into the Clausius-Duhem entropy inequality (2.2)

(2.61)

(262) 200 = 0ofi(6, grad B) + div [ 50, grad m} > 005760, grad f, 1, X°).

Assumption (2.58); together with (2.60) enables one to invert the function fi(-)
(fl_l(-] denotes the inverse) and express @ in terms of 3, 3, namely 6 = f (73—

fa(3)), and, consequently, substitute § = 6(5, BJ into (2.61), (2.62) thus ob-
taining second-order nonlinear partial differential equation for 3 subject to the
second-order unilateral differential constraints. The alternative approach is to ex-
press the system (2.61) as an equivalent first-order quasi-linear system of partial
differential equations. In general case, the obtained first-order system will be sub-
ject, besides the differential inequality resulting from (2.62), also to both evolu-
tive (involving time derivative) and involutive (involving only spatial derivatives)
constraints. In [28], the corresponding first-order system was derived for particu-
lar form of f(-, -) in (2.56) while in [27], such system was discussed in the context
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of comparison of the model of a rigid conductor of heat with “semi-empirical tem-
perature” and the model proposed by MORRO and RUGGIERI [4, 5, 6] expressed
in terms of 4, q (see Sec. 2.2.4). For this comparison, the additional constitutive
assumptions q(f, grad 3) = a(f)grad # and £(0, grad ) = £(0) (corresponding to
(2.18) and (2.28), respectively) were introduced. In [27], the new variable

(2.63) w = grad f3,

which is suggested in view of constitutive assumptions (2.59), together with the
“prolonged” evolution equation obtained by spatial differentiation of (2.61);

(2.64) 0a[T0:B] = f1(0)0a8 + f3(B)0aB = 734[0:0), «=1,2,3

were employed in derivation of the equivalent first-order system. Substituting
(2.63) into (2.64) and into (2.61); we obtain the system of 4 field equations with
the left-hand side exactly the same as the left-hand side of the system (2.52) and
with the right-hand side of the evolution equation for w (resulting from (2.63),
(2.64)) of the form f3(3)w. Hence, the condition f3(3) = ¢13, ¢1 — constant,
((2.58) implies ¢; < 0) enables the transformation of the system (2.61) and the
inequality (2.62) into the equivalent quasi-linear first-order conservative system
for 0, w

00€ (0, w) + div(f, w) = o7 (6, w,t, X°),

(2.65) i — div(f1(0)I) = erw,

subject to the inequality
. 1
(2.66) ou = (6. w) + div [ 5(6,w)] = o6, w, £, X?)

and involutive constraints implied by (2.63)
(2.67) Oqwg — Gpwy =0, a,f=1,23, o#p.

The constraints (2.67) enable integration of (2.65)2 to the following evolution
equation for a scalar f related to w by (2.63)

(2.68) 70 = f1(0) + c1B.

Since the systems (2.65), (2.66) and (2.52), (2.53) for ¢; = const have exactly the
same form, the system (2.52), (2.53) with ¢; = const, when subject to involutive
constraints (2.67), can be regarded as corresponding to the model of a rigid
conductor of heat with “semi-empirical temperature” such that the evolution of
the “semi-empirical temperature” is governed by (2.68), and this correspondence
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holds without any other additional constitutive assumptions (like q = a(f),
w = a(f)gradf, e = £(0) employed in [4, 5, 6, 17].

Properties of quasi-linear conservative systems with involutive constraints
and entropy inequality or additional conservation equation were investigated by
DAFERMOS [37], GODUNOV [38], BOILLAT [39-43] and STRUMIA [44, 45]. It is
well known (for example, [38, 44]) that the involutive constraints hold for solu-
tions at each time provided that they are satisfied by initial conditions. Hence,
among the solutions 6(t, X%), w(¢, X*) of the system (2.52), (2.53), a special
class corresponding to the model with “semi-empirical temperature” can be dis-
tinguished. This class corresponds to initial value problems satisfying constraints
(2.67) and, as a consequence, can be alternatively expressed in terms of the so-
lutions f(t, X®) of the respective initial value problems (2.57) (supplemented
by required initial conditions for derivatives of [3) for the third order nonlinear
partial differential equation resulting from substitution of (2.68) into (2.61);.
The involutive constraints do not affect the propagation speeds of weak dis-
continuity waves but may influence the shocks [39, 43]. Therfore, both models
predict the same speeds of thermal waves of weak dicontinouity but may lead
to different thermal shock behaviour. The involutive constraints (2.67) are irrel-
evant for the symmetrization of field equations (2.65) if the symmetric system
for original field variables @, w is sought, but if the system of field equations is
symmetrized by means of transformation of dependent variables then the involu-
tive constraints (2.67) should be taken into account according to the procedures
derived in [38 - 43].

3. The “main dependency relation” (MDR) and the restrictions on con-
stitutive functions

3.1. The MDR

The general analysis of overdetermined systems of conservation equations has
been provided by FREDRICHS [7]. In order to ensure the consistency of an overde-
termined system of conservation equations (N + 1 equations for N unknowns)

8:g° (%) + Bag®A(u”) = bA (X, t, X7),

(3.1)
A=10 Npl.  E=12....N  a=1,2...m

he has introduced the MDR which requires the existence of N + 1 functions
ys:RY - R, A=1,2,...,N + 1, not all identically zero, such that (Property
CI in [7])

39011(“!{), M
du Do

YA (u[")b""(u‘r", t, Xa)

K) 690/1 (u!t')

ouM 8fuM a2t ::'}A(HK}

ya(u
(3.2)

Il
L
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holds for all functions uX(t,X*), K =1,2,...,N. Since the values of u* (t, X¢),
Au (t, X) and 9,uf(t, X*) can be taken arbitrary at each point (¢, X%), the
identity (3.2); is equivalent to the following system of identities (Property CI’

in (7))
s N Cad 89 (u¥)
( : ) Q'A{u ) Bu""" 3UM
The set of N 4 1 functions y4(u®) can be obtained as a solution of the overde-
termined system of linear homogeneous equations (3.1)2, (3.2) and therefore, if
it exists, it is not unique.

It would be convenient to introduce the following matrix notation:

I

Ua YA (UK) =0.

; 00 (u X
Al(u) = [A¥ (")) = [_gau(; )] ‘
A (u
(3.4) A%(u) = [A pr(u)] = {—gau(; )] :
@ =1,2,...1 A=1,2,...,N+1, L =120 I

and treat N + 1 functions y(u) as (N + 1) component row vector

(3:5) y" () = [yau®)).

In matrix notation, (3.2)s, (3.3) takes the form

(3.6) yT(w)Alu) =0, y'(u)A%u)=0, y' (u)b(u,t,X*) =0.
3.2. Equivalence of the entropy inequality and the MDR

The system of field equations (2.52) is a particular case of the quasi-linear
system of N conservation equations for N unknowns

(3.7) O’ (u) + 9uf(u) = d(u,t, X),

while the Clausius - Duhem entropy inequality (2.53) is a particular case of im-
posed unilateral differential constraints

(3.8) 9,h%(u) + 9 h®(u) > p(u, t, X),

where X stands for [X“]. The unknowns u take values in an open bounded
neighbourhood @ of the origin in R, and £0, f*, h% h® are presumed to have
continuous second derivatives with respect to their argument.

Performing the respective differentiation, we rewrite the system (3.7) in a
matrix form

B”(u)dyu + B%(u)dau = d(u, t,X),

&) B%(u) = Vuf’(u), B%(u) = V,f*(u),
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and the inequality (3.8) as

k%7 (u)dpu + k°T (u)dpu > p(u, t, X),

(3.10) K7 (u) = Vuho(u),  k*T(u) = Vyh®(u),

where V,, denotes differentiation with respect to u.
OBSERVATION. If the system (3.7) satisfies the condition
(3.11) detB’(u) #0  forall u

then every Lipschitz continuous solution u(¢, X) of (3.7) satisfies the inequality
(3.8) if and only if the system of N + 1 conservation equations composed of (3.7)
and of the following conservation equation:

8 (u) + ah®(u) = x(u,t,X),

15 x(u,t,X) = Vyh®(u)[B®(u)]~*-d(u, ¢, X),
with
(3.13) x(w, <, ) —pla, -, -) 20,

satisfies the MDR.

It should be noted that the condition (3.11) is necessary for hyperbolicity of
the system (3.7).

The proof of the Observation is given in the Appendix.

3.3. Thermodynamic restrictions via the MDR

In wiew of the Observation, thermodynamic restrictions imposed by Clau-
sius— Duhem entropy inequality can be obtained from the requirement that the
system of 5 first-order partial differential equations for 4 unknown fields (¢, X ),
wo (t, X%)

000:€ + 0aq™ = 00T,

(3.14) TOw — 9a[f1(0)d5] = crws,
00047 + Oa [gq ] = 000,

where £, ¢, 7, and 7} are postulated as the constitutive functions (2.3) and
G = (0, wy,t, X*), should satisfy the MDR, provided that constitutive function
£(#, w,) satisfies the condition

0€(6, wy) E(6,wy)
det | €0 a0 @ Owg #0 forall 6,w,,
0 T0%

(3.15)
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which corresponds to (3.11), and which simply means that internal energy &
depends on temperature # monotonically for each w.,.

The system (3.14) can be written as an overdetermined system of conservation
equations (N + 1 equations for N unknowns)

Beg" A (uF) + B g™ (uf) = b (uX 8, X7),

(3.16)
A=12... N+1, S S S =12 m
where, in our case, N =4, m = 3 and

"] = 18, w,),

(6" (u™)] = [00&(8, wg), Tw,, 00 (8, wp)],

1
(3.17) 94 (u")] = |7°(6, wp), —f1(6)6%, 53°(6, wp)
[ (uX,t, X)] = [007(0, wg, t, X®), 1wy, 005(0, wp, t, X)),
¥, 0 = 1.2,3.

Performing the respective differentiation we rewrite the system (3.14) in a matrix
form

A% (wF)BuM + A% p(uF)BpuM = b2 (UK 8, X7),

(3.18)
g o ()A(uh’) o ad(uK}
04 Ky .. 99 a/ Ky _ 99
A" v (u )_W’ A%y (u )_W_'
with the 5 x 4 matrices [A% /], [A%4 /] of the form
[ O & 3 0¢ T
255 D5 ®w,  Pou
0 T 0 0
04
[.AOAM] = la_gM] = 0 0 T o |,
ou
0 0 0 .
on on I o
(3 19) _9055 L 3w1 & a‘wz o 31.03 4
' g g~ o> 0 9™ 7
af dwy dws Ows
9go! —8% f1(0) 0 0 0
[A“AM] = {W] =| —8%f(6) 0 0 0
—afi0) 0 0 0
L. 10P 1P 1oF 1 OF
L7027 T690 00w 60w, 6 0w
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In order to investigate the MDR for the system (3.16), (3.17), we introduce the
following notation for y4, [y4] = [A, 27, u] and require the existence of 5 functions
A0, w,), 2°(8,w,) and (6, w,), not all identically zero, such that the identities

AodHE + 0aG"] + 27 {TOpw~ — 0a[f1(0)05]} + p [Qnaﬁ} + Oa (; )] =0,

Q0AT + c12 7wy + popo = 0,

hold for all [#,w,]. Solving the MDR (3.2)2, (3.3) for (3.20), we obtain the fol-
lowing relations

(3.20)

0F  On _
A Agﬁ' + p39 = 0,
,\ﬁ+p_3_n_+z'\'i=0‘
(3.21) o
E =t b (N _"'Ck G =

g
(,\+6)8w7 -0,

According to (3.21); 2, the differential of entropy dij can be expressed in terms
of the differentials dé¢ and dw,

i) i ,\aEdG 2O

(3.22)  pdn= u39d9+#3 dwy ==A=g ik

T
s T
= —\dE - zy—dw,,
€o
and rearranged to the form of generalized Gibbs relation

s des gt
(3.23) Adn =dE+ o Azq,dw-,,

which shows that the factor —u/\ corresponds to the temperature 6. This fact
also follows from (3.21)4.
3.4. Family of solutions of the MDR

In view of (3.21), we obtain

R
o=-%,
y_ (0 Y _ o el ,00
h24) - ’\‘r (3w., dw- A-r ow, T 6 \Ow, Ow,
. @16@’0_ P P
= HF e daw, on®! - tene)!

where the free energy e is introduced by (2.8).
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It follows from (3.24) that the family of solutions of the MDR can be written

as
v [201] 8@C‘ 1 1 oo 6@9
Bot) [y j==ader, BZEpl oo gl coRITE S G
(3.25) (4] l T Ow,’ ] “[9 6 7 dw,
o - : i > 00 OVc
where \ and y are arbitrary functions of [, w,] and A=~1, [§,]=| -1, e 6
%

corresponds to the case when the equation of balance of energy is treated as the

. : . 1 1p90¥c
additional conservation equation, while p = -1, |9,| = |z, —=—7—,—1

4 ‘ sl = |5~57" Bw,’
corresponds to the case when the equation of balance of entropy is treated as
the additional conservation equation.

3.5. Restrictions on constitutive functions

3.5.1. General restrictions. It follows from (3.21), (3.24) that constitutive func-
tions &, 77 and ¢“ must satisfy the following relations

I

T__wmw(af “m):jwmm@@

T dw,  Ow, T Owy
(3.26) Q‘E o 1@
a0 000’
and - =
: ~ 0¥ = Ne
(327) ﬂ——w, E—!pc 936 .

Identity (3.20); of the MDR together with (3.24), (3.26) yields

¥ 1 =
(3.28) Q5 +a Wq?wv — 000 =0,

and, in view of (3.13), it gives the entropy production inequality in the following
form:

(3.29) §'wy =

€ o (08 0 _ o a ¢

6% f1(6) T 6 \ dw, ow,|

Of course, the restrictions (3.26) - (3.29) on constitutive functions §(6, w), 7(6, w)
and £(#, w) derived here with the aid of the MDR coincide with the corresponding
restrictions (2.9), (2.15), (2.16) obtained in [22, 4] as direct consequences of the
Clausius - Duhen entropy inequality if we substitute f1(0) = —7f(6), b(6,w) =
7 le(0,w) = 771w,
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3.5.2. Additional constitutive assumptions
A. €(0,w,) = &(0)

In Secs.2.2.3, 2.2.4, 2.2.5, the the additional constitutive assumptions con-
cerning the form of q(6,w) and £(#, w) were analysed in detail. In those consid-
erations the condition (2.28) (£(6,w) = £y(0)) was taken as supplementary to the
condition (2.18) (q = S(@)w). In this section, the consequences of the assumption
(2.28) are studied without prior asumption (2.18).

As a consequence of the assumption (2.28), the entropy 7(6,w,) splits into
two parts

o~

(3.30) (6, wY) =7 (6)+ M1 (w,),

since, according to (3.26), we have in this case

aﬁ(ngT) _— _1_-f
(3'31) 89 " lE'-[](9)$
and therefore
: (0, w?) _
(3.32) o 0.

Hence, the free energy ¥c given by (2.8) also splits,

B (8, wy) = Fco(8) — 0 7y (w,),

(3.33) "_ > 5
Wco(6) = € (8) — 6 1o (6).

Moreover, the assumption (2.28) together with its consequences (3.30), (3.33)
yields

2 p! =
: _ _ 006°f1(8) M (wa)
(3.34) g = = o,

dwe

e e et T
Hence, the heat flux vector q = [§°] is collinear with Vy 7= l 111 :

B. £(0,w,) = £y(#) for isotropic body

If it is additionally assumed that the body is isotropic then

(3.35) T (wa) = M (wwa),
(3.36) 70, ws) = T (0, wyw”, t, X),
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where ?;1 is a function of one variable and, as a consequence, (3.30), (3.33) and
(3.34) take the form

(60, wa) = Mo (6)+ M1 (wwa),
(3.37) De (0, wq) = Pco(6) — 0
(6)

2
~—ny 908 fl
q T

(w%we),

M
M (waw®)w?.

Therefore, the heat flux vector is collinear with internal state variable w (but
does not depend linearly on w) in this case and, in view of (3.37), (3.36) and
(3.29), the following entropy production inequality is obtained

o a o
(3.38) 2?c; M (waw®)w,w? > 0.
The model of a rigid conductor of heat corresponding to the constitutive assump-
tion (3.30), (3.35) can be regarded as a particular generalization of the model
developed in [4] in a sense that, like in [4], internal energy depends only on the

temperature and the body is isotropic, but a more general dependence (3.37)3
of @ on w is assumed instead of (2.24).

C. (0, wy) = &y(0), isotropic body, Fﬁul quadratic in w

£ R 1
Assuming a particular form of function 7; namely 7y (§) = —5026, ey > 0,
in (3.35), we obtain from (3.37), (3.38),

2 =~ 1
n(0,ws) = Mo (0) — 562w~rw"’,

(3.39) G7(0,w,) = _.Mw'r
T

€162
—=Za% > 0.
pe

In this case q is linear in w and it follows from (2.42) that the model developed
26*[f1(0))°
6(6)

in [4] is obtained if ¢; is replaced by

Appendix
A.1. Results for the system (3.7) in normal form

For the system (3.7) in normal (Cauchy) form

(A1) f2(u) = u,
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KosiNsk1 [30] has formulated the following Lemma 0 (the proof is given in [31]):
Every Lipshitz continuous solution u(t,X) of the system (3.7), (A.1) satisfies
(3.8) if and only if

(A.2) Vuh(u)Vuf®(n) = Vuh(u)
and
(A3) vuha(u)'d(us ey = ,U,{l.l, ) 1

Then, as a consequence, he proved [30, 31] (by contracting both sides of (3.7)
with Vh%(u)) the following:

COROLLARY. Every Lipschitz continuous solution u(¢, X) of the system (3.7),
(A.1) consistent with (3.8) satisfies the additional conservation equation (3.11),
(3.12) almost everywhere.

By “consistency” we mean that (A.2), (A.3) hold. The system (2.52) consid-
ered in this paper is not in normal (Cauchy) form and therefore Lemma 0 and
Corollary do not directly apply to our case.

A.2. Generalization of Lemma 0 and Corollary to the systems (3.7) not in normal form

Assumption (3.11) implies that the mapping f° : © — R is invertible and
therefore v := f* can be taken as new dependent variable related to u by the
inverse mapping O RY 5 0. u(v) = £0~" (v). In new dependent variables,
system (3.7) and the inequality (3.8) assume the following form:

(A.4) OV + 9.8%(v) = d(v,t,%),
(A.5) RO (v) + B h*(v) > fi(v,t,X),
where
£2(v) = £(u(v)) = f(£ ),
( t.X) = d(u(v) tx) = d(fo (v),t,X),
(A.6) RO(v) = hO(u(v)) = KO£ (v)),
h(v) = h*(u(v)) = h*(£ (v)),

A(v,t,X) = p(uv),t,x) = u(f (v),t,X).

Since (A.4) is in normal (Cauchy) form, Lemma 0 and Corollary do apply to
(A.4), (A.5) and, as a consequence, the necessary and sufficient conditions for
the Lipschitz continuous solutions v(¢,X) of (A.4) to satisfy (A.5) are

Vo hO (V) Vo £0(v) = Vi he(v

(A.7) v
Vo hO(v)-d(v, -, ) — (v, -, +) >0,

and the additional conservation equation

(A.8) Oh0(v) + Oxh®(v) = Vyii(v)-d(v, t,X),
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where V, denotes differentiation with respect to v, is satisfied by Lipschitz con-
tinuous solutions of (A.4). Taking into account (A.6) and employing the chain
rule, we obtain from (A.7)

(A.9) [Vuh®(u(v))Vyu(v)][Vuf* (u(v)) Vau(v)] = Vyhe (u(v )OVVu( v),

Yl (uf )) vu(v)-d(u(v), -, -) = p(u(v), -, ) >

Returning in (A.9) to original variable u and taking into account that

(A.10) Vou(v) = Vof'™ (v) = [VufOu(v)] ™ = [B(u(v))] Y,

we obtain

0 0 = o =
(A.11) Vuh?(u)[B (u)] 7 Vuf* (u) = Vyh(u

):
vuhn(u)[Bo(“)]_l'd(u! * ') - J“'(u } > 0.
Hence, the relations (A.11) are generalizations of the relations (A.2), (A.3) of
Lemma 0 to the case of the system (3.7) which is not in normal (Cauchy) form
and satisfies the condition (3.11) and, consequently, every Lipschitz continu-
ous solution of the system (3.7), (3.11) satisfies (3.8) iff (A.11) holds. Similarly,
taking into account (A.6), (A.11),, (A.10), employing the chain rule and then

returning into original dependent varlable u, we obtain from (A.8) the following
conservation equation

(A.12) Ah® (u) 4+ 9ah* (w) = Vuh° (u)[B®(u)] ! -d(u, t, X),
which corresponds to contraction of both sides of (3.7) with V4% (u)[B°(u)] .
Hence, every Lipschitz continuous solution u(¢, X) of the system (3.7) satysfying

(3.11) and consitent with inequality (3.8) (that is, for which (A.11) holds) satisfies
the additional conservation equation (3.12) with

(A.13) x(u,t,X) = Vuh?(u)[B°(u)] ! -d(u, t, X)
almost everywhere, and

(A.14) x(w, -, +) —plu, - ) 20,
according to (A.11)s.

A.3. Consistency with the MDR

The system (3.7) together with the additional conservation equation (A.12),
(A.13), (A.14) can be considered as the system of N + 1 conservation equations
for N unknowns (3.1) which, without loss of generality, can be written in the
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form
= e o [£2(0) FOr k)
g’(u) = [¢"(uX)] = [h"(u)] l ho(;{) ],
x alr, K
(A.15) g%(u) = [¢**(uf)] = [ﬁa((‘;))] = [J;]_a({ﬁx))},

L K=12....N  A=12.:

It follows from (A.11), (A.12), (A.13), (3.9), (3.10) that the system (3.1), (A.15)
corresponding to (3.7), (A.12), (A.13) satisfies the conditions (3.6) of the MDR
for

(A.16)  yT(u) = [Vuh®(u)[B°(w)] %, —1] = (&7 (u)(B°(w)] *, —1]
since, in the case of (A.15), the (N+1) x N matrices (3.1.4) A%(u), A%(u) assume

the form ( ) BYa)
0 N -
T [v o u)] lk‘“’(u)}’
ol lv of*(u }] {Bi(u) },
Voho(w) |~ k0" (u)

and (A.13) holds. Therefore, the system (3.7), (A.12), (A.13) satisfies the MDR
provided that the conditions (A.11) hold. In this way we have proved that if
the system (3.7) satisfies the condition (3.11) and every Lipschitz continuous
solution of (3.7) satisfies the inequality (3.8), then the system (3.7), (3.12) (3.13)
of N + 1 conservation equations satisfies the MDR.

For the converse, we assume that the system (3.1), (A.15) satisfies the condi-
tion (3.11) and the MDR, and that the inequality (3.13) is satisfied. The MDR
implies that there exist such y(u) with the components not all identically zero
which satisfy (3.6), (3.2)2 for b(u) given by (A.15)3 and for A°(u), A%(u) given
by (A.17). For convemence we denote yyi1(u”) = A(u) and ys(u) = pr(u),
I=1,2,...,N, pT(u) = [p(u)]. Then, it follows from (3.6), (A.15), (A.17) that

p? (u)B%(u) = —A(u)k(u), p” (u)B%*(u) = —A(u)k(u)
pT(u)d(u, )= —=xl, 2 0)
The condition (3.11) implies that A(u) is not identically zero and therefore both

sides of (A.18) can be multiplied by —[A(u)] % Denoting ; (u®) = —[A(u)] ' p;(u)
and taking into account (3.9), (3.10) we obtain from (A.18)

(A.17)

(A.18)

(A.19) 17 (u) = k%(u)[B®(u)] ™! = VA% (u)[B(u)] ™
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and the following relations corresponding to (A.11):

Vuh®(u)[B®(u)] "1 Vuf*(u) = Vyh(u),

A.20
& Vuh®(u)[B%(u)] 'd(u, -, -) = x(u, -, ).

It then follows from the generalization of Lemma 0 that every Lipschitz continu-
ous solution of (3.7), (3.11) satisfies the inequality (3.8), in view of (3.13), what
completes the proof.
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