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Optimization of local heating for a spherical shell
made of titanium alloy BT-23

S.F. BUDZ, W.. ASTASHKIN, IS.BUDZ
and LI CHUPYK (LVIV)

THE PROBLEM of optimization of local heating for a spherical shell made of titanium
alloy BT-23 in order to reduce maximal transient or residual stresses is posed and
solved. The effect of the volume changes occurring during phase transition is taken
into account. The minimum of the transient or residual stresses is adopted as an
optimization criterion for determination of optimal temperature fields.

1. Introduction

THIN-WALLED SHELL constructions during manufacturing and exploitation often
undergo local heating, which is used for various technological reasons. This pro-
cess produces the stressed state of construction which causes appearing of the
cracks, plastic deformation etc. Therefore the task of local heating optimization
is very important. Minimization of the stresses is performed by choosing such
heating regime which leads to the stress distribution similar to a homogenous
one. As it is shown in [1], non-optimal local heating may significantly reduce
effectiveness of the heating.

Solution of the problem of local optimal heating is connected with using
constitutive equations of the thermoelastic theory [2, 3], and the calculation
methods of constructions exposed to various thermal and thermo-mechanical
influences [4, 5. Mathematical theory of optimal local heating is considered in
(6] and [7-10]. However, those approaches are valid for the materials and heating
regimes if there are no structural transformations.

In this paper we consider the problem of optimization of local heating for
thin-walled shell constructions. In contrast to the papers [6-10], the following
problems have been analyzed:

1. Phase transition during heating, and casting during cooling are taken into
account.

2. The problem of choice of optimal heating is reduced to calculation of tem-
perature fields which minimize the transient and residual stresses. Minimization
of residual stresses was provided by preliminary optimization of heterogeneous
phase distribution and calculation of the appropriate temperature field.

In direct solving and optimization of the problem of local heating, the residual
stresses are calculated which are produced by heterogeneous phase distribution
due to casting, but not by thermoplastic deformation. The authors have not
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found the above formulation of the problem of local optimal heating in the lit-
erature. The inhomogeneous distribution of phases was established, what is a
novelty in local heating problems.

2. The subject of the paper and constitutive equations

The purpose of this paper is to define the stress state of a spherical shell
made of titanium alloy BT-23 during local equatorial heating, and to optimize
it. We assume that the shell is free from any external mechanical influences and
no stresses have been introduced by previous technological operations during its
production and processing. Local heating of the shell is a technological process
of heating of its equator from the initial temperature of 20° C to the temperature
previously defined (in our case that temperature was 720° C). We consider the
heating to depend upon the radial coordinate.

Alloy BT-23 during heating in the temperature range of 520 — 920° C un-
dergoes phase transition. During rapid cooling it is cast and the phase state is
fixed, which is different from the one appearing during very slow cooling. Dur-
ing ordinary cooling of locally heated shell in the air, the casting conditions for
the heated zone are provided because the cooling is not only due to the heat
exchange with environment but also to the intensive heat flow to cooler parts of
the shell.

We consider two reasons of appearing the stresses in the shell:

1. The stresses are produced by thermal dilatation of phase transitions. In
this case the stresses are simple functions of temperature and can be defined by
thermoelastic methods [2, 3].

2. After cooling, the material is cast and the spatially inhomogeneous phase
state is fixed. The residual stresses are the result of the difference of the specific
volumes of the phases. The phase state of the material after complete cooling
depends on the temperature from which the cooling was started, and on the
speed of the cooling. We consider the speed of cooling when the phase state
depends only on the temperature from which the cooling was initiated.

In the normal state, when temperature is 20° C, the alloy BT-23 contains 80%
of a-phase (hexahedral dense-packed lattice) and 20% of S-phase (body-centered
cubic lattice). This alloy has the following chemical composition: Al - 5.4%,
Mo - 1.9%, V - 4.7%, Cr -1.2%, Fe - 0.5%, Ti — 86.3%. By heating the alloy
in the temperature range of 520° C — 920° C, the quantity of -phase increases
to 100%. As it was shown in [2], the difference in the specific volumes between
a and 3 phases is about 2 — 5% which influences significantly the value and
distribution of the transient and residual stresses.

Figure 1 presents the diagram of linear approximation of the 3-phase mass
fraction (Z) as a function of temperature ¢ of the uniformly heated material
(curve 1), and of the experimentally determined dependence of the residual frac-
tion of A-phase in the material on the initial temperature of cooling (curve 2).
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Fig. 1.

During heating the total change of shell volume der consists of two parts —
thermal volume increment de; and structural volume increment deg:

(2.1) der = de; + d(&e,

where de; = 3a,dt, deg = 38,d=, o, is the linear coefficient of thermal expansion,
3, is the linear coefficient of structural dilatation (dilatation which depends
on phase transition). In general, a, and 3, are functions of temperature. It
should be noticed that in the temperature range of phase transition of alloy
520° C < t < 920° C, the thermal component of the volume e; is increasing, and
the structural one e; is decreasing [2].

During very slow or stationary heating, at each point of the material certain
phase distribution, which depends on temperature of the point, is established.
Therefore, under these conditions, the phase transition fraction = is a simple
function of temperature t (£ = Z(t)), and the total change of the volume can
be determined from the equation:

(2.2) dep = 3a*(t) dt,

where a*(t) = a, + B.(t) d=/dt is the generalized linear coefficient of thermal
expansion which depends on all volume changes which occured in the material
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during heating. In the paper we assume:

o, t <520°C,
(2.3) a*(t) =< (a1 +a2)/2 + B.(t)dE/dt, 520°C <t < 920°C,
s, t > 920°C,

where a; is the linear coefficient of thermal expansion in the temperature range
of 20°C < t < 520° C, ay is the linear coefficient of thermal expansion in the
temperature range of ¢t > 920° C, 3,(t) is an experimentally found function [11].
Figure 2 presents the graph of this coefficient a*(¢) (the graph has been taken
from [11, 12]). It should be noticed that function 5, may be considered to be
constant and it may be found from the equation:

(2.4) Be=W —-WV)/ V1,

where V; is the specific volume of the alloy when t = 520° C, V5 is the specific
volume of the alloy when t = 920° C.

After cooling, certain residual stress state is produced by inhomogeneous
(-phase distribution. In this case, the volume change is defined by changing

[ 1
a" % 10° (;) *

0 250 500 750 1000 t(°C)

FiG. 2.
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the function d="
(2.5) dez =3B dZ,
where [3) is the linear coefficient of structure dilatation. It was determined in [11]:

{ —0.013  for the points, which have experienced phase transitions,
0 p—

0 for the points, which did not experience phase transitions.

The generalized Hooke’s law for the discussed case in a differential form can be
written as

(26) dm—j =

E 1
1-1-_1; {d&,‘j + 1- 2 [ude = {1 = f/)dea] 5;‘j},

where do;; are components of the stress tensor, de;; are components of the strain
tensor, E is the elastic modulus, v is Poisson’s ratio, e = e;; + e2 + €33, djj is
Kronecker’s delta, a =T, Z, 1,5 = (1,2, 3).

It should be noticed that transient stresses during heating and residual stresses
after heating are determined from Eq. (2.6). In this case the reason for residual
stresses to appear is not the thermoplastic deformation but the inhomogeneous
phase state which is fixed by rapid cooling.

From Egs. (2.2), (2.5) and (2.6) we derive the equation for volume changes
during the heating:

t
@2.7) o= 3fa,(t) dt,
tg
where g is the initial temperature; and during the casting:

3 / Bd=  for the points, which have experienced phase
(2.8) ez =<{ 3o transitions,

0 for the points, which did not experience phase
transitions.

The generalized Hooke’s law for the discussed case can be written in the form
E 1
(2.9) o = o {eij+m[ue—(1+u)ea]aij}.
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3. The phase distribution and state of stress of spherical shell during
and after the heating

At first we will define the state of stress of the spherical shell during heating.
It is assumed that the shell is free from any external mechanical influences.
Stationary, axisymmetric heating uniform across the width is provided along the
equator of the sphere.

The meridional (o) and circumferential (o) stresses in the spherical shell
are found from the relations [11]:

(3.1) o1 = 1/(2h)(Ny + 3y/h*M,), oy = 1/(2h)(Ny + 3v/h*My),
where v is the distance from the middle surface of the shell (—h <y < h),
Ny=-DyVctgp/R, M;=—D;/R(d8/dp + v8ctgyp),

Ny=-D,/RdV/dp, My=—D,/R(Octgy+vdb/dy), V =1/R(L(6)~— vE).
Ny, Ny are meridional and circumferential strains; M;, M, are meridional and

circumferential moments; # is the angle of inclination of the normal to the middle
surface of the shell, and it is determined from the equation [6]:

d
(3.2) LL(6) + (D.R* = V%) = D.R2a—e,,,
¥
where
= L + ct i—ct
i TRl =P,

 is the arc length of the meridian, R is the radius of the middle surface of the
shell, D, = Dg/D;, Dy = 2Eh is the tensile rigidity; D = 2Eh3/( (1 —-v?))is
the bending rigidity, 2k is the thickness of the shell, a =T, =

During such a heating regime, the function 8 will be defined when the equa-
tor does not rotate (6(w/2) = 0), the meridional strains are equal zero there
(Ny(m/2) = 0), and meridional ¢, and circumferential o3 stresses are symmetric
with respect to the equatorial section.

Equation (3.1) was solved by means of the finite element method for the shell
with the following physical and geometrical parameters: the radius of the middle
surface of the shell R = 0.1815m, the thickness 2h = 0.009 m, E = 106 MPa,
v = 0.3. While solving the direct problem, we used the practically local equa-
torial heating shown in Fig. 3, curve 1. Here s = Ry is the distance measured
along the meridian from the equator (¢ = 0,7/2). This heating regime does
not account for the phase transformation in the material. This temperature field
corresponds to the transient heterogeneous phase distribution (Fig.4, curve I),
which was defined by Fig.1, curve I, and the distribution of translent 1nter-
nal (Fig.5, curves 1) and external (Fig.6, curves 1) stresses; oy and of are
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components of the meridional and circumferential stresses. The signs + apply
to external and internal surfaces, respectively. After instantaneous stopping of
heating, the heterogeneous phase distribution in the sphere is established (Fig. 7,
curves 1) which causes the residual internal (Fig. 5, curves 2) and external (Fig. 6,
curve 2) stresses.

4. Optimization of the heating regimes of the shell

The optimization of axi-symmetric heat treatment of the sphere is performed
according to the criterion of minimum of the energy functional for transient or
residual elastic deformation [8]:

(4.1) BF= 5—%[(0‘%—}-0‘%—-2&'(0’10’2)) df?,
n

where (2 is the region occupied by the shell.

4.1. Determination of the heating regime which minimizes the stresses
during the heating

The problem of determination of axi-symmetric stress during optimal heat
treatment in the spherical shell with limitation imposed on temperature and
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stress is considered. It is assumed that heating is homogeneous across the width.
In the initial state there are no stresses in the shell. During and after the heating
the shell is free from any mechanical influences. The local heating will be de-
fined under limitation imposed on temperature (¢ = t,) along the equator. The
problem is solved under the following conditions:

ot

(4.2) t(isl) = {g, t{O) =if ,a_S ¥ L

0,

where S; = 0.2m is the range of heating, ty is the initial temperature. The
optimal temperature field is the solution of the following problem: define the
extremum of the elastic energy functional (4.1) which satisfies Eq. (3.2) and the
condition of freedom from mechanical loading (4.2).

4.2. Determination of the heating regime which minimizes residual stresses

Residual stresses which appear in the shell after cooling are defined by inho-
mogeneous phase distribution. Therefore we optimize the phase state of the shell
and then define the temperature field which leads to that phase state. Therefore
the problem of determination of optimal phase distribution in the material sub-
ject to local heating uniformly distributed across the width is posed. There are
no initial stresses in the shell. After the heating it is free from any mechanical in-
fluences. Local phase distribution will be defined with limitation of the -phase
mass fraction (=Z,) in the equator. The problem is solved with the following
boundary conditions:

65|  _
i 85 Szisu

1)

(4.3) EE8) =8, E(0)

If

where = is initial phase distribution in the material. The optimal phase dis-
tribution is the solution of the problem of defining the extremum of the elastic
energy functional (4.1) which satisfies Eq.(3.2) and condition (4.3). The tem-
perature field which corresponds to the optimal phase distribution is shown in
Fig. 1, curve 2.

The optimization was accomplished by the Hooke - Jeeves method (13]. The
temperature shown in Fig. 3, curve 1, was taken as an initial assumption in deter-
mining the optimal one, which minimizes the transient stresses in the sphere. The
functional (4.1) was found from this initial approximation and its optimization
was provided by variation of that temperature. Optimization of the functional
was accomplished when its n-th step did not differ by more than 1% from the
preceding one. The optimal temperature obtained by that method is presented
in Fig. 3, curve 2. The transient phase fistribution (Fig. 4, curve 2) and transient
internal nad external stresses (curves I in Fig.8 and Fig.9) are produced by
that optimal temperature. After the cooling, the residual heterogeneous phase
distribution (Fig. 7, curve 2) and the corresponding residual internal and external
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stresses (curve 2 in Fig.8 and Fig. 9) are established. The temperature (Fig. 3,
curve 2) minimizes the transient stresses in the sphere, that are the stresses
which appear during this heating regime.

During minimization of the residual stresses, the initial functional (4.1) was
defined by residual phase distribution (Fig. 7, curve 1) which was established after
the same initial heating (Fig. 3, curve ). The optimal residual phase distribution
(Fig. 7, curve 3) was found by the Hooke - Jeeves method. The residual internal
and external stresses (curves 2 in Fig. 10 and Fig. 11) correspond to that optimal
residual phase distribution. The heating regime (Fig.3, curve 3) which creates
this phase distribution was defined by function = = =(¢) shown in Fig. 1, curve
2. The temperature (Fig. 3, curve §) minimizes the residual stresses in the sphere
which appear after this heating regime.

5. Conclusions

The optimal heating of the spherical shell made of titanium alloy BT-23
which undergoes phase transition exhibits some peculiarities following that phe-
nomenon. Rapid cooling after heating and casting were taken into account by
determining the residual stresses.

The determination of optimal temperature fields is performed under the
assumption that temperature was not controlled once the heating had been
stopped. From the obtained data we can see that optimal temperature field
which minimizes the transient stresses (Fig. 3, curve 2) has a negligible effect on
the stresses (compare curves 1 in Figs. 5, 6 with curves I in Figs. 8, 9 for transient
stresses and curves 2 in Figs. 5, 6 with curves 2 in Figs. 8, 9 for residual stresses).
The most significant effect was obtained by optimization of the residual phase
distribution (Fig. 7, curve 8) which was established in the material after cooling.
In this case we can reduce the residual stresses by approximately 35% (compare
curves 2 in Figs.5, 6 with curves 2 in Figs. 10, 11). The heat regime (Fig.7,
curve J) which reflects that optimal residual phase distribution, was found by
using the phase transition function =(t) presented in Fig.1, curve 1. It turned
out that, during that heat regime, the transient stresses have been reduced by
approximately 20% in comparison with the initial heat treatment (Fig.3, curve
1), compare curves I in Figs.5, 6 with curves 1 in Figs. 10, 11.
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